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Overview

¢ Introduction

» APIs aren’t robust (and people act as if they don’t want them to be robust!)

¢ Top 4 Reasons people give for ignoring robustness improvement
« “My API is already robust, especially for easy problems™ (it’s probably not)
» “Robustness is impractical” (it is practical)
* “Robust code will be too slow” (it need not be)

« “We already know how to do it, thank you very much” (perhaps they don t)

¢ Conclusions

» The big future problem for “near-stationary’ robustness i1sn’t technology --

it is awareness & training Carnegie
Mellon



Ballista Software Testing Overview

SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE

ROBUST
SHOULD VALID OPERATION
WORK INPUTS

'\6?\]%%'&'5 REPRODUCIBLE

UNDEFINED~ el FAILURE
SHOULD INVALID UNREPRODUCIBLE
RETURN === INPUTS FAILURE

ERROR

¢ Abstracts testing to the API/Data type level
* Most test cases are exceptional
» Test cases based on best-practice SW testing methodology
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Ballista: Test Generation (fine grain testing)

¢ Tests developed per data type/subtype; scalable via composition

API

TESTING OBJECTS

ORTHOGONAL
PROPERTIES

TEST
VALUES

TEST CASE

Sfseek (Sfio_t *theFile, int pos)

Sfio_t* /

[Nt
File State Buffer Type Flags IntValue
OPN_READ MAPPED STRING MAXINT
OPN_WRITE BUFFERED READ MININT
OPN_RW NON_BUFFERED WRITE ZERO
CLOSED APPEND ONE
DELETED LINE NEGONE
SHARE 2
PUBLIC 4
MALLOC 8
STATIC 16
IOCHECK 32
BUFCONST 64
WHOLE .

MALLOC STATIC

Sfseek (Sfio_t *theFile=( Composite Value), int pos=0)




Initial Results: Most APIs Weren’t Robust

¢ Unix & Windows systems had poor robustness scores:
« 24% to 48% of intentionally exceptional Unix tests yielded non-robust results
* Found simple “system killer” programs in Unix, Win 95/98/ME, and WinCE

¢ Even critical systems were far from perfectly robust
« Safety critical operating systems
* DoD HLA (where their stated goal was 0% robustness failures!)

¢ Developer reactions varied, but were often extreme
« Organizations emphasizing field reliability often wanted 100% robustness

* Organizations emphasizing development often said
“core dumps are the Right Thing”

e Some people didn’t care
» Some people sent hate mail
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Comparing Fifteen POSIX Operating Systems

Ballista Robustness Tests for 233 Posix Function Calls
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Robustness: C Library vs. System Calls

Portions of Failure Rates Due To System/C-Library
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Estimated N-Version Comparison Results

Normalized Failure Rate by Operating System
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Failure Rates by Function Group

Percent Failures by Functional Group
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Even Those Who Cared Didn’t Get It Right

¢ OS Vendors didn’t accomplish their stated objectives (e.g.,):
« IBM/AIX wanted few Aborts, but had 21% Aborts on POSIX tests

* FreeBSD said they would always Abort on exception (that’s the Right Thing)
but had more Silent (unreported) exceptions than AIX!

* Vendors who said their results would improve dramatically on the next
release were usually wrong

¢ Safe Fast I/0 (SFIO) library

« Ballista found that it wasn’t as safe as the authors thought

— Missed: valid file checks; modes vs. permissions; buffer size/accessibility

¢ Do people understand what is going on?

* We found four widely held misconceptions that prevented improvement in
code robustness

Carnegie
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#1: “Ballista will never find anything (important)”

1. “Robustness doesn’t matter” |
« HP-UX gained a system-killer in
the upgrade from Version 9 to 10 } 100%

In newly re-written memory

management functions...
... which had a 100% failure rate

under Ballista testing
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#2: “100% robustness is impractical”

& The use of a metric — in our case Ballista — allowed us to remove all
detectable robustness failures from SFIO and other API subsets

e (Our initial SFIO results weren’t entirely zero; but now they are)

Abort Failure Rate for Select Functions
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Can Even Be Done With “Ordinary” API

¢ Memory & semaphore robustness improved for Linux
» Robustness hardening yielded 0% failure rate on standard POSIX calls below

Failure Rate (%)
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#3: “It will be too slow”

¢ Solved via caching validity checks

e Completely software-implemented cache for checking validity

Clear
Module

Invalidate

|

Reference
Lookup
Verification
Module R
Store
Result

Cache Structure in Memory

* Check validity once, remember result

— Invalidate validity check when necessary
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Caching Speeds Up Validity Tests

¢ Worst-case of tight loops doing nothing but “mem” calls is still fast
« L2 Cache misses would dilute effects of checking overhead further

Slowdown of robust memory functions with tagged malloc
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Future MicroArchitectures Will Help
¢ Exception & validity check branches are highly predictable

e Compiler can structure code to assume validity/no exceptions
« Compiler can give hints to branch predictor
* Branch predictor will quickly figure out the “valid” path even with no hints

» Predicated execution can predicate on “unexceptional” case

¢ Exception checks can execute in parallel with critical path
» Superscalar units seem able to execute checks & functions concurrently

* QOut of order execution lets checks wait for idle cycles

¢ The future brings more speculation; more concurrency
« Exception checking is an easy target for these techniques
» Robustness i1s cheap and getting cheaper (if done with a view to architecture)

Carnegie
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#4: “We Did That On Purpose”

¢ Variant: “Nobody could reasonably do better”
» Despite the experiences with POSIX, HLA & SFIO, this one persisted

» So, we tried an experiment in self-evaluating robustness

¢ Three experienced commercial development teams
« Components written in Java

» Each team self-rated the robustness of their component per
Maxion’s “CHILDREN” mnemonic-based technique

» We then Ballista tested their (pre-report) components for robustness

« Metric: did the teams accurately predict where their robustness vulnerabilities
would be?
— They didn’t have to be perfectly robust
— They all felt they would understand the robustness tradeoffs they’d made

Carnegie
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Self Report Results: Teams 1 and 2

¢ They were close in their prediction
* Didn’t account for some language safety features (divide by zero)
» Forgot about, or assumed language would protect them against NULL in A4
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Self Report Data: Team 3

¢ Did not predict several failure modes
* Probably could benefit from additional training/tools
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Conclusions: Ballista Project In Perspective

¢ General testing & wrapping approach for Ballista
« Simple tests are effective(!)
— Scalable for both testing and hardening

» Robustness tests & wrappers can be abstracted to the data type level
— Single validation fragment per type — i.e. checkSem(), checkFP()...

¢ Wrappers are fast (under 5% penalty) and usually 100% effective
» Successful check results can be cached to exploit locality
— Typical case is an index lookup, test and jump for checking cache hit
— Typical case can execute nearly “for free” in modern hardware
» After this point, it is time to worry about resource leaks, device drivers, efc.

¢ But, technical solution alone is not sufficient
» (ase study of self-report data
— Some developers unable to predict code response to exceptions
* Training/tools needed to bridge gap

— Even seasoned developers need a QA tool to keep them honest
— Stand-alone Ballista tests for Unix under GPL; Windows XP soon Carnegie
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Future Research Challenges In The Large

¢ Quantifying “software aging” effects
« Simple, methodical tests for resource leaks
— Single-threaded, multi-threaded, distributed all have different issues

— One problem is multi-thread contention for non-reentrant resources

» e.g., exception handling data structures without semaphore protection
» Measurement & warning systems for need for SW rejuvenation
— Much previous work in predictive models

— Can we create an on-line monitor to advise it is time to reboot?

¢ Understanding robustness tradeoffs from developer point of view
» Tools to provide predictable tradeoff of effort vs. robustness
— QA techniques to ensure that desired goal 1s reached
— Ability to specify robustness level clearly, even if “perfection” 1s not desired
» Continued research in enabling ordinary developers to write robust code
* Need to address different needs for development vs. deployment
— Developers want heavy-weight notification of unexpected exceptionsC

. . . arnegie
— In the field, may want a more benign reaction to exceptions M
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