
Performance
evaluation of exception
handling in I/O libraries

http://www.ices.cmu.edu/ballista
John P. DeVale
devale@cmu.edu - (412) 268-4264 - http://www.ece.cmu.edu/~jdevale

Institute
for Complex
Engineered
Systems

2

Overview

General overview of Ballista

Hypothesis
• We can make software systems
extremely robust with no significant
performance penalty

Experimental Setup/Results

• SFIO

Conclusions

• High robustness with Low performance penalty

A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

Overview

3

4

System Robustness -- Improves Dependability
Graceful behavior in the presence of exceptional conditions
• Unexpected operating conditions

• Activation of latent design defects

Research Goal
• Metric for comparative evaluation of software robustness

• Ability to apply metric results in a consistent fashion to improve
robustness

• Structure exception handling code to specifically leverage hardware
performance features and minimize performance impact

5

Ballista Software Testing Heritage
SW Testing requires: Ballista uses:
• Test case “Bad” value combinations
• Module under test Module under Test
• Oracle (a “specification”) Watchdog timer/core dumps

Ballista combines:
• Domain testing ideas / Syntax testing ideas
• In general, “dirty” testing

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

6

Ballista: Test Generation
Sfseek (Sfio_t *theFile, int pos)

File State Buffer Type Flags

OPN_READ
OPN_WRITE
OPN_RW

DELETED
CLOSED

MAPPED

NON_BUFFERED
BUFFERED

STRING
READ
WRITE
APPEND
LINE
SHARE
PUBLIC

STATIC
IOCHECK
BUFCONST
WHOLE
MALLOC_STATIC

MALLOC

MAXINT
MININT

ONE
NEGONE
2
4
8
16
32
64
…

ZERO

IntValue

Sfio_t* Int

Sfseek (Sfio_t *theFile=(Composite Value), int pos=0)

API

TESTING OBJECTS

TEST
VALUES

TEST CASE

ORTHOGONAL
PROPERTIES

7

CRASH Severity Scale
Catastrophic
• Test computer crashes (both Benchmark and Starter abort or hang)
• Irix 6.2: munmap(malloc((1<<30)+1), ((1<<31)-1)));

Restart
• Benchmark process hangs, requiring restart

Abort
• Benchmark process aborts (e.g., “core dump”)

Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

Hindering
• Incorrect error code generated

8

Where we currently are
Applied methodology across a wide range of software systems
• Operating Systems
• User level libraries
• DOD distributed simulation framework
• Commercial Java Beans
• Corporate COM/DCOM distributed control framework
• Critical Military Systems

Improved testing granularity by decomposing data types into
orthogonal properties

Experimental Question

Can we get excellent robustness without sacrificing
performance?

9

10

Goal: Improved Robustness

In general, robustness of commercial systems is low
• OS core system call failure rates from 2-12% across a range of systems
• User level code varies greatly, on average not as good as OSes

Anecdotal evidence indicated that more robust systems are more
reliable

11

Goal: Low execution time performance penalty
Original Ballista data resulted in much interaction with
commercial OS and middleware developers

Major reasons given for not including better exception handling in
systems to increase robustness:

NEAR PERFECT COVERAGE
&

PERFORMANCE PENALTY

Experimental Setup

1
2

13

SFIO[korn91] – a brief introduction
Idea:
• Measure something that is supposed to be bulletproof

• See if being really “bulletproof” of necessity costs performance

The Safe, Fast, I/O library
• Written by Korn and Vo at AT&T research, 1991

• Addresses the many safety/robustness/reliability issues found in the Standard
IO libraries

Their goal: safe operation with robust exception handling
without paying a performance premium

[Korn91] Korn, D.G.; Vo, K.-P., “SFIO: safe/fast string/file IO,” Proceedings of the Summer 1991
USENIX Conference

14

SFIO, the original version (1990)

0 50 100

clearerr
fclose

fdopen
feof

ferror
fflush
fgetc
fileno
fopen
fputc
fputs
fread

fscanf
fseek

ftell
fwrite

setbuf
sprintf
sscanf
tmpfile
ungetc

% Failure Rate

SFIO
STDIO

• They couldn’t measure; but we can

• Up to 10x Improvements in robustness

• Low performance impact

Elapsed Time x86

0
500

1000
1500
2000
2500
3000

write
_b

en
ch

write
75

7_
be

nc
h

rea
d_

be
nc

h

rea
d7

57
_b

en
ch

rev
rd_

be
nc

h

rev
rd7

57
_b

en
ch

co
py

rw
_b

en
ch

se
ek

rw
_b

en
ch

pu
tc_

be
nc

h

ge
tc_

be
nc

h

Ti
m

e
in

 s
ec

STDIO

Original
SFIO

15

So what can we observe?
The authors of SFIO had no metric

They fixed a large number of problems
• BUT, they didn’t find them all!

* The lack of quantitative feedback made it difficult to know how
well they had done, and cost vs. benefit

Performance impact was low
• If they fixed everything possible what more could we do?

• If we could fix anything else, what would the cost be?

16

Abort Failure Rate for Select Functions

14

57

52

79

36

8

58

50

6.
29

5.
99 9.
2

2 1

5.
01

2 4.
5

0.
14 1.
02 2 1 0 0.
06 1 1

0

10

20

30

40

50

60

70

80

90

open w rite read close fileno seek sfputc sfgetc

Function

%
 A

bo
rt

 F
ai

lu
re

s

STDIO

Original SFIO

Robust SFIO

Our version is 5-7x more robust
The use of a metric – in our case Ballista – allowed us to improve
performance with respect to exception handling an additional 5-7x

17

Using a Metric leads to better robustness
So without a good metric…
• They missed opportunities for easy robustness gains
• They honestly thought they had found all the easy stuff

The types of failures exhibited can be broadly classified as:
• File permissions
• Memory validation

18

CPU Cycles – wither thou goest?
Better exception handling, but at what cost? – Not much <1%

Elapsed Time
File sizes 2x-8x larger for the axp (ALPHA) system

0

500

1000

1500

2000

2500

3000

write
_be

nc
h

write
757

_b
en

ch

read
_b

en
ch

read

75
7_

be
nc

h
revrd

_b
en

ch

revrd
75

7_
be

nc
h

co
py

rw
_b

en
ch

se

ek
rw

_b
en

ch

pu
tc_

be
nch

ge

tc_
be

nch

Ti
m

e
in

 s
ec

x86-STDIO
x86-Original SFIO
x86-Robust SFIO
axp-STDIO
axp-Original SFIO
axp-Robust SFIO

19

What changed?

It was likely true that robust software suffered a large
performance penalty in the past
• In fact, our first attempt suffered huge performance penalties

But it is not true today (penalties can be small)

Penalties will continue to shrink in the future

Advances in µArchitecture allow us to hide the cost of the added
instructions

20

Resource Heavy Super-scalar
Glut of unused processor resources allow us to insert independent
code without starving the program thread
• The Intel Pentium-4 processor has 5 integer execution units, 4 address

calculation units, and 2 floating units

P4 IPC(instructions per cycle) is only 20-40% more than the P-
Pro (source intel: http://developer.intel.com/design/pentium4/papers/249438.htm)

• Likely only rarely exceeds 2, when in tightly optimized inner loops using
netburst

This leaves plenty of resources free

21

Fetch Bandwidth
Unused resources are only part of the answer
What about Branches that tend to waste fetch bandwidth,
contributing to pipeline stalls?

The Trace/Block cache
• Allows fetch of multiple basic blocks at once

Multiple Branch Predictions
• Allows speculative execution to begin on several basic blocks

Easy to predict
• Usually only 1

22

Summary
The performance cost of building robust systems need not be large
(less than 1%)
• New hardware will reduce the penalty further

Without a good metric, even the best effort is just a stab in the
dark
• In this case, the metric was used as feedback to improve SW

With a good metric we can do a better job with robustness, and
know where to expend effort and what that effort buys us

