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Abstract

The I/0 subsystem is becoming a magjor bottleneck in an
increasing number of computer systems. To provide tm-
proved I/0 performance, as well as to accommodate grow-
ing storage requirements, disk subsystems are increasing in
size. A magor hurdle to obtaining the performance avail-
able from these large disk subsystems is load imbalance,
or disk skew. Dynamic data placement, the conventional
load balancing technique, is usually inadequate to deal with
load imbalance because it is forced to accept atomic data
sets with rapidly changing access patterns. We name this
rapid fluctuation floating load imbalance and distin-
guish it from the conventional view of load imbalance, re-
ferred to as fixed load imbalance. Dynamic data placement
also becomes increasingly difficult as the number of disks
in the subsystem grows. Disk striping at a high granular-
ity 18 suggested as a solution to floating load imbalance,
the atomic data set problem and the complexity of balan-
cing large disk subsystems. Disk striping uniformly spreads
data sets across the disks in the subsystem and essentially
randomizes the disk accessed by each request. This ran-
domazation effectively handles both fizred and floating load
tmbalance. Unlike dynamic data placement, disk striping
does not become more complex as the number of disks in-
creases. While a more optimal load balance may be possible
for some very well understood and well-controlled environ-
ments, disk striping should provide significantly improved
load balance with reduced complexity for many applications.
This improvement will result in shorter response times and
higher throughput.

1 Introduction

Processor speeds and main memory sizes have been im-
proving at a much faster rate than disk access times. As a
result, the I/O subsystem is becoming the bottleneck in an
increasing number of systems. Adding disk drives to the
storage subsystem is a common solution to this problem.
The number of disks in storage subsystems is also growing
due to rapidly increasing capacity requirements. A storage
subsystem with a large number of disks can provide signi-
ficant access concurrency. To realize this concurrency, as
many of the disk drives as possible should be well-utilized.

While part of the responsibility for achieving this goal lies
with the application program, most lies with the storage
manager. The largest obstacle faced by the storage man-
ager in reaching the desired utilization is load imbalance,
or disk skew [Kim&6].

Generally speaking, a storage subsystem is said to suffer
from load imbalance when some of the disk drives receive
higher percentages of the access stream than do others.
This skewed access is often referred to as the 80/20 Rule
or, in more extreme cases, the 90/10 Rule [Wilm&9]. The
80/20 rule suggests that twenty percent of the resources
(disk drives) receive eighty percent of the accesses, while
the remaining eighty percent of the resources receive only
twenty percent. Furthermore, the percentages are applied
recursively. For example, twenty percent of the twenty per-
cent receive eighty percent of the eighty percent. This load
imbalance severely limits the performance of the storage
subsystem. If a disk drive can handle N accesses per second
and the most heavily used disk drive receives P percent of
the accesses, then the 80/20 rule argues that, even for large
disk subsystems, the maximum throughput is 100N /P ac-
cesses per second. Even neglecting maximum throughput,
response time is severely impaired under skewed access
patterns because many requests wait in the access queue
for the busiest disk(s) while other disks remain idle.

The 80/20 rule can also be applied to logical data chunks
which are smaller than a disk. The physical placement of
the data comprising these chunks is responsible for load
imbalance. We designate the temperature of a chunk of
data or a disk as a qualitative measure of the load which
it receives. Chunks which receive considerable loads are
referred to as hot.

Fized load imbalance, which is described by the 80/20
Rule, is only the coarse grain form of load imbalance.
While large performance problems can be caused by fixed
load imbalance, it is much easier to identify and deal with
than its counterpart, floating load imbalance. Floating
load imbalance exists when the data chunks which are hot
change rapidly over time.

The conventional method of dealing with load imbal-
ance, dynamic data placement, is simply insufficient. It
requires significant time and effort to implement and usu-
ally fails to provide a dependable solution. Increasing the
number of disk drives in the storage subsystem makes it
even more difficult to balance via dynamic data placement



schemes. Dynamic data placement is unable to deal well
with floating load imbalance and is usually constrained to
placing atomic data sets. The restriction of atomic data
sets can be alleviated to some degree by partitioning prob-
lem data sets. Unfortunately, this often requires signific-
ant effort on the part of the storage manager. We view
data set splitting as a small step in the direction of disk
striping (which splits all data sets into small pieces). The
storage management effort involved with using disk strip-
ing is much less than the effort necessary for splitting data
sets. Therefore, rather than taking small steps in response
to drastic performance problems, we prefer to look at the
performance offered by a larger step, disk striping.

Disk striping involves combining the capacities of mul-
tiple disk drives into a single logical data space. This lo-
gical data space is then spread across the physical drives,
in a round robin fashion, one unit at a time. Disk strip-
ing statistically removes fixed load imbalance and reduces
floating load imbalance by randomizing the disk accessed
by each request. This is accomplished by spreading data
among the disks using a pseudo-random function, very
much like hashing. In fact, disk striping provides load
balance similar to record-hashing in databases, but at a
system administration level rather than inside the data-
base and without the problem of skewed attribute values.
Unlike manual data placement, an increase in the number
of disks does not introduce additional complexity. While
it may be possible in some extremely well understood and
well controlled environments to obtain better than a ran-
dom load balance, disk striping will provide a good, de-
pendable load balance with lower complexity for many ap-
plications.

Using disk striping to balance a disk subsystem has other
benefits. First, data placement can be used to reduce seek
time and rotational latency without affecting the load bal-
ance. In addition to balancing the overall access stream,
disk striping also balances subsystems in which some re-
quests are more important or require more time to com-
plete than others. by evenly distributing each class of re-
quests among the disks. This can be important when some
requests are more important or require more time to com-
plete than others. Finally, disk striping provides a very
clean, predictable method for load balancing other disk
subsystem components, such as busses and controllers.

The remainder of the paper is organized as follows. Sec-
tion 2 describes fixed and floating load imbalance. Sec-
tion 3 discusses the conventional scheme of reducing load
imbalance, namely dynamic data placement. Section 4
provides a general description of disk striping. Previous
work on disk striping is also summarized briefly. Section
5 discusses the effects of disk striping on load imbalance.
Section 6 describes our experimentation methodology. Sec-
tion 7 presents experimental validation for our premises.
Section 8 provides additional experimental results. Sec-
tion 9 presents our conclusions and some topics for future
research.

2 Two Types of Load Imbalance

To examine the issue of load imbalance one must have an
appropriate load indicator. The number of accesses seen
by a disk over a period of time is not an appropriate met-
ric, because it does not provide information about whether
resource conflicts have been a problem or not. Load bal-
ance is most closely tied to queue time which, discounting
the seek reordering possible in larger queues, is the only
portion of disk response time affected by load imbalance.
In fact, one might consider a system to be perfectly bal-
anced if the queue times experienced by requests at each
disk at a given point in time are equal. Queue length is
closely related to queue time and may be easier to meas-
ure at given points in time. [Zhou87] and [Berr91] both
provide experimental evidence showing that queue length
is an appropriate load indicator. Therefore, we will use
queue lengths as load indicators in this paper.

We identify two types of load imbalance that a disk sub-
system can experience. First, there is the type of load
imbalance indicated by the 80/20 rule. This form of load
imbalance is characterized by its consistency. That is, the
load imbalance is always present and each disk maintains
approximately the same temperature over time. We call
this fized load imbalance. Unfortunately, we believe that
fixed load imbalance is somewhat rare in the real world.
We submit that it is more common for the temperature of
the disks in the subsystem to vary widely over time, and,
in particular, for the disks which are hottest to vary. Be-
cause the highest temperature moves, or floats, among the
disks, we call this floating load imbalance.

It should be understood that there is no fundamental
difference between these types of load imbalance. In fact,
fixed load imbalance is a degenerate case of floating load
imbalance. Fixed load imbalance is simply floating load
imbalance where an extremely long time passes before the
temperatures of the disks change. Also, floating load im-
balance affects performance in essentially the same way as
fixed load imbalance, albeit to a lesser degree. Both res-
ult in large queues, but in the latter case busy disks can
catch up once their hot spots float to other disks. We dis-
tinguish between the two to highlight the importance of
floating load imbalance, which generally receives less at-
tention than it merits, and to simplify the discussion of
each.

Most descriptions of load imbalance are in terms of fixed
load imbalance, often suggesting the existence of an 80/20-
like Rule [Wilm&9] [Scra83]. There are several exceptions
to this, however. For example, [Buze90] suggests that load
imbalance is caused by very gradual changes in access pat-
terns. Such a situation would appear at any point in time
as fixed load imbalance, but would be floating very slowly.
While not discussing the workload seen by specific disks,
[McNu86] shows that the amount of load imbalance, which
he represents by a skew factor, changes rapidly throughout
the day in many real storage subsystems. Even if much of
this skew may be attributed to fixed load imbalance, the
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Figure 1: Conventional data placement. (B data units

per disk)

rapidly changing skew factors indicate that floating load
imbalance does exist in these environments. [McEI88] de-
scribes the existence of sporadically busy data sets which
would be very likely to cause serious floating load imbal-
ance.

3 Dynamic Data Placement

In a conventional disk subsystem, the data on each disk
are considered independent and logically sequential. Fig-
ure 1 shows the placement of data blocks within the lo-
gical storage space in an array of four independent disks,
each with a capacity of B blocks. In such systems, the
most commonly used load balancing scheme is dynamic
data placement. Dynamic data placement involves ana-
lyzing performance data collected during important peri-
ods of activity. Load imbalance problems are addressed
by moving suspected hot spots from one disk to another.
This iterative process is more an art than a science and
is usually performed by system administrators or special-
izing consultants. These people use their experience and
the available information to make an educated guess at
how to rearrange the data. For example, in some cases in-
formation about the average workload seen by each disk is
available. Data from very busy disks are exchanged with
data from relatively idle disks [Papy88] [Wolf89] [Buze90].
More aggressive schemes will use information about indi-
vidual data sets and may consider variations in the tem-
peratures when making the placement decisions [McEI188].

There are essentially two problems with these algorithms
for load balancing. First, they can be quite expensive. Per-
formance may be degraded throughout the day due to the
data collection process, considerable expert human time
may be required to determine whether and how to re-
arrange the data, and a large number of disk accesses may
be necessary to rearrange the data. This final step would
need to be scheduled during a period of little or no activ-
ity to avoid serious performance degradation. The human
effort described in the papers cited above is considerable,
and some attempts have been made to reduce it [Wolf89]

[Asch89].

The second problem is that dynamic data placement
rarely succeeds in solving the load imbalance problem.
There are two major problems which prevent dynamic
data placement from being successful. The first problem is
that conventional data placement schemes must deal with
atomic data sets, data sets which are single logical units
and must be placed in the storage subsystem as such. Pla-
cing a logical unit of data in a conventional storage subsys-
tem entails placing it entirely on a single disk. This prob-
lem can prevent dynamic data placement schemes from
solving even fixed load imbalance in many cases. Partition-
ing problem data sets can be very helpful when combating
load imbalance [Papy88]. Unfortunately, this generally re-
quires changes to tables in the software which owns the
data set and may require considerable effort.

Floating load imbalance is the other major difficulty
faced by dynamic data placement schemes. If access pat-
terns changed very slowly, then it would simply be a mat-
ter of rebalancing occasionally as suggested in [Wolf89] and
[Buze90]. We believe, however, that load imbalance floats
very quickly (on the order of seconds and/or minutes) in
many environments. Floating load imbalance makes it
probable that disk temperatures present during the meas-
urement process will not accurately predict future disk
temperatures. This is similar to the effect noted by Zhou
concerning CPU loads [Zhou88]. He found that CPU loads
are very difficult to predict, even with current load inform-
ation. Because hot spots float too frequently for the data
placement to be adjusted between temperature changes, a
single placement must be found to load balance for time-
varying hot spots. This requirement and the atomic data
set problem make it very difficult to determine a good data
placement.

4 Disk Striping

Disk striping, or disk interleaving, consists of combin-
ing the data space of several disks and spreading the data
across these disks such that the first stripe unit is on the
first disk, the second stripe unit is on the second disk, and
the Nth stripe unit is on disk (N-1 mod M)+1, where M
is the number of disks involved. (See Figure 2)

Disk striping has been used by many companies, in-
cluding IBM, Digital Equipment Corporation and Amdahl
[Gray90], to improve data bandwidth for a given request by
transferring data in parallel to or from multiple disks. In
addition, there have been many studies of the performance
consequences of disk striping [Kim86] [Redd89] [Chen90].
These studies have shown that there is a definite trade-
off between using multiple disk drives to handle one re-
quest and using the disk drives to handle separate requests
when possible. This trade-off is embodied in the choice of
stripe unit. It appears that for any given workload an op-
timal stripe unit can be chosen. In [Chen90] algorithms
for choosing the stripe unit were developed assuming vari-
ous types of workload information. Chen and Patterson
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Figure 2: Striped data placement.

showed that the most important parameter in the choice
of a stripe unit is the amount of access concurrency in the
workload. In particular, the stripe unit should increase
with the level of concurrency so that the likelihood of using
more than one disk per request decreases. Except where
otherwise noted, all further discussion of disk striping will
be in terms of stripe units large enough to ensure that most
requests use a single disk.

It has also been suggested that striping may be un-
desirable for transaction processing applications [Ng89]
[Gray90]. Because these applications are characterized by
frequent small disk accesses, it would be undesirable to use
more than one disk for any single request. Therefore, one
would need to stripe at a very coarse granularity. The ar-
guments made indicate that disk striping is not worth the
implementation effort for these applications.

5 [Effect of Disk Striping on Load Im-
balance

Disk striping using a small stripe unit, such as bit or
byte, can balance the load seen by the disks in the stripe
set [Kim86]. This is accomplished by simply using all disk
drives for all requests, which causes each disk to see exactly
the same workload.

Disk striping can also help with the load balancing prob-
lem in cases where requests are small and each is handled
by a single disk. Striping breaks up hot data sets and
distributes them among the disks in the subsystem. This
helps reduce fixed load imbalance by increasing the num-
ber of disks which receive accesses to the hot data sets.
Floating load imbalance is reduced in the same fashion be-
cause changing the hot data sets will not alter the fact
that they are spread over more disks than in a non-striped
storage subsystem.

Disk striping also reduces load imbalance by emulating
the effect of mapping each access to the appropriate disk
with a uniform random variable. When a read or write
request arrives, the disk which is to be accessed is determ-
ined by a simple equation, such as ((block number DIV
stripe unit) MOD number of disks). This equation has the
effect, much like hashing, of uniformly randomizing the

disk to be accessed. In the case of requests which require
accesses to multiple disks (because of the striping), the
first disk is pseudo-randomly chosen and the other disks
are identified by this choice. This uniform randomization
can significantly reduce load imbalance. Over a large num-
ber of requests, such a subsystem will not suffer from fixed
load imbalance; the number of requests to each disk in an
N disk subsystem will be close to 1/N of the total number
of requests. More importantly, however, this randomness
will balance the number of requests to each disk in any
short period of time with high probability. This random-
ization occurs regardless of the location requested. There-
fore, when hot spots float this randomization maintains the
level of load balance, reducing the effect of floating load
imbalance. Hot spots which are smaller than the stripe
unit may continue to present a problem to balancing the
load among the disks. This problem should be avoidable
with a well-chosen stripe unit and a reasonable caching
mechanism,

Disk striping may not reduce load imbalance in all cases.
First, there exists the pathological case of an access pat-
tern with a stride which is some multiple of both the stripe
unit and the number of disks in the subsystem. This would
certainly be the most unbalanced request stream possible
with a striped subsystem, as all requests would be handled
by the same disk. Due to the random nature of load bal-
ancing in a striped subsystem, there could also be times
when a striped subsystem will suffer from significant load
imbalance. This would occur when multiple accesses hap-
pen to map to the same disk in a short period of time.
Fortunately, this phenomenon has a low probability of oc-
curring. Because the cases where striping suffers serious
load imbalance are expected to occur infrequently, disk
striping should provide good average load balance.

Disk striping offers statistical balancing but is also lim-
ited to statistical balancing. Load balance, and con-
sequently performance, could be improved by intelligent
data placement strategies if the disk access patterns of the
workloads of interest are completely understood ahead of
time. Such balancing would require either that floating
hot spots not exist in the workload or that it be well un-
derstood how they occur and interact so that they can be
dealt with effectively. We believe that for most workloads,
this 1s not a reasonable assumption and that the effort re-
quired for manual load balancing far outweighs the realistic
potential improvement in load balance.

Some of the load balancing effects of disk striping have
been noted previously. [Livn87] noted that fixed load im-
balance is removed by disk striping. In [Bate91], Bates
describes how disk striping could reduce load imbalance
by spreading hot data sets among disks. In [Bate92], he
also describes how disk striping statistically spreads re-
quests among disks. Further, he provides a small, real
world snapshot of disk striping providing a balanced load.



6 Experimental Apparatus

6.1 Traces

For this study, we have used high-resolution traces of
actual disk activity from two different systems executing
different applications. We feel that the diversity of our
trace data lends strong support to our premises. We also
believe that our results will apply to a wide variety of envir-
onments. We will present results for only one trace from
each system/environment, but we have verified that the
results are very similar for the other traces.

To collect these traces, we instrumented the operat-
ing system, SVR4 MP UNIX TM_ This operating sys-
tem is a multiprocessor version of System V Release 4
UNIX under development at NCR Columbia. Informa-
tion about each disk access is gathered in real-time and
stored in kernel memory. For each disk request we capture
a timestamp, the disk address requested, the size of the
request and the type of request (read or write). The res-
olution of the timestamps is better than 840 nanoseconds.
The timestamps provide timing information relative to the
other disk requests in the same trace but not among dif-
ferent traces. Our instrumentation was designed to be as
unobtrusive as possible and alters performance by less than
0.01 percent.

The first system traced was an NCR 3433, a 33-MHz
Intel 80486 machine. The application environment traced
was the Oracle M database system executing the TPC-B
benchmark [Gray91]. In addition to the disk which con-
tained the operating system, database object code and
the other files, we used four Seagate Elite ST41600N disk
drives. One of these disks was used for the log and the
other three contained the remainder of the database, in-
cluding data, indices and history. We scaled the database
for 50 TPS and collected traces of disk activity for vary-
ing numbers of generators between eight and sixteen. Each
trace captures 32K disk accesses, which represents approx-
imately six minutes of wall clock time.

The second system traced was an NCR 3550, a symmet-
ric multiprocessor equipped with eight Intel 80486 pro-
cessors and 512 MB of main memory. The application
environment was the Oracle database system executing
a multiuser database benchmark based on the Wisconsin
benchmark [Gray91]. This benchmark consists of a num-
ber of processes which execute database operations (joins,
unions, aggregates, etc...) with short, random sleep peri-
ods between each pair of operations. In addition to the
three disks containing the operating system, database ob-
ject code and other files, we used fourteen HP C2247s,
high-performance 3.5 inch, 1 GB disk drives. Traces were
collected at various points within the execution of the
benchmark. Each trace captures 1M disk accesses, which
represents approximately fifty minutes of wall clock time.

6.2 Trace-driven Simulation

To experiment with many different data placements for
a given access stream, we developed a disk subsystem
simulator. By remapping the disk accesses, we are able
to examine the consequences of various data placements.
We also allow individual accesses to be decomposed into
multiple requests, to study schemes such as disk striping,
which may require that several disks be accessed for some
requests.

To focus on the load balance of the disks containing the
database, we ignore some of the requests in the traces.
We ignore all log requests because their sequential nature
makes a separate log disk appropriate. We also remove
from consideration accesses to the hard drives, containing
the operating system, database object code and other files,
which account for less than 0.3 percent of the traced activ-
ity in all traces. Therefore, we simulate the database disk
drives, which represents all disks accessed by the altered
request stream.

Because we are only interested in the load balancing
effects of various data placements, we use an average disk
access time for our experiments. Using an average access
time allows us to ignore data placement effects on seek time
and rotational latency and consider only load balancing
issues. When every disk access takes the same amount
of time to complete, the only parameter which affects the
response time 1s the queue time. In addition, because we
compare the different data placements for a given stream of
accesses, the only parameter which can cause a difference
in the queue time is how well the requests are spread among
the disks, i.e. the load balance. Therefore we use the
average queue time to compare the load balance offered by
various data placements for a given trace. As described in
Section 2, we view queue behavior as the primary indicator
of load imbalance. A value of twenty milliseconds was
chosen as the access time for the Seagate disks. For the
high-performance HP disks, a value of ten milliseconds was
used. These times reflect the average access times in the
different experimental systems.

In the next section, simulation data for each trace are
presented for a number of different placement schemes.
Load balance related information for the data placement
used on the machine during tracing is shown. The data
shown for dynamic data placement represent the best pos-
sible choice of placement. This placement assumes that the
data sets must be placed as atomic units and was determ-
ined by examining all possible placements. Given this as-
sumption, the dynamic data placement data shown are an
upper bound on the load balance possible using dynamic
data placement for each trace. A better load balance could
undoubtedly be attained by breaking up the data sets, but
this generally requires considerable effort and it is difficult
to determine how to break up the data sets. In the ex-
treme, the data sets could be broken down and placed in
exactly the same way that data are placed in a striped disk
subsystem. Therefore, we believe that it makes much more
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Figure 4: Sampled queue lengths from trace of database benchmark environment.

sense to simply stripe the data.

We also include results for a random load balance, which
we simulate by ignoring the disk/location requested and
choosing the disk to be accessed by a uniform random vari-
able. The values provided for random load balance are the
middle set of values for three simulations of random place-
ment.

7 Validation of Premises

7.1 Floating Load Imbalance

Figure 3 shows sampled queue lengths for the TPC-B
trace. The sampling interval was one second and the x-
axis shows the time period of the trace used to generate
the graph. The data were generated using dynamic data
placement, which means that they represent activity under

the best possible conventional placement. The sporadic
movement of the disk queue lengths show the existence of
floating load imbalance in the TPC-B environment. Not
only do the access patterns change, but they do so fre-
quently and with considerable magnitude.

Figure 4 shows the same data for the trace from the mul-
tiuser database benchmark environment. The sampling in-
terval for this graph was two seconds. Data are shown for
only five of the disks for clarity. T'wo different time periods
are shown to highlight some particularly strong examples
of floating imbalance. The queue lengths are presented in
log scale to make the graph more readable. In the first
period, disk 5, disk 10 and disk 13 all receive sporadic, but
considerable, loads. Disk 4 and and disk 9 are completely
idle. Less than thirteen minutes later, disk 10 and disk 13
exhibit much lower loads, but disk 4 and disk 9 become
extremely busy. Disk 5 continues to receive a varied work-
load. The enormous variations in disk activity displayed
in this trace (and the other traces from this environment)



show that floating load imbalance is very real and very
significant in this environment.

Metric Unit Original Dynamic Striped | Random
Placement (32K)

Disk 1 0.689 0.614 0.377 0.410

Queue Disk 2 1.995 0.681 0.425 0.377
Length Disk 3 0.171 0.622 0.408 0.425
Total 0.951 0.639 0.404 0.404

Queue Average 35.798 24.030 15.185 15.204
Time % Orig 100.00 67.13 42.42 42.47
(ms) Maximum 397.65 280.87 163.19 181.34

[ Number of Requests | 28995 | 28995 [ 28996 [ 28995 ]

Table 1: Comparison of placement schemes for TPC-B
environment. (Access time = 20 ms)

7.2 Placement Schemes

Table 1 shows data for the TPC-B trace using a number
of placement schemes. The data placement used in the sys-
tem during trace collection suffers from significant load im-
balance, both fixed and floating. Dynamic data placement
can reduce the fixed load imbalance, but is still plagued
by floating load imbalance, which accounts for most of the
difference between this placement scheme and disk strip-
ing.

Disk striping provides a load balance which is almost
exactly equal to random load balance. This supports the
premise that disk striping provides a near-random load bal-
ance. A major reason that they are so close is the regular
request sizes in the TPC-B environment. Because almost
all requests are for the same small amount of data (2KB
in this case), only one disk access per request is necessary
(i.e., no single request requires data from multiple stripe
units) when striping at a course granularity. For the ex-
periments with this trace, a stripe unit of 32 KB was used.

While disk striping does provide a better load bal-
ance than dynamic data placement by removing the small
amount of fixed load imbalance and by reducing the effects
of floating load imbalance, it only improves the average re-
sponse time by about 20 percent (from 44 milliseconds to
35.2 milliseconds). The main reason for this is the small
size of the trace. Other traces from the same environment
performed very poorly with the data placement which is
best for this trace. This fact indicates that larger traces
would exhibit greater differences in performance between
dynamic data placement and disk striping. This premise
is supported by the data from the database benchmark
environment.

Data for the same experiments using a trace from the
multiuser database benchmark environment are shown
in table 2. The original data placement is almost as
well-balanced as the best possible conventional placement
(shown as dynamic placement) for this trace because an
effort had been made to reduce load imbalance for the

benchmark. The problem is that certain data sets receive
high, but sporadic, loads. These data sets do not share
disks with other data sets but still cause significant load
imbalance. While the average queue lengths shown per
disk would seem to indicate that fixed load imbalance is
the problem, it should be noted that the high loads came
at sporadic intervals for the busiest disks, which is what
we define as floating load imbalance. Also, the disks which
receive the largest percentage of the workload are not the
same across traces, which would support our premises.

Disk striping spreads the load among the entire subsys-
tem, reducing the average response time by more than 77
percent (from 56.3 to 12.7) for this trace. Striping does
not, however, do as well as random for two reasons. First,
and most important, a significant number of requests cross
stripe boundaries causing an additional 77,000 disk ac-
cesses in the striped disk subsystem. These additional ac-
cesses each require the same 10 milliseconds of service time,
accounting for much of the difference in queuing between
random and striped placements.
tions of data smaller than a stripe unit were hot at times,
causing some floating load imbalance to affect the subsys-
tem.

In addition, some sec-

To reduce the number of additional accesses in the
striped subsystem, we simulated the use of a larger stripe
unit. This reduces the number of additional accesses, but
increases the second effect described above. The floating
load imbalance suffered by the striped subsystem due to
small hot spots outweighs the benefit of reducing the num-
ber of additional requests, causing the amount of queuing
(represented by queue lengths and queue times) to in-
crease. This effect is apparent in the increased values of
the average queue lengths for each disk rather than in their
values relative to each other. The fact that the per disk val-
ues cannot be compared to identify the existence of float-
ing load imbalance is a major reason that it is often not
found and dealt with appropriately. A full study of the
effects of stripe unit choice on performance, including load
balancing, is an item for future research.

8 Experimentation

8.1 Number of Disks

The ability of disk striping to reduce floating load im-
balance should not decrease as the size of the disk sub-
system increases, as is presently occurring in the industry.
To test this, we combined traces and increased the size
of the subsystem. For the conventional disk subsystem,
the accesses from each trace were issued to a separate set
of disks, which emulates the effect of multiple databases
working in parallel. For the striped disk subsystem, the
data of the traces were combined and striped over all of
the disks. Requests were spread among all disks for ran-
dom data placement as well. Figure 5 shows the results



Metric Unit Original | Dynamic Striped | Random | Striped
Placement (32K) (64K)

Disk 1 0.012 0.008 0.069 0.036 0.081

Disk 2 0.000 0.000 0.069 0.036 0.079

Disk 3 0.085 0.085 0.070 0.037 0.078

Disk 4 11.999 11.999 0.070 0.036 0.077

Disk 5 0.423 0.417 0.071 0.036 0.080

Disk 6 0.000 0.000 0.069 0.036 0.081

Queue Disk 7 0.003 0.003 0.069 0.036 0.076
Length Disk 8 0.080 0.080 0.069 0.036 0.077
Disk 9 1.836 1.836 0.068 0.035 0.076

Disk 10 0.497 0.497 0.069 0.036 0.080

Disk 11 0.000 0.000 0.069 0.036 0.079

Disk 12 0.590 0.590 0.070 0.035 0.078

Disk 13 0.432 0.432 0.070 0.036 0.080

Disk 14 0.038 0.000 0.069 0.036 0.080

Total 1.140 1.139 0.069 0.036 0.079

Queue Average 46.338 46.309 2.652 1.476 3.117
Time % Orig 100.00 99.94 5.72 3.19 6.73
(ms) Maximum | 6405.85 6405.85 101.44 56.89 215.28

| Number of Requests | 1045846 | 1045846 [ 1122893 | 1045846 [ 1084358 ||

Table 2: Comparison of placement schemes for database benchmark environment. (Access time = 10 ms)
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Figure 5: Data placement performance as array size
increases.

for traces of the multiuser database benchmark. The res-
ults were similar for the other environments. The average
queue time of the conventional subsystem for these com-
bined traces is simply the average of the queue times for
the individual traces, due to the lack of interaction between
them. We see that striping does better relative to conven-
tional data placement for the combined traces than it did
for the individual trace. We attribute this to the ability
of striped placement to use the greater number of disks
to handle bursts of requests. The most important point,

however, is that striping maintains its load balance as the
size of the subsystem increases.

Adding to the number of disk drives in a conventional
disk subsystem makes load balancing via dynamic data
placement more difficult. Striping, on the other hand, does
not increase in complexity and continues to provide a good
average-case load balance.

8.2 Data Placement

We have found, as did [Livn87], that the load balance
between disks provided by disk striping is independent
of the placement of data within the striped disk space.
This is an important result because it indicates that data
placement can be used to reduce other components of the
response time, such as seek time or rotational latency,
without affecting the load balance.

8.3 Different Request Types

We believe that striping balances each type of request
as well as the overall access stream. Table 3 provides data
related to the balancing of read and write accesses for the
multiuser database benchmark trace. Data are shown only
for those disks having the high or low value for a column.
These data show that read requests (and write requests)
are balanced among the disks in the subsystem. This fact
supports the more general claim that disk striping will bal-
ance different types of requests. This can be very import-
ant in environments where different types of accesses are



Disk # of Read # of Write

Reads Qlen Writes Qlen
1 78542 0.067408 1315 0.001417
4 79056 0.068478 1329 0.001447
5 78960 0.069636 1327 0.001483
8 78782 0.067768 1300 0.001314
9 78885 0.066020 1307 0.001324
14 78743 0.067615 1353 0.001436

Table 3: Read/write data for the database benchmark
environment.

more important or require more time to complete than oth-
ers. For example, in some disk subsystems, write requests
take longer to handle than read requests. This would be
the case for parity-protected disk arrays (such as RAID 5)
which require two accesses to the data block to complete
a write. Also, many disk drives have longer seek times for
writes than for reads, because the head must settle more
precisely before writing. It would be appropriate to bal-
ance reads, writes and total accesses to each disk when
balancing a disk subsystem having either of these charac-
teristics.

8.4 Balancing Other Components

Disk striping also provides a clean, predictable method
of balancing the workload for disk subsystem components
other than disks, such as busses and controllers. Compon-
ents can be configured to have equal workloads by simply
connecting the same number of disks to each. This is true
because the load is balanced among each of the disks in the
subsystem. The load for each component can be adjusted
to a desired level relative to other components by simply
changing the number of disks connected to it. This further
simplifies the process of managing a large disk subsystem.

9 Conclusions and Future Work

The number of disk drives in storage subsystems is grow-
ing. A significant impediment to achieving the perform-
ance offered by these disks is load imbalance. We show
that floating load imbalance, the rapid changing of the
temperature of each disk relative to the others, is a very
real and significant problem. Balancing a subsystem by
manual placement can be an extremely difficult task and
will become more difficult as the number of disks increases.
Further, we show that dynamic data placement fails to deal
well with atomic data sets and floating load imbalance.
Conversely, disk striping at a coarse granularity provides
a comparatively simple data placement algorithm which
provides significant improvements in load balance for many
applications.

By breaking up hot data sets and randomizing the disk
which is accessed for any given request, disk striping emu-

lates a random load balance. A random load balance may
not be the best possible for some extremely well under-
stood and well controlled environments, but it will be very
difficult in many cases to do better than random load bal-
ance. Disk striping does not become more difficult as the
number of disks increases, unlike manual data placement.
Moreover, it continues to provide a good average-case load
balance as the disk subsystem grows.

We have also described other characteristics and bene-
fits of load balancing via disk striping. The placement
of data within the striped disk space does not affect the
random-like load balance. Therefore, data placement can
be used to reduce seek times and rotational latencies. In
addition to balancing the overall access stream among the
disks, striping balances each type of request. This can
be important in disk subsystems which have request types
which are more important or require more time to com-
plete than others. Finally, we have explained how disk
striping provides a simple, predictable method of balan-
cing the load among other disk subsystem components,
such as busses and controllers.

Further work is required for a full understanding of the
issues involved with disk striping, both for load balancing
and in general. The effect of the stripe unit on load balan-
cing needs to be determined and included in algorithms for
choosing a stripe unit. In this paper, we have considered
only the effect of striping on load balance. Data placement,
however, affects seek time and rotational latency as well
as load balance. It has yet to be determined what effects
striping has on these components of the access time. Also,
striping effectively load balances only among disk drives
with identical characteristics. If some disks are faster than
others, then a proper load balance would consist of the
faster disks receiving more requests than the slower disks.
It may be the case that it is not a good idea to stripe over
disk drives with different characteristics.

Reliability i1s an important issue in storage subsystems
and is of growing concern as the sizes of these subsys-
tems increase. Much work has been done to determine
the cost/performance trade-offs of various redundant ar-
chitectures, such as mirroring (RAID 1) and parity strip-
ing (RAID 5) [Patt88] [Chen90a] [Meno92]. We believe
that the choices of data placement policy and redundancy
scheme are logically independent. It has yet to be de-
termined exactly how these choices interact in terms of
performance.

It may not be appropriate to stripe over all of the disks
in a very large subsystem. An obvious alternative is to
break the disk subsystem into groups, or sets, of disks and
stripe data over the disks in each set. Multiple sets may
be desirable for systems which contain multiple disk types,
data with different optimal stripe units, and/or data with
different optimal redundancy schemes. The appropriate
size of such sets has not been adequately explored. An
important point is that load balancing between stripe sets
could then become an issue. However, manual data place-
ment may be adequate for dealing with this problem.
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