Proceedings of the SIGOPS European Workshop, September

Server Operating Systems

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, and Deborah A. Wallach
M.1.T. Laboratory for Computer Science
{kaashoek, engler, ganger,kerr}@lcs.mit.edu

Abstract

We introduce server operating systems, which are sets of abstractions and runtime support for specialized, high-
performance server applications. We have designed and are implementing a prototype server OS with support for
aggressive specialization, direct device-to-device access, an event-driven organization, and dynamic compiler-assisted
ILP. Using this server OS, we have constructed an HTTP server that outperforms servers running on a conventional
OS by more than an order of magnitude and that can safely timeshare the hardware platformwith other applications.

1 Introduction

Servers, the foundations of the client/server model of computing, are rapidly becoming more critical. If we are to
realize the promise of global information access, widely distributed computing and even high-performance local area
computing, system implementors must construct a variety of server applications (whether centralized or not) that can
support large numbers of active clients. Ideally, the development and operating environments should be conducive to
easy and modular construction of servers (e.g., HTTPR, FTR, NFS, etc.) that deliver the performance of the underlying
hardware (in particular, the network and/or disks) without requiring that an entire machine be dedicated to each server.
Unfortunately, the status quo falls short of thisideal.

Currently there are two main approaches to constructing servers. The first is to place a server on top of a
genera-purpose operating system (OS). This approach can simplify the construction of server applications, but
seriously compromises performance by forcing them to use overly general OS abstractions. These abstractions
frequently provide an order of magnitude less performance (for primitive operations) than is available from the
hardware [2, 8, 10, 13, 22, 23]. Furthermore, these abstractions are usualy high-level, directly preventing servers
from exploiting domain-specific knowledge. With this approach, achieving high performance generally requires very
powerful hardware (e.g., AltaVista[7], which uses 12 state-of -the-art Alpha CPUs and over 7 GB of physical memory).
The second approach isto create an operating system specifically designed for asingle server configuration[11, 12, 20].
With this approach, a different operating system is generally constructed from the ground up for each different server,
greatly increasing the implementation effort [20]. Furthermore, because this approach does not multiplex resources
among multiple servers, it requires that each server have an entire machine dedicated to it, even though server traffic
tends to be bursty and could therefore be multiplexed. As a result, this second method is also costly and exhibits
poor resource utilization, which ultimately compromises performance. We believe that we can have the best of both
worlds: the specialization and performance of a dedicated system with the modular construction and inter-application
protection of a general-purpose OS.

We propose a third approach: server operating systems. A server operating system is a set of abstractions and
runtime support for specialized, high performance server applications.! A good server operating system should provide
(1) tools and parameterizable default implementations of server abstractions (e.g., network protocol implementation,
storage management, etc.) to support modular construction of server applications, (2) full freedom to replace or
override these default implementations and specialize server abstractions based on application-specific characteristics,
and (3) protection boundaries, such that multiple applications (including both highly specialized servers and “normal”
applications) can timeshare a high-performance system effectively.

1we talk about server OSs in the plural, because different server OS support may be appropriatefor different types of server applications.

Joan Digney
Proceedings of the SIGOPS European Workshop, September 1996.

We are in the process of constructing a server operating system that includes:

o Default implementations of various abstractionsuseful for constructing server applications, implemented insuch
away that they can be parameterized and combined in application-specific ways (e.g., application-specific disk
layouts, header and checksum precomputation, etc...).

o Support for direct, protected access to hardware resources, allowing a server application to completely replace
any or al of the default abstractions with its own when none of the existing choices matches its needs.

o Support for direct access from the disk system to the network module (and vice versa), avoiding scheduling
delays, traversal of file system layers and network layers, and redundant data copies.

o Support for event-driven organization of server applications, which avoids the thread management and concur-
rency control problemsinherent in athread per request organization.

o Compiler-supported, dynamic integrated layer processing (ILP) [6] to improve the throughput of application-
specific networking software.

The construction of server OSsis greatly simplified by using an extensible operating system. We are constructing
our prototype server OS as a set of libraries on top of the Aegis exokernel [8], which provides applicationswith direct,
protected access to hardware resources. The exokernel OS architecture, by design, allows arbitrarily-specialized
applicationsto safely timeshare a system. In designing and implementing server OSs, we view this support as a given
and focus on identifying abstractions and building libraries that simplify the construction of highly specialized server
applications that deliver the full hardware performance. Although we use the exokernel as a platform for building
server OSs, itislikely that other extensible operating systems (e.g., Spin [2], Cache Kernel [5], Vino[23]) could aso
provide the necessary base support. Some of the extensible abstractions that we are developing could even be added
to a conventional OS (e.g., UNIX or Windows NT).

The contributions of this paper are threefold. First, we describe and argue for server operating systems as a better
way of constructing high performance server applications. Second, we identify design techniques for server OSs and
discuss how to apply these in a modular fashion. Third, we describe a prototype server OS and its use in constructing
a high-performance HTTP server. Measurements of this server show that it can support an order of magnitude more
client activity than conventional implementations without sacrificing inter-application protection.

The remainder of this paper is organized as follows. Section 2 describes the design of the components of a
prototype server operating system that we are constructing. Section 3 describes our initial implementations of these
components. Section 4 describes afast HTTP server (called Cheetah) constructed with the prototype server operating
system. Section 5 presents measurements of Cheetah to show that a server application constructed in thisway indeed
delivers high performance. Section 6 discusses related work and Section 7 summarizes the paper.

2 A Server Operating System Design

In this section, we describe in more detail the components of a prototypeserver operating system that we have designed
and are in the process of building.

2.1 Specialization

It has been clearly demonstrated that specializing abstractions and their implementations in application-specific ways
can substantially increase performance (e.g., see[2, 8, 13, 22]). Because performanceiscritical for server applications,
our prototype server OS supportsspeciaization directly. At the same time, because of the extensible OS used as abase,
multiple applications can safely co-exist on a system, even when some of them use differently-specialized resource
management policies.

To reduce the software engineering effort involved, our prototype server operating system provides a variety of
parameterizable implementations of abstractions appropriate for high-performance server applications, including afile
system that allows specialized on-disk layouts, a disk cache that allows specialized replacement/prefetching policies

and a network protocol (TCP/IP) implementation that allows specialized message control. Of course, to support
arbitrary specialization, our prototype server OS a so allows server applicationsto use their own resource management
abstractionsinstead of any of the default implementations provided.

2.2 Direct device-to-device access

The main task of many servers is moving data from the storage subsystem to the network (and vice versa). Therefore,
it is critical that this data path be as streamlined as possible. In theory, it should be possible to minimize software
overhead such that the bandwidth of this path is limited only by the slower of the two devices. To realize thisideal, a
server application must eliminate scheduling and notification delays, file system layer and network layer traversal, and
redundant data copies from the critical path.

Our prototype server OS therefore enables server applications to easily integrate the control and data flows of
hardware devices. For example, one useful abstraction provided is a combined disk cache and network buffer, which
eliminates both duplicationand copying between the two. Also, device-to-device datamovement ismade moreefficient
by allowing application-specified network interrupt handlersto initiate activity in the disk system (and vice versa). For
example, an application-specified handler routine for disk 1/0 might initiate a network transmission immediately after
adisk read completes.

2.3 Event-driven organization

By nature, server applications are reactive, responding to client requests rather than having their own sequence of
actions to take. Each client request generally involves several sequenced 1/0 events (e.g., network packet arrival, disk
request completion, etc.) with small amounts of computation (relative to 1/0 delays) interspersed. For acceptable
performance, it is generally necessary to service multiple client requests concurrently to exploit parallelism in the I/O
system. Many current server implementations use a separate thread (or process) per request and conventional blocking
I/0 to do this. Unfortunately, this approach can significantly increase complexity and decrease performance due to
thread creation/del etion, thread switching, data sharing and locking.

Another approach isto use non-blocking I/0 and a general event loop abstraction (provided by the server operating
system), such that a server application can simply consist of a set of event handlers that react to externa stimuli by
initiating additional 1/O actions (e.g., disk requests or network transmissions). With such an event-driven organization,
a server application can exploit the same level of concurrency (on a uniprocessor) without the problems described
above [18]. Our prototype server OS supports non-blocking versions of file system and network protocol abstractions
to support event-driven programming.

To make this organization even more effective, our prototype server operating system allows aggressive server
applications to construct and install code modules (called application-specific safe handlers (ASHs) [24]) to be
executed immediately upon the occurrence of arelevant hardwareinterrupt. So, for example, when anetwork packet or
disk interrupt destined for the server application is taken, an application-constructed handler can be run (in addition to
the kernel code required for dealing with the interrupt). Such a handler may update server application state or initiate
network transmissions or disk requests, as appropriate. If necessary (e.g., because longer processing or aheld lock is
needed), notification of the interrupt can be propagated to the server application proper. Although ASHs do increase
complexity by introducing additional threads of control (thereby requiring some locking), they allow common cases
to be handled with minimal delay/overhead, offering substantial performance improvements.

2.4 Dynamic, compiler-assisted ILP

One important, well-known technique for improving network software performance is integrated layer processing
(ILP), wherein multiple protocol actions (e.g., checksum and byte-swap) are merged into a single-pass, minimal-
overhead function [6]. In particular, by combining the protocol actions into a single pass over message data, ILP can
reduce the impact of memory system performance on networking.

Unfortunately, achieving near-optimal ILP manually is a non-trivial task that needs to be re-addressed each time
the segquence of protocol actions changes. Therefore, because high performance network software is so important to

many server applications, our prototype server OS provides compiler support for ILP. In particular, an application
writer need only specify each individual data manipulation step and their sequence. The ILP compiler can then
automatically perform the integration (a.k.a., composition), which, in most cases, it can do at least as well as an
application writer. Protocol specification is further simplified by providing libraries of common data manipulation
steps needed for protocol actions.

The compiler-assisted ILP mechanism also supports dynamic (i.e., run-time) integration. One example of why
dynamic ILP is useful is ethernet cards that have different rules for how data are moved to/from their buffers. With
static ILP, al combinations of different rules and the remainder of the integrated protocol must be constructed and
linked. With dynamic ILP, the one relevant combination can be constructed at run-time.

3 Implementation of a Prototype Server Operating System

Our goal in constructing server operating systems is to enable modular construction of server applications that
deliver full hardware performance, without artificial limitations caused by unnecessary software overheads. This
section describes our ongoing implementation of a prototype server OS, which includes efficient and parameterizable
implementations of TCP/IP [21] and a disk-based file system, in terms of the server OS support outlined in Section 2.

We are building server OSs as libraries on top of an exokernel [8]. The exokernel OS architecture is designed to
provide application-level software with direct, protected access to hardware resources by limiting kernel functionality
to multiplexing hardware resources among applications. This kernel support is sufficient to alow us to construct
server OSs such as the one described in Section 2. In addition, because the exokernel OS architecture allows multiple
differently-specialized applications to safely co-exist and timeshare hardware resources, we can focus our server OS
implementation on providing useful abstractions and reducing software engineering complexity. As abeneficial side-
effect of the exokernel architecture, the fact that the server OSisin application space generally makes it easier to build,
test and debug.

Specialization To support modular specialization, we have made our TCP/IP and file system libraries highly param-
eterizable and easy to integrate with other components of a server application. For example, the TCP/IP library does
not manage protocol control block (PCB) allocation, allowing server applications to incorporate PCBs into their own
central data structures. It also allows applicationsto specify that a particular transfer isthe last for the connection (so
that the FIN flag can be set in the last data packet, instead of sending a separate packet) and to provide precomputed
checksums for the data being transmitted.

The file system library implements a file system similar to the Fast File System [14]. However, in addition to
support for non-blocking operations, as described above, thislibrary is highly configurable. In particular, the cache
replacement, miss handling, write-back and flush routines are all specified by the application during the initialization
phase. Although default implementations exist, it is trivial to replace them. Also, the disk allocation code can be
replaced easily, allowing for application-specific data layouts. Finaly, extrainode fields are provided to allow server
applicationsto add their own information (e.g., prefetching hints and extra type information).

Direct device-to-device access The TCP/IP library and the file system library both support direct device-to-device
datamovement by allowing applicationsto use scatter/gather 1/0 and specify source (destination) locationsfor outgoing
(incoming) data. In addition, the TCP/IP library does not keep retransmission buffers, but instead invokes a call-back
if the data must be retransmitted. Together with file system support for pinning and write-locking disk cache blocks,
this allows applications to construct a combined, copy-free disk cache/retransmission pool.

Applications can use the support provided by the TCP/IP and file system libraries to easily construct a data
path between network and disk that involves zero memory-to-memory copies, unless such copying is required by
the device controller implementations. Unfortunately, the Ethernet cards in our current experimental platform use
programmed 1/O to move data to and from dedicated buffer memory. We are also starting to experiment with disk
to network data movement over an ATM network (Digital’s AN2) with a card that uses DMA to move data to and
from arbitrary physical main memory locations. Using the combined disk cache/retransmission pool, precomputed
checksums (described below) and scatter/gather 1/0 to add the headers, we expect to see that the CPU never has to

touch the data, flush the data caches (after DMA input or before DMA output), or even map the corresponding physical
memory when moving data over TCP/IP connections from the disk to the network.

Event-driven organization The TCP/IP and file system libraries support an event-driven organization of server
applications by providing non-blocking interfaces and assisting with correlation of 1/0 events and previously saved
state. The non-blocking interfaces progress as far as possible and then return control to the application with an
indication of how much progress was made. To assist with identifying context for an I/O event, the non-blocking
interfaces save application-specified values, demultiplex events internally and return the corresponding value to the
application.

Dynamic, compiler-assisted ILP We use pipes [1] to provide dynamic ILP. A pipe is a computation written to act
on streaming data, taking several bytes of data as input and producing several bytes of output while performing only a
tiny computation (such as a byte swap, or an accumulation for a checksum). Our pipe compiler can integrate several
pipes into atightly integrated message transfer engine which is encoded in a specialized data copying loop. The pipes
are written in a low-level language similar to that of a RISC machine, augmented with useful primitives (such as
byteswap). The dynamic ILP interface and implementation are described in [9].

4 Cheetah: A Fast HTTP Server

This section describes Cheetah, a fast HTTP server constructed using our prototype server operating system. The
development of Cheetah proceeded in several stages, which we expect to be the common approach when building
highly-specialized server applications. We began with a simple, non-specialized implementation (actually developed
under SUnOS) linked against the default POSI X -interfacelibraries provided for the exokernel system. Wethen replaced
the major components (TCP/IP and file system), one at atime, with those from the server operating system. Finally, we
added speciaizations, again one at a time, progressively improving Cheetah’s performance. Although Cheetah does
not yet use ILP or ASHs, our measurements show that it achieves an order of magnitude improvement in performance
over other popular HTTP servers (without sacrificing the freedom to timeshare the hardware platform).

41 Oveview

Most of Cheetah’s implementation consists of configuring and tying together the TCP/IP and file system libraries
provided by the server operating system. The combined disk cache and retransmission buffer implementation described
in Section 3 is used to eliminate this source of data copying and wasted physical memory. Each ongoing HTTP
request is represented by a single data structure that includes the reguest status, the TCP protocol control block
(PCB), a TCP/IP send header, and various request state. Cheetah executes a single thread of control that, after
a configuration/initialization phase, repeats an endless loop of polling for network or disk events (by calling the
appropriate library functions) and servicing them (with HTTP specific functions, such as request parsing, and non-
blocking library functions). When the processing of an HTTP reguest reaches the point that it must wait for some
external stimulus, itscritical stateis saved in the request structure and control returns to the main event loop.

4.2 TCP/IP specialization

Although our TCP/IP library implementation is tuned for a high rate of short-lived connections (e.g., by minimizing
the impact of connections in the TIME_WAIT state), as characterizes an HTTP server, Cheetah attempts to further
reduce connection establishment costs. For example, it keeps a pool of pre-alocated, pre-initialized HTTP request
structures (including PCBs) to avoid the need for most allocation during setup. Also, Cheetah uses the memory that
contains the HTTP request message when it arrives, avoiding allocation and data copying for most cases.

Because web pages tend to be small, it isimportant to minimize the number of separate network packets to reply
to an HTTP request. In particular, a conventional implementation will use separate packets to send the HTTP header,
the request data and the FIN flag. Cheetah uses the scatter/gather TCP/IP library interface with FIN specification to

combine these three pieces of information into the smallest number of packets allowed (given the maximum segment
size negotiated by the client and the server).

Cheetah also uses precomputed TCP/IP checksums when sending web page contents. These checksums are stored
on disk withthe corresponding file and computed by thefile system only when thefileismodified. Because popular web
pages are generally accessed many times without being changed, this approach both moves the checksum computation
out of the critical path and amortizes it over multiple accesses.

4.3 Filesystem specialization

As with precomputed checksums, Cheetah precomputes the HTTP response header for each file and stores it with the
file. With the exception of the date, which is computed separately (in the background, when time advances) and added
by Cheetah at the last moment, none of the header for aGET or HEAD HT TP request changes unlessthefileismodified.
For GET requests modified by the IF-MODIFIED-SINCE MIME header, only the return code value and message
changes if the condition evaluates to false. Precomputing the response header reduces the work that must be done
in the critical path, eliminating costly time conversions, string generations and string comparisons (for determining
MIME types). It also enables precomputation of the checksum over the HTTP header.

The hypertext links found in HTML pages can be exploited at disk allocation time, disk fetch time and cache
replacement time to improve performance. Because most browsers fetch inlined images immediately after fetching a
page, placing such files adjacent to the HTML file and reading them as a unit (effectively prefetching the images) can
improve performance. Likewise, thisrelationship can be exploited during cache replacement.

5 Experimental Evidence

This section compares Cheetah to both an NCSA server running on top of Ultrix and the Harvest httpd-accelerator
acting as a front end to the NCSA server. The results show that Cheetah’s aggressive specialization improves its
performance by more than an order of magnitude for high request rates and small document sizes. We expect the
performance of Cheetah to increase further when we exploit the ILP and ASH techniques described earlier, as both
have been shown to offer reductionsin software overhead [6, 8, 24].

For al of the experiments, the HTTP servers were running on dedicated DECstation 5000/125s, which are 25
MHz MIPS R3000 machines. Each client application synchronously requests a single document (i.e., URL) 1000
times. For the experiments, one instance of this application was run on one or more other machines (Sun workstations
running SunOS and Pentium-based systems running Open BSD) connected to the server systems via 10 Mbit/second
Ethernet. The experiments were run when no other users were present. As discussed earlier, Cheetah runs on the
Aegis exokernel. For comparison purposes, we measured both NCSA/1.4.2 [16] and Harvest/1.3 [4] (configured as an
httpd-accelerator) running on Ultrix v4.3.

Figure 1a shows the throughput (measured in documents served per second) supported by the three HTTP server
configurations. For small document sizes (0 bytes, 10 bytes and 100 bytes), Cheetah services 8 times as many requests
asthe Harvest cache, whichinturn serves 2 times as many asthe NCSA server alone. For 1 KB and 10 KB documents,
network limitations reduce the difference between Cheetah and Harvest to factors of 5.5 and 2.3, respectively. With
10 KB documents, Cheetah is delivering 970 KB/s of useful document data (i.e., ignoring HTTP headers and TCP
control messages) over the 10Mbit/s Ethernet.

Figure 1b shows the throughput (for 100 byte documents) supported by the three HTTP servers as a function of
the number of clients. Performance for both the NCSA server and the Harvest cache is roughly independent of the
number of clients. Given the performance of Cheetah, thisindicatesthat server software overhead isthe bottleneck for
these configurations. For Cheetah, performance increases with the number of clients, indicating that the server is not
the bottleneck. With one client, Cheetah services 261 requests per second (for an average end-to-end response time of
3.8 ms), which is 3.4 times more than are serviced by the Harvest cache. With six clients, Cheetah throughput exceeds
that of Harvest by a factor of 9.

All of the Ultrix server numbers up to this point represent the throughput observed for the first 100 requests,
as opposed to sustained throughput. Despite the aggressively performance-conscious implementation of the Harvest

[[] =Cheetah on Aegis
== Harvest/1.3 on Ultrix
= NCSA/1.4.2 on Ultrix

(o]

o

o
I

N

o

o
1

—s— Cheetah on Aegis
- Harvest/1.3 on Ultrix
-+--NCSA/1.4.2 on Ultrix

N

o

o
L

Throughput (pages/second)
Throughput (pages/second)
N
o
o

40 Bytes 10 Bytes 100 Bytes 1 KB 10 KB 1 é 3 4 5 6
Web Page Size Number of Web Clients
(& Throughput vs. Document Size (b) Throughput vs. Number of Clients

Figure 1: HTTP server throughtput. Graph (a) isfor 4 clients and graph (b) isfor 100 byte documents.

cache, which serves it well during light workloads, its performance fallsrapidly as the workload increases because of
the TCP/IP implementation thrust upon it by Ultrix. (We believe that this reduction is caused by connections in the
TIME_WAIT state [15].) After 1500 requests, Harvest throughput drops by 48% and exceeds that of the NCSA server
(whose throughput also decreases by 21%) by only 38%. In contrast, Cheetah’'s performance remains stable in the
face of heavy connection rates. Using these values instead of those compared earlier, Cheetah throughput for small
documents exceeds Harvest and NCSA throughputs by factors of 17 and 24, respectively.

6 Related Work

Most servers are implemented on general-purpose operating systems (e.g., UNIX, Windows NT). Examples of such
are too numerous to list. In practice, the approach taken to boosting performance of such systems is to use faster
hardware. Somewhat less common are examples of the other extreme: server software built on or linked into a
rudimentary kernel. Network Appliance’s approach to building high-performance servers, as illustrated by their very
successful NFS systems (e.g., [11]), is to dedicate each system to a single server application running on top of a
rudimentary kernel. This approach precludes effective time-sharing of the hardware resources among a server and
other servers or maintenance applications. Servers are constructed on Novell’s NetWare operating system by linking
modules with the kernel [12]. This approach eliminates protection boundaries, making sharing the machine among
multiple servers/applications difficult.

Many aspects of the prototypeserver OS described inthispaper have been proposed and/or implemented previously.
For example, integrated layer processing was introduced in [6] and a static, compiler-assisted implementation is
described in [1]. The event-driven programming style is an old idea, for which John Ousterhout made a strong case
in [18]. Both the Harvest cache and Open Market’s high-performance WebServer [17] are implemented in this style
(to the extent that the OSs on which they operate allow). Support for direct device-to-device data movement isamain
focus of both the container shipping mechanism [19] and the Scout operating system [10]. Finally, specialization and
support for it in the form of extensible operating systems is a central focus of a number of OS projects, including
Synthesis [13], the Cache Kerndl [5], Vino [23], Scout [10], SPIN [2], the exokernel [8], and Synthetix [22]. Our
contributionisto extend and combine these independent techniquesinto server OSs that enable a modular approach to
building specialized, high-performance server applications.

7 Summary and Conclusions

We have argued for server operating systems, which support modular construction of specialized, high-performance
server applications. Our first server OS design includes four main design techniques: (server-specific specialization,

direct device-to-device access, event-driven organization, and dynamic compiler-assisted |LP) to ease the construction
of server operating systems. Using a prototype server OS, we constructed an HTTP server that provides more than
an order of magnitude increase in performance when compared to servers running on a conventional OS while still
allowing for safe timesharing of the hardware. Other servers, including NFS [3] and FTP, are under construction.

Server operating systems offer away of harnessing the substantial performance improvements offered by extensible

operating systemsfor server applicationswithout the software engineering crisis (caused by separate, slightly different,
re-implementations for every application) predicted by some. In fact, we believe that server operating systems can
simplify the construction of high performance servers in addition to delivering these performance improvements.

References

(1]
(2]

(3]
(4]

(5]
(6]

[7]
(8]

(9]
[10]

[11]
[12]

[13]
[14]
[19]
[16]
[17]
[18]

[19]
[20]
[21]
[22]

[23]

[24]

M. B. Abbott and L. L. Peterson. Increasing network throughput by integrating protocol layers. IEEE/ACM Transactionson
Networking, 1(5):600-610, October 1993.

B. N. Bershad, S. Savage, et al. Extensibility, safety and performancein the SPIN operating system. In 15th ACM SOSP,
pages 267-284, December 1995.

H. Bricefio. Design techniquesfor building fast servers. In MIT Sudent Workshop, 1996. To appear.

A. Chankhunthod, P. B. Danzig, et al. A hierarchical internet object cache. In Usenix Technical Conference, pages 153-163,
January 1996.

D. Cheriton and K. Duda. A caching model of operating system kernel functionality. In OSDI, pages 179-193, Nov. 1994.

D.D. Clark and D. L. Tennenhouse. Architectural considerationsfor anew generation of protocols. In ACM SS GCOMM 1990,
September 1990.

Digital Equipment Corporation. Alta Vista. http://www.a tavista.digital.com, 1996.

D. R. Engler, M. F. Kaashoek, and J. O’ Toole Jr. Exokernel: an operating system architecture for application-specific resource
management. In 15th ACM SOSP, pages 251-266, December 1995.

D.R. Engler, D.A. Wallach, and M.F. Kaashoek. Design and implementation of a modular, flexible, and fast system for
dynamic protocol composition. Technical Memorandum TM-552, MIT Laboratory for Computer Science, May 1996.

J.H. Hartman, A.B. Montz, et al. Scout: A communication-oriented operating system. Technical Report TR 94-20, University
of Arizona, Tucson, AZ, June 1994.

D. Hitz. An NFSfile server appliance. Technical Report 3001, Network Applicance Corporation, March 1995.

D. Major, G. Minshall, and K. Powell. An overview of the NetWare operating system. In Winter USENIX, pages 355-372,
January 1994.

H. Massalin and C. Pu. Threadsand input/output in the Synthesiskernel. In 12th ACM SOSP, pages 191-201, 1989.

M. K. McKusick, W. N. Joy, et a. A fast file system for unix. ACM Trans. on Computer Systems, 2(3):181-197, August 1984.
J. C. Mogul. Thecasefor persistent-connection http. In ACM SGCOMM 1995, pages 299-313, August 1995.

NCSA, University of Illinois, Urbana-Champaign. NCSA HTTPd. http://hoohoo.ncsa.uiuc.edu/index.html.

Open Market, Inc. WebServer technical overview. http://www.openmarket.com/library/WhitePapers/Server/, March 1996.

J. K. Ousterhout. Why threads are a bad idea (for most purposes). Invited Talk at 1996 Usenix Technical Conference (slides
available at http://www.sunlabs.com/~ouster/), January 1996.

J. Pasquale, E. Anderson, and P. K. Muller. Container shipping: Operating system support for i/o-intensive applications. |[EEE
Computer, pages85-93, March 1994.

R. Pike, D. Presotto, et a. Plan 9 from Bell Labs. Computing Systems, 8(3):221-254, 1995.

J. Postel. Transmission control protocol. RFC 793, USC/Information Sciences I nstitute, September 1981.

C. Pu, T. Autry, et a. Optimisticincremental specialization: streamlining acommercial operating system. In 15th ACM SOSP,
pages 314-324, Copper Mountain, CO, December 1995.

C. Small and M. Seltzer. Vino: an integrated platform for operating systems and database research. Technical Report
TR-30-94, Harvard, 1994.

D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHs: Application-specific handlersfor high-performance messaging. In
ACM SIGCOMM 1996, August 1996. To appear.

