Software Robustness Testing
A Ballista Retrospective

Phil Koopman

koopman@cmu.edu

http://ballista.org

With contributions from:

Dan Siewiorek, Kobey DeVale

John DeVale, Kim Fernsler, Dave Guttendorf,

Nathan Kropp, Jiantao Pan, Charles Shelton, Ying Shi

Cal' ne ie :‘g?tggtrflplex Electrical & Computer
Me]loﬁ 6Engineered ({) ENGINEERING

Systems

Overview

¢ Introduction

» APIs aren’t robust (and people act as if they don’t want them to be robust!)

¢ Top 4 Reasons people give for ignoring robustness improvement
« “My API is already robust, especially for easy problems™ (it’s probably not)
» “Robustness is impractical” (it is practical)
* “Robust code will be too slow” (it need not be)

« “We already know how to do it, thank you very much” (perhaps they don t)

¢ Conclusions

» The big future problem for “near-stationary’ robustness i1sn’t technology --

it is awareness & training Carnegie
Mellon

Ballista Software Testing Overview

SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE

ROBUST
SHOULD VALID OPERATION
WORK INPUTS

'\6?\]%%'&'5 REPRODUCIBLE

UNDEFINED~ el FAILURE
SHOULD INVALID UNREPRODUCIBLE
RETURN === INPUTS FAILURE

ERROR

¢ Abstracts testing to the API/Data type level
* Most test cases are exceptional
» Test cases based on best-practice SW testing methodology

Carnegie
Mellon

Ballista: Test Generation (fine grain testing)

¢ Tests developed per data type/subtype; scalable via composition

API

TESTING OBJECTS

ORTHOGONAL
PROPERTIES

TEST
VALUES

TEST CASE

Sfseek (Sfio_t *theFile, int pos)

Sfio_t* /

[Nt
File State Buffer Type Flags IntValue
OPN_READ MAPPED STRING MAXINT
OPN_WRITE BUFFERED READ MININT
OPN_RW NON_BUFFERED WRITE ZERO
CLOSED APPEND ONE
DELETED LINE NEGONE
SHARE 2
PUBLIC 4
MALLOC 8
STATIC 16
IOCHECK 32
BUFCONST 64
WHOLE .

MALLOC STATIC

Sfseek (Sfio_t *theFile=(Composite Value), int pos=0)

Initial Results: Most APIs Weren’t Robust

¢ Unix & Windows systems had poor robustness scores:
« 24% to 48% of intentionally exceptional Unix tests yielded non-robust results
* Found simple “system killer” programs in Unix, Win 95/98/ME, and WinCE

¢ Even critical systems were far from perfectly robust
« Safety critical operating systems
* DoD HLA (where their stated goal was 0% robustness failures!)

¢ Developer reactions varied, but were often extreme
« Organizations emphasizing field reliability often wanted 100% robustness

* Organizations emphasizing development often said
“core dumps are the Right Thing”

e Some people didn’t care
» Some people sent hate mail

Carnegie
Mellon

Comparing Fifteen POSIX Operating Systems

Ballista Robustness Tests for 233 Posix Function Calls

axa.t I |
Free 850 22,5
HP-ux 2,05 -
HP-ux 10.20 - C - (strophic
5.3 - N |
Irix 6.2 _ 1 Catastroph/c
Linux 2.0.18 B Abort Failures
LynxOS 2.4.0 _ 1Catastroph/c [] _Restart Failure
NetgsD 1.3 | |
OSF 1 3.2 _] 1 Catastroph;'c
osF 140
anx 4.22 |, - C:'-strophics
anx 4.2« |
sunos 4.1.3 -
sunos 5.5 -

0% 5% 10% 15% 20% 25%

BALLISTA

Normalized Failure Rate Cal‘negle

Mellon

Robustness: C Library vs. System Calls

Portions of Failure Rates Due To System/C-Library

ax 4.1 -
Free 5D 2.2.5 [R D |
HP-ux <.05 - I
HP-UX 10.20 _ 1 Caliastrophic
rix5.3 I I
6.2 | S 1 Catastrophic
Linux 2.0.18 I B System Calls
LynxOS 2.4.0 _ 1 Catasfrophic = _C Library
NetssD 1.3 - [I
OSF 1 3.2 — 1 Catastroph)’c
osF 140 I
aNx 4.22 - [I 2 Catastrophics
QNX 4.2+ |
sunos 4.1.3 | I
sunos 5.5 -

0% 5% 10% 15% 20% 25%
Normalized Failure Rate Carnegie
Mellon

Estimated N-Version Comparison Results

Normalized Failure Rate by Operating System

AIX
FreeBSD
HPUX 9.05 R
HPUX 10.20 *
Irix 5.3

Irix 6.2

Linux

B Abort %
N Silent %
[] Restart %
% Catastrophic

Lynx
NetBSD
OSF-13.2
OSF-14.0 B
QNX 4.22 BEX
QNX 4.24
SunOS 4.13
SunOS 5.5

Operating System Tested

0% 10% 20% 30% 40% 50%

Normalized Failure Rate (after analysis) Carnegie
Mellon 8

Failure Rates by Function Group

Percent Failures by Functional Group

O

gl

(4]
2 7o 5%
= o ce
© At G
t 60%
3 50% — #IFunctions
ff with
§ 40% Catastrophic
= Failures
O 30% -
o ’ None
20% — Windows 2000 None

Windows 98 SE 7 I
Windows 98 7 I
Windows 95 S I

O < 2 e \\O R K T Windows CGE 211 28 I
oY G chk eg(\ &(@ S e OQ\(\ (\((\G_ ((\{@h {@h Ooe. ({\e.(\
N O @S\'&- -\{0 Q(\ Q(\ @G
O oW E P
\@ e°” o O ({\OCX
o< < Qe

BALLISTA

Even Those Who Cared Didn’t Get It Right

¢ OS Vendors didn’t accomplish their stated objectives (e.g.,):
« IBM/AIX wanted few Aborts, but had 21% Aborts on POSIX tests

* FreeBSD said they would always Abort on exception (that’s the Right Thing)
but had more Silent (unreported) exceptions than AIX!

* Vendors who said their results would improve dramatically on the next
release were usually wrong

¢ Safe Fast I/0 (SFIO) library

« Ballista found that it wasn’t as safe as the authors thought

— Missed: valid file checks; modes vs. permissions; buffer size/accessibility

¢ Do people understand what is going on?

* We found four widely held misconceptions that prevented improvement in
code robustness

Carnegie
Mellon

10

#1: “Ballista will never find anything (important)”

1. “Robustness doesn’t matter” |
« HP-UX gained a system-killer in
the upgrade from Version 9 to 10 } 100%

In newly re-written memory

management functions...
... which had a 100% failure rate

under Ballista testing

Robustness Failure Rate

* So, robustness seems to matter! W_{‘
Ft%":%?«ohz'l
\’\»\P’U \RY 5 ()..\ Q
2. “The problems you’re looking for ysbi:,
are too trivial -- we don’t make ok N L
2 = = O = Q
those kinds of mistakes” 94% 53508585
. 23293 0% e 3
« HLA had a handful of functions that 3 22 ;%%% iR 53 ’a%
ol o’ :
were very non-robust %gf 2 ¢ S v
: (19 29 O 6
« SFIO even missed some “easy >
checks
Carnegie

* See Unix data to the right...
Mellon

11

#2: “100% robustness is impractical”

& The use of a metric — in our case Ballista — allowed us to remove all
detectable robustness failures from SFIO and other API subsets

e (Our initial SFIO results weren’t entirely zero; but now they are)

Abort Failure Rate for Select Functions

90
80
70
60
90 -
40 -
30 -
20 I

(9]
N

| 57
| 58

| 52
| 50

@ STDIO
B Original SFIO
O Robust SFIO

| 36

% Abort Failures

ov -

o o
10] Ip] ('\I Lo. C\I v_'
S S S S O S S S

open write read close fileno seek sfputc sfgetc

Function

Carnegie
Mellon

12

Can Even Be Done With “Ordinary” API

¢ Memory & semaphore robustness improved for Linux
» Robustness hardening yielded 0% failure rate on standard POSIX calls below

Failure Rate (%)

80.0 -
70.0
60.0 -
50.0 -
40.0 -
30.0 -
20.0 -
10.0 -

Failure rates for memory/process original Linux calls
(All failure rates are 0% after hardening)

31.3

16.4

752 752

57.8

35.3

64.7
59.5

41.2

64.7

0.0

Mem. Manipulation Module

Function name

Process Synch. Module

Carnegie
Mellon

13

#3: “It will be too slow”

¢ Solved via caching validity checks

e Completely software-implemented cache for checking validity

Clear
Module

Invalidate

|

Reference
Lookup
Verification
Module R
Store
Result

Cache Structure in Memory

* Check validity once, remember result

— Invalidate validity check when necessary

Carnegie
Mellon

14

Caching Speeds Up Validity Tests

¢ Worst-case of tight loops doing nothing but “mem” calls is still fast
« L2 Cache misses would dilute effects of checking overhead further

Slowdown of robust memory functions with tagged malloc

1.25

1.2 \
1.15

—e— memchr
§ \ —=|— memcpy
-§ 1.1 memcmp
(% memset

—X— memmove

1.05

0.95 | | |
16 32 64 128 256 512 1024 2048 4096 Carnegie

Buffer size (Bytes) ME"OH

15

Future MicroArchitectures Will Help
¢ Exception & validity check branches are highly predictable

e Compiler can structure code to assume validity/no exceptions
« Compiler can give hints to branch predictor
* Branch predictor will quickly figure out the “valid” path even with no hints

» Predicated execution can predicate on “unexceptional” case

¢ Exception checks can execute in parallel with critical path
» Superscalar units seem able to execute checks & functions concurrently

* QOut of order execution lets checks wait for idle cycles

¢ The future brings more speculation; more concurrency
« Exception checking is an easy target for these techniques
» Robustness i1s cheap and getting cheaper (if done with a view to architecture)

Carnegie
Mellon

16

#4: “We Did That On Purpose”

¢ Variant: “Nobody could reasonably do better”
» Despite the experiences with POSIX, HLA & SFIO, this one persisted

» So, we tried an experiment in self-evaluating robustness

¢ Three experienced commercial development teams
« Components written in Java

» Each team self-rated the robustness of their component per
Maxion’s “CHILDREN” mnemonic-based technique

» We then Ballista tested their (pre-report) components for robustness

« Metric: did the teams accurately predict where their robustness vulnerabilities
would be?
— They didn’t have to be perfectly robust
— They all felt they would understand the robustness tradeoffs they’d made

Carnegie
Mellon

17

Self Report Results: Teams 1 and 2

¢ They were close in their prediction
* Didn’t account for some language safety features (divide by zero)
» Forgot about, or assumed language would protect them against NULL in A4

Component Aand B Robustness

25

N
o
!

S

g 15

(]

% @ Measured

= m Expected

8 10

&

o

2

<

O T T T T T T °
A1 A2 A3 A4 B1 B2 B3 B4 Carnegle

Function Mellon

18

Self Report Data: Team 3

¢ Did not predict several failure modes
* Probably could benefit from additional training/tools

Component C Total Failure Rate
60

o)
o

N
o
|

@ Measured

_ _ _ m Expected

Total Failure Rate (%)
N W
o o
|

RN
o
|

PP E NN K & & K
N I S A S Carnegie

Method Designation Me"()n

19

Conclusions: Ballista Project In Perspective

¢ General testing & wrapping approach for Ballista
« Simple tests are effective(!)
— Scalable for both testing and hardening

» Robustness tests & wrappers can be abstracted to the data type level
— Single validation fragment per type — i.e. checkSem(), checkFP()...

¢ Wrappers are fast (under 5% penalty) and usually 100% effective
» Successful check results can be cached to exploit locality
— Typical case is an index lookup, test and jump for checking cache hit
— Typical case can execute nearly “for free” in modern hardware
» After this point, it is time to worry about resource leaks, device drivers, efc.

¢ But, technical solution alone is not sufficient
» (ase study of self-report data
— Some developers unable to predict code response to exceptions
* Training/tools needed to bridge gap

— Even seasoned developers need a QA tool to keep them honest
— Stand-alone Ballista tests for Unix under GPL; Windows XP soon Carnegie

Mellon

20

Future Research Challenges In The Large

¢ Quantifying “software aging” effects
« Simple, methodical tests for resource leaks
— Single-threaded, multi-threaded, distributed all have different issues

— One problem is multi-thread contention for non-reentrant resources

» e.g., exception handling data structures without semaphore protection
» Measurement & warning systems for need for SW rejuvenation
— Much previous work in predictive models

— Can we create an on-line monitor to advise it is time to reboot?

¢ Understanding robustness tradeoffs from developer point of view
» Tools to provide predictable tradeoff of effort vs. robustness
— QA techniques to ensure that desired goal 1s reached
— Ability to specify robustness level clearly, even if “perfection” 1s not desired
» Continued research in enabling ordinary developers to write robust code
* Need to address different needs for development vs. deployment
— Developers want heavy-weight notification of unexpected exceptionsC

. . . arnegie
— In the field, may want a more benign reaction to exceptions M
ellon

21

