Performance BAlLIS?E

evaluation of exception
handling in I/O libraries

http://www.ices.cmu.edu/ballista
John P. DeVale

devale@cmu.edu - (412) 268-4264 - http://www.ece.cmu.edu/~jdevale

ectrical & Computer
) ENGINEERING
Institute

for Complex
Engineered
Systems

©

Overview

& General overview of Ballista

¢ Hypothesis

e We can make software systems
extremely robust with no significant
performance penalty

¢ Experimental Setup/Results

A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

* SFIO

¢ Conclusions

« High robustness with Low performahce penalty

BALLISTA

Overview

System Robustness -- Improves Dependability

¢ Graceful behavior in the presence of exceptional conditions

* Unexpected operating conditions

» Activation of latent design defects

& Research Goal

Metric for comparative evaluation of software robustness

Ability to apply metric results in a consistent fashion to improve

robustness

Structure exception handling code to specifically leverage hardware

performance features and minimize performance impact

BALLISTA

4

Ballista Software Testing Heritage

¢ SW Testing requires: Ballista uses:

* Test case “Bad” value combinations

e Module under test Module under Test

* Oracle (a‘“specification”) Watchdog timer/core dumps
SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE

ROBUST

SHOULD VALID OPERATION

WORK INPUTS

'\('J?\I%Lé'-RE REPRODUCIBLE
UNDEFINED~ LD FAILURE
SHOULD INVALID UNREPRODUCIBLE
RETURN /y INPUTS FAILURE

ERROR

¢ Ballista combines:
* Domain testing ideas / Syntax testing ideas

* In general, “dirty” testing BA lLTS?E

5

Ballista: Test Generation

API Sfseek (Sfio_t *theFile, int pos)
TESTING OBJECTS Sfio ++ / t
ORTHOGONAL |
PROPERTIES File State Buffer Type Flags InfValue
OPN_READ MAPPED STRING MAXINT
OPN_WRITE BUFFERED READ MININT
OPN_RW NON_BUFFERED WRITE ZERO
CLOSED APPEND ONE
TEST DELETED LINE NEGONE
VALUES SHARE 2
PUBLIC 4
MALLOC 8
STATIC 16
IOCHECK 32
BUFCONST 64
WHOLE
MALLOC STATIC
TEST CASE Sfseek (Sfio_t *theFile=(Composite Value), int pos=0)

BA ll7§ﬁ6

CRASH Severity Scale

X0 atastrophic

« Test computer crashes (both Benchmark and Starter abort or hang)
e Irix 6.2: munmap (malloc((1<<30)+1), ((1<<31)-1)));

@ Restart

« Benchmark process hangs, requiring restart
@ Abort

* Benchmark process aborts (e.g., “core dump”)
@ Silent

* No error code generated, when one should have been
(e.g., de-referencing null pointer produces no error)

4 Hindering

* Incorrect error code generated

BALLISTA

7

Where we currently are

¢ Applied methodology across a wide range of software systems
* Operating Systems
« User level libraries
« DOD distributed simulation framework
e Commercial Java Beans
e Corporate COM/DCOM distributed control framework
 Critical Military Systems

¢ Improved testing granularity by decomposing data types into
orthogonal properties

Experimental Question

Can we get excellent robustness without sacrificing
performance?

Goal: Improved Robustness

¢ In general, robustness of commercial systems is low
* OS core system call failure rates from 2-12% across a range of systems

« User level code varies greatly, on average not as good as OSes

¢ Anecdotal evidence indicated that more robust systems are more
reliable

BALLISTA

10

Goal: Low execution time performance penalty

¢ Original Ballista data resulted in much interaction with
commercial OS and middleware developers

¢ Major reasons given for not including better exception handling in
systems to increase robustness:

NEAR PERFECT COVERAGE
&
PERFORMANCE PENALTY

Experimental Setup

SKIO[korn91]| — a brief introduction

¢ lIdea:

* Measure something that is supposed to be bulletproof

« Sece if being really “bulletproof” of necessity costs performance

¢ The Safe, Fast, 1/0 library
Written by Korn and Vo at AT&T research, 1991

e Addresses the many safety/robustness/reliability issues found in the Standard
IO libraries

¢ Their goal: safe operation with robust exception handling
without paying a performance premium

[Korn91] Korn, D.G.; Vo, K.-P., “SFIO: safe/fast string/file 10,” Proceedings of the Summer 19¢
USENIX Conference éBAllal Qs ﬁ
13

SFIO, the original version (1990)

ungetc
tmpfile

fseek

fouts
fputc
fopen
fileno
fgetc
fllush
ferror

fdopen
fclose
clearerr

sscanf
sprintf
setbuf
fwrite 4_
ftell F

fscanf

fread h—L

m

]

B

?:I

—
?:I

e —

Ea

m SFIO
@ STDIO

?:I

0

50

100

% Failure Rate

* They couldn’t measure; but we can
* Up to 10x Improvements in robustness

e Low performance impact

Elapsed Time x86

3000 |
o 2500 O STDIO
g 2000
£ 1500 M Original
= 500
o On Om (W W |
O X X X X0
0(\0 Q,Qo Q,QO @(\é\ 0(\0 00(, 0(\0 @(\o ®°° @(\o
@9/\9 b?/\? 6?/\? ?§? o? c,?
X & NN
\$ﬁ\.\é\<0 \Q‘b 8\6 @,4 Ké\b OQ\\ @Q\’{. Q\) QQ)
N @‘b @4 (S

14

So what can we observe?

& The authors of SFIO had no metric

¢ They fixed a large number of problems
« BUT, they didn’t find them all!

¢ * The lack of quantitative feedback made it difficult to know how
well they had done, and cost vs. benefit

¢ Performance impact was low
 [f they fixed everything possible what more could we do?

« If we could fix anything else, what would the cost be?

Our version is 5-7x more robust

¢ The use of a metric — in our case Ballista — allowed us to improve
performance with respect to exception handling an additional 5-7x

Abort Failure Rate for Select Functions

90
80
70
60

R

|| 58

| 57

@ STDIO
50
® Original SFIO

40
O Robust SFIO
30

20 X,

| 52
50

| 86

% Abort Failures

o ©w
o =
oS)

S N
0 e |y | P

open w rite read close fileno seek sfputc sfgetc

Function

BA llTs?Ew

Using a Metric leads to better robustness

¢ So without a good metric...

« They missed opportunities for easy robustness gains
* They honestly thought they had found all the easy stuff

¢ The types of failures exhibited can be broadly classified as:
* File permissions

 Memory validation

CPU Cycles — wither thou goest?

¢ Better exception handling, but at what cost? — Not much <1%

Elapsed Time
File sizes 2x-8x larger for the axp (ALPHA) system

m x86-STDIO
m x86

Original SFIO

@ x86-Robust SFIO
@ axp-STDIO

@ axp-Original SFIO
O axp-Robust SFIO

N\

V.

77777 -~~~

L .

N

N,

3000

2500

2000

1500
1000
500 -

29s Ul awij

OQQ

BALLIST.

18

What changed?

¢ It was likely true that robust software suffered a large
performance penalty in the past

» In fact, our first attempt suffered huge performance penalties
¢ But it is not true today (penalties can be small)

¢ Penalties will continue to shrink in the future

& Advances in uArchitecture allow us to hide the cost of the added

instructions
BALLISTAR

Resource Heavy Super-scalar

¢ Glut of unused processor resources allow us to insert independent
code without starving the program thread

* The Intel Pentium-4 processor has 5 integer execution units, 4 address
calculation units, and 2 floating units

¢ P4 IPC(instructions per cycle) is only 20-40% more than the P-
Pro (source intel: http://developer.intel.com/design/pentium4/papers/249438.htm)

» Likely only rarely exceeds 2, when 1n tightly optimized inner loops using
netburst

¢ This leaves plenty of resources free

BALLISTA

20

Fetch Bandwidth

¢ Unused resources are only part of the answer

¢ What about Branches that tend to waste fetch bandwidth,
contributing to pipeline stalls?

& The Trace/Block cache

« Allows fetch of multiple basic blocks at once
¢ Multiple Branch Predictions

« Allows speculative execution to begin on several basic blocks

¢ Easy to predict
e Usually only 1

Summary

¢ The performance cost of building robust systems need not be large
(less than 1%)

* New hardware will reduce the penalty further

¢ Without a good metric, even the best effort is just a stab in the
dark

 In this case, the metric was used as feedback to improve SW

¢ With a good metric we can do a better job with robustness, and
know where to expend effort and what that effort buys us

