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Overview

General overview of Ballista

Hypothesis
• We can make software systems 
extremely robust with no significant 
performance penalty

Experimental Setup/Results

• SFIO

Conclusions

• High robustness with Low performance penalty

A Ballista is an ancient siege 
weapon for hurling objects at 
fortified defenses.
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System Robustness -- Improves Dependability
Graceful behavior in the presence of exceptional conditions
• Unexpected operating conditions

• Activation of latent design defects

Research Goal
• Metric for comparative evaluation of software robustness

• Ability to apply metric results in a consistent fashion to improve 
robustness

• Structure exception handling code to specifically leverage hardware 
performance features and minimize performance impact
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Ballista Software Testing Heritage
SW Testing requires: Ballista uses:
• Test case “Bad” value combinations
• Module under test Module under Test
• Oracle (a “specification”) Watchdog timer/core dumps

Ballista combines:
• Domain testing ideas / Syntax testing ideas
• In general, “dirty” testing
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Ballista: Test Generation
Sfseek (Sfio_t *theFile, int pos)
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CRASH Severity Scale
Catastrophic
• Test computer crashes (both Benchmark and Starter abort or hang)
• Irix 6.2:  munmap( malloc((1<<30)+1), ((1<<31)-1)) );

Restart
• Benchmark process hangs, requiring restart

Abort
• Benchmark process aborts (e.g., “core dump”)

Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

Hindering
• Incorrect error code generated
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Where we currently are
Applied methodology across a wide range of software systems
• Operating Systems
• User level libraries
• DOD distributed simulation framework
• Commercial Java Beans
• Corporate COM/DCOM distributed control framework
• Critical Military Systems

Improved testing granularity by decomposing data types into 
orthogonal properties



Experimental Question

Can we get excellent robustness without sacrificing 
performance?
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Goal: Improved Robustness

In general, robustness of commercial systems is low
• OS core system call failure rates from 2-12% across a range of systems
• User level code varies greatly, on average not as good as OSes

Anecdotal evidence indicated that more robust systems are more 
reliable
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Goal: Low execution time performance penalty
Original Ballista data resulted in much interaction with 
commercial OS and middleware developers

Major reasons given for not including better exception handling in 
systems to increase robustness:

NEAR PERFECT COVERAGE
&

PERFORMANCE PENALTY
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SFIO[korn91] – a brief introduction
Idea:
• Measure something that is supposed to be bulletproof

• See if being really “bulletproof” of necessity costs performance

The Safe, Fast, I/O library
• Written by Korn and Vo at AT&T research, 1991

• Addresses the many safety/robustness/reliability issues found in the Standard 
IO libraries

Their goal: safe operation with robust exception handling 
without paying a performance premium

[Korn91] Korn, D.G.; Vo, K.-P., “SFIO: safe/fast string/file IO,” Proceedings of the Summer 1991 
USENIX Conference
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SFIO, the original version (1990)
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• They couldn’t measure; but we can

• Up to 10x Improvements in robustness 

• Low performance impact
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So what can we observe?
The authors of SFIO had no metric

They fixed a large number of problems
• BUT, they didn’t find them all!

* The lack of quantitative feedback made it difficult to know how 
well they had done, and cost vs. benefit

Performance impact was low
• If they fixed everything possible what more could we do?

• If we could fix anything else, what would the cost be?
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Abort Failure Rate for Select Functions
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Our version is 5-7x more robust
The use of a metric – in our case Ballista – allowed us to improve 
performance with respect to exception handling an additional 5-7x
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Using a Metric leads to better robustness
So without a good metric…
• They missed opportunities for easy robustness gains
• They honestly thought they had found all the easy stuff

The types of failures exhibited can be broadly classified as:
• File permissions
• Memory validation
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CPU Cycles – wither thou goest?
Better exception handling, but at what cost? – Not much <1%

Elapsed Time
File sizes 2x-8x larger for the axp (ALPHA) system
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What changed?

It was likely true that robust software suffered a large 
performance penalty in the past
• In fact, our first attempt suffered huge performance penalties

But it is not true today (penalties can be small)

Penalties will continue to shrink in the future

Advances in µArchitecture allow us to hide the cost of the added 
instructions
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Resource Heavy Super-scalar 
Glut of unused processor resources allow us to insert independent 
code without starving the program thread
• The Intel Pentium-4 processor has 5 integer execution units, 4 address 

calculation units, and 2 floating units

P4 IPC(instructions per cycle) is only 20-40% more than the P-
Pro (source intel: http://developer.intel.com/design/pentium4/papers/249438.htm)

• Likely only rarely exceeds 2, when in tightly optimized inner loops using 
netburst

This leaves plenty of resources free
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Fetch Bandwidth
Unused resources are only part of the answer
What about Branches that tend to waste fetch bandwidth, 
contributing to pipeline stalls?

The Trace/Block cache
• Allows fetch of multiple basic blocks at once

Multiple Branch Predictions
• Allows speculative execution to begin on several basic blocks

Easy to predict
• Usually only 1
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Summary
The performance cost of building robust systems need not be large 
(less than 1%)
• New hardware will reduce the penalty further

Without a good metric, even the best effort is just a stab in the 
dark
• In this case, the metric was used as feedback to improve SW

With a good metric we can do a better job with robustness, and 
know where to expend effort and what that effort buys us


