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ABSTRACT

The importance of Sparse Matrix dense Vector multiplication (SpMV)

operation in graph analytics and numerous scientific applications has

led to development of custom accelerators that are intended to over-

come the difficulties of sparse data operations on general purpose

architectures. However, efficient SpMV operation on large problem

(i.e. working set exceeds on-chip storage) is severely constrained due

to strong dependence on limited amount of fast random access mem-

ory to scale. Additionally, unstructured matrix with high sparsity

pose difficulties as most solutions rely on exploitation of data locality.

This work presents an algorithm co-optimized scalable hardware ar-

chitecture that can efficiently operate on very large (∼billion nodes)

and/or highly sparse (avg. degree <10) graphs with significantly less

on-chip fast memory than existing solutions. A novel parallelization

methodology for implementing large and high throughput multi-way

merge network is the key enabler of this high performance SpMV

accelerator. Additionally, a data compression scheme to reduce off-

chip traffic and special computation for nodes with exceptionally

large number of edges, commonly found in power-law graphs, are

presented. This accelerator is demonstrated with 16-nm fabricated

ASIC and Stratix® 10 FPGA platforms. Experimental results show

more than an order of magnitude improvement over current custom

hardware solutions and more than two orders of magnitude improve-

ment over commercial off-the-shelf (COTS) architectures for both

performance and energy efficiency.
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Figure 1: Proposed algorithm co-optimized custom architecture

for SpMV on very large and highly sparse graphs.

1 INTRODUCTION

SpMV can be denoted as y = Ax+ y, where A is the sparse matrix, x

and y are respectively the source and resultant dense vectors. While

SpMV has wide range of applications including graph analytics,

this very kernel often becomes the bottleneck as it renders very low

fraction of the peak processor performance (<10%) [4] and poor

energy efficiency on COTS architectures. The main reason is poor

utilization of off-chip main memory bandwidth due to frequent ran-

dom access or excessive off-chip traffic overhead. Additionally, for

general purpose architectures, among all the instructions of sparse

matrix operation more than 94% are responsible for traversing the

graph, e.g. finding relevant neighbors of a node, and loading argu-

ments for computation [14]. This also incurs a high energy overhead.

While an arithmetic operation requires 0.5-50pJ, scheduling instruc-

tions in modern core consumes 2000pJ [15, 16]. For these reasons,

custom architectures are recently explored for SpMV acceleration

[11, 14, 31, 35, 39].

In this work, we refer to large problems/graphs in the sense that

the working data set is too large to fit in the on-chip storage. As

modern main memory sub-system can store working data set for very

large (multiple billion node) graphs, shared memory custom architec-

tures should be able to efficiently handle large problems if compute

requirements are met. However, the performance and efficiency of

SpMV on shared memory custom architectures are aggravated for

large problems (∼billion nodes) due to strong dependence on the on-

chip fast memory such as Static Random Access Memory (SRAM),

Embedded DRAM (eDRAM), etc. This dependence stems from

the fact that most custom accelerators store large portion of sparse
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ASIC specifications

Frequency: 1.4 GHz

Occupied area: 7.5 mm2

Leakage power: 0.10 W

Dynamic power: 3.01 W

Total power: 3.11 W

Figure 2: 16nm FinFET ASIC fabricated as the computation

core of proposed accelerator.

meta-data, such as vertex and edge properties, in the fast on-chip

random access memory. This severely limits scaling capability as

larger problem requires larger on-chip memory. For example, a Field

Programmable Gate Array (FPGA) solution [36] reported maximum

graph dimension of 2.3M nodes using 8.4MB on-chip SRAM. The

largest dimension efficiently handled by an Application Specific

Integrated Circuit (ASIC) base solution [14] is only 8M nodes de-

spite using a large 32MB eDRAM scratchpad. Hence, even tens of

million, let alone billion, node graphs are difficult to accelerate with

shared memory custom hardware.

Another major difficulty with SpMV operation on large matrices

is experienced when the data become very sparse (avg. degree <10)

and/or unstructured. SpMV acceleration techniques by somehow

exploiting locality in the nonzero patterns of the sparse data, such as

sophisticated formats, preconditioning, register-blocking, are widely

practiced in the literature for cache-based computation paradigms.

However, temporal or spatial locality is difficult to find for highly

sparse large matrices rendering these methods to be ineffective.

In this paper, we present an algorithm co-optimized custom shared

memory hardware accelerator, as depicted in Figure 1, for high per-

formance and energy efficient SpMV operation on very large and

highly sparse graphs for which the working data set far exceeds

the on-chip fast storage. The computational core of the accelerator

is demonstrated with an ASIC fabricated in 16nm technology, as

shown in Figure 2. Intel Stratix® 10 FPGA is also demonstrated as

another platform for the proposed custom architecture. The goals of

the accelerator are - a) full utilization of main memory bandwidth,

b) less dependence on fast on-chip memory to scale, c) reduction of

off-chip traffic, and d) data locality unaided computational scheme

and avoidance of costly pre-processing. For proper utilization of

DRAM bandwidth, we adopt an algorithm, namely Two-Step, that

conducts SpMV in two separate phases to ensure 100% DRAM

streaming access and incurs less off-chip traffic than other stream-

ing algorithms for large matrices. Hence, this algorithm possesses

favorable data access characteristics to efficiently utilize off-chip

bandwidth. Furthermore, Two-Step algorithm does not depend on

spatial/temporal data locality or costly pre-processing of the matrix.

However, there are several challenges in implementing Two-Step al-

gorithm. This work primarily focuses is addressing these challenges.

The key contributions of this work are as follows.

• Efficient implementation of Two-Step SpMV requires compu-

tationally difficult parallel multi-way merge operation to fully

utilize high streaming bandwidth offered by modern DRAM, such

as 0.5TB/s of 3D stacked High Bandwidth Memory (HBM). This

xA (NxN)

Intermediate
sparse vectors

Step 1 Step 2
x

A0 An-1

x0

xn-1

Segment width depends on fast memory

y

v0 vn-1

Figure 3: Two-Step SpMV algorithm.

work proposes a novel radix pre-sorter based scalable multi-way

merge parallelization scheme that provides high throughput to

saturate extreme bandwidth of 3D stacking technology, thus fully

utilize off-chip bandwidth.

• We demonstrate a matrix blocking scheme and buffering method

that enable Two-Step SpMV implementation to scale for larger

problems without significantly increasing on-chip fast memory

requirement. This enables our proposed accelerator to handle

very large graphs (4 billion nodes) with reasonably small amount

(11MB) of on-chip memory.

• This work proposes a meta-data compression technique, namely

Variable Length Delta Index (VLDI), that can significantly reduce

off-chip traffic and improve performance.

• We demonstrate an optimization method for iterative SpMV to

increase throughput and decrese off-chip traffic.

• This work develops a Bloom Filter based method to enhance

SpMV performance for power-law graphs that contain nodes with

disproportionately large number of neighbors. This allows to avoid

complicated sparse formats and ensures efficient execution with-

out large on-chip storage.

The rest of the paper is organized as following. First we will pro-

vide an overview of Two-Step SpMV algorithm. Next the proposed

implementation process will be detailed. Three additional optimiza-

tion methods to reduce traffic and improve performance will be

demonstrated afterwards. Later, an on-chip memory comparison

against current solutions will be presented. Lastly, experimental re-

sults comparing with various benchmarks will be presented followed

by conclusion.

2 TWO-STEP SPMV ALGORITHM

As the name suggests, Two-Step SpMV is conducted in two separate

steps, which is depicted in Figure 3. In this work, we assume the

Disk Access Machine (DAM) model [2] with two levels of memory

hierarchy, on-chip storage (fast access) and off-chip main memory

(slow access with block transfer). Two-Step SpMV fundamentally

depends on matrix partitioning into 1D column-blocks and multi-

way merge operation. Initially the source vector x is divided into

several segments and matrix A is partitioned into several vertical

stripes, i.e. column blocks. The column blocks of A are stored in a

row major sparse format, e.g. Row Major Coordinate (RM-COO),

Compressed Sparse Row (CSR) [8].

Step 1. In the first step, partial SpMV between a source vector

segment (xk) and the corresponding matrix stripe (Ak) is conducted.
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Figure 4: Off-chip traffic for latency bound vs Two-Step SpMV

conducted on 1B node graph with average degree 3.

At first, xk is streamed to the on-chip fast memory from DRAM.

Then, Ak is streamed from the main memory to the computation

core that results is an intermediate sparse vector vk. Ak is stored

in row major format so that the edges are sequentially traversed in

increasing order of row indices. Thus vk is generated sequentially

and streamed back to DRAM. This partial SpMV is conducted for

k = 0,1, ..,n−1 and there are n intermediate sparse vectors stored

in DRAM at the end of step 1.

Step 2. In the second step, all intermediate sparse vectors (vks)

are streamed back from main memory to the computation core where

a multi-way merge operation is conducted to accumulate them into

the resultant dense vector y. As these intermediate vectors are sorted

in ascending order of their nonzero elements’ indices (keys), they are

accessed sequentially during multi-way merge operation. Resultant

vector y is also generated sequentially and streamed back to DRAM.

2.1 Trade-offs and Advantages

The key insight of Two-Step SpMV is to trade-off random access

latency (due to cache miss and DRAM page miss) for more se-

quential access and more compute. Two-Step algorithm requires the

intermediate vectors to be stored in DRAM and causes round trip

of these vectors to & from the DRAM. These additional DRAM

streaming/sequential accesses and related compute are the overhead

of our proposed Two-Step algorithm. One of the fundamental ideas

of this work is to eliminate high latency random memory accesses at

the cost of more streaming access and more compute. This trade-off

is beneficial as more streaming accesses do not necessarily trans-

late to more DRAM traffic. Due to the elimination of cache line

wastage (bytes fetched but unused), Two-Step actually incurs less

off-chip traffic overall for very large and highly sparse problems.

Moreover, DRAM traffic for Two-Step algorithm is transferred at

streaming access bandwidth, which is much higher than random ac-

cess bandwidth. These are the key reasons for the high performance

and energy efficiency two-step algorithm, as reported in this work,

despite the overhead of more DRAM streaming access.

Figure 4 captures the key insight of this work where the total off-

chip traffic for latency bound and Two-Step SpMV are depicted for

an example problem. Algorithmically, latency bound SpMV requires

least number of total memory accesses. It is named ‘latency bound’

because the predominant stall reason of this algorithm is due to long

latency fetches from main memory resulting from cache miss and

DRAM page miss of random accesses. As shown in Figure 4, the

overall off-chip traffic is less for Two-Step SpMV despite incurring

more payload, i.e. data that takes part in actual computation. As

mentioned before, this is because Two-Step eliminates the wastage of

cache-level block transfered from DRAM for almost every access to

x or y. More importantly, Two-Step SpMV only requires sequential

access to DRAM that can be potentially leveraged to fully utilize off-

chip bandwidth and completely amortize DRAM row buffer opening

cost. Two-Step SpMV also incurs less off-chip than other streaming

algorithms for large problems. Additionally, Two-Step SpMV does

not require matrix preconditioning and is independent of nonzero

locality pattern. Detailed analysis of Two-Step SpMV algorithm is

available in [29].

2.2 Challenges

The main challenge of Two-Step algorithm implementation is the

multi-way merge operation required in the 2nd step, which is es-

sentially compute-bound [27, 31] and difficult to accomplish with

both COTS and custom architectures due to bad scaling behav-

ior. To saturate DRAM streaming bandwidth the multi-way merge

implementation needs to have high throughput and scalable paral-

lelization scheme, which is absent in current literature. For exam-

ple, custom architecture based multi-way merge implementation

[13, 18, 21, 22, 27, 30, 32–34] has reported to achieve maximum

throughput of 3-10GB/s whereas streaming bandwidth of 3D stacked

HBM is in the order of 250-1000GB/s.

Furthermore, thousands of sorted lists with millions of elements

have to be merged for large problem. Multi-way merge network of

this scale is very resource intensive and grows exponentially with in-

crease in problem size. More importantly, traditional parallelization

methods for increasing throughput become unscalable as on-chip

memory requirement grows linearly with more number of multi-way

merge cores. Difficulties in implementation of multi-way merge

operation is one of the key reasons for discarding algorithms sim-

ilar to Two-Step despite having efficient memory access behavior.

One of the key contributions of this work is the development of

multi-way merge hardware that can be parallelized to saturate ex-

treme streaming bandwidth without incurring significant increase in

on-chip memory requirement.

3 PROPOSED ARCHITECTURE

The proposed architecture for efficient Two-Step SpMV implemen-

tation is depicted in Figure 1. As main memory we use multiple

HBMs[5]. This state of the art 3D stacked memories can provide

extreme bandwidth (in the order of TB with multiple stacks). The

entire system sits on a passive interposer to provide wide high speed

channel between main memory and computation core. As scratchpad,

the random access storage needed for Two-Step algorithm, we use

eDRAM due to its high density and low leakage compared to SRAM.

Furthermore, eDRAM uses many more banks and small page size

that allow low-power operation at modest area penalty [24] and can

provide high random access bandwidth [17]. The vector segment

width is completely dictated by this available on-chip scratchpad.

To utilize the extreme off-chip bandwidth in an energy efficient

way, we propose custom hardware core for computation. In this work

we will demonstrate an ASIC chip fabricated in 16nm FinFET, as

shown in Figure 2 with specifications, to serve as the computational

core of Two-Step SpMV. We also have ported the ASIC accelerator

core design to FPGA platform and will demonstrate Intel® Stratix®

10 [1] as the computation core of the proposed accelerator. The

design of custom hardware core for step 1 and 2 of Two-Step SpMV

is explained in the following subsections.
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Figure 5: Implementation of step 1 of Two-Step algorithm.

3.1 Implementation of Step 1

The computational hardware to conduct the partial SpMV between

Ak and xk in step 1 is relatively straight-forward than step 2. As

shown in Figure 5, this comprises of multiple sets of Floating Point

(FP) multiplier and FP adder chain connected in series. The vector

segment xk is streamed from DRAM and stored in the on-chip fast

scratchpad memory that consists of multiple banks. Afterwards,

matrix stripe is streamed from DRAM for computation. The P sets

of FP multiplier and adder chain parallelly work on separate rows

of Ak. As the data in matrix stripe is sparse and the scratchpad is

separated into several banks, P independent random accesses does

not cause significant bank conflict that may introduce stalls in the

computation pipeline [28]. We denote output of the multiplier as a

record, which is a key-value pair. Here, key is the row index row and

value is the multiplier output val.

The matrix column blocks or stripes are required to be stored in a

row major sparse format. However, it is important to note that for

large matrices with high sparsity, the matrix stripes might become

hyper sparse. A matrix is considered hypersparse if nnz < N [8],

where nnz is total number of nonzeros and N is the dimension. For

hypersparse matrix stripes, CSR might become wasteful as the space

complexity of the row pointer array ØN due to the repetitions for

completely empty rows. In such cases we choose to use RM-COO

for matrix blocks as is has space complexity of Ønnz, which is

more efficient for hypersparsity. A detailed description of this step 1

implementation scheme and an alternative approach can be found

in literature [28]. These details are avoided in this work as the

methodologies are already available and practiced by researchers.

3.2 Implementation of Step 2

The most critical part of Two-Step SpMV is implementation of step

2 as the multi-way merge network required for it needs to process a

large number (∼ multiple thousands) of long sorted lists (∼ hundreds

of million or billion elements) at high enough throughput to saturate

streaming bandwidth. In this work we implement a binary tree based

multi-way merge network, denoted as Merge Core (MC), as depicted

in Figure 6. Generally, multi-way merge binary tree uses register

based FIFOs in every pipeline state. However, when number of

lists, i.e. intermediate vectors (vks), grows with larger problems,

the storage overhead of FIFOs becomes impractical. Therefore, we

use custom sized SRAM blocks in pipeline stages of the tree. A

set of consecutive words in the SRAM block logically works as

Set of FIFO buffers

for pipeline stage

FIFO (i-1, 0)

FIFO (i-1, 1)

FIFO (i, 0)

FIFO (i-1, 2)

FIFO (i-1, 4)

FIFO (i-1, 5)

FIFO (i, 2)

FIFO (i-1, 6)

FIFO (i-1, 7)

FIFO (i, 3)

FIFO (i+1, 1)

Stage (i - 1) = 0

Activated

Sorter Cell

FIFO (i-1, 3)

FIFO (i, 1)

FIFO (i+1, 0)

FIFO (i+2, 0)

Stage i = 1 Stage i + 1 = 2 Stage i + 2 = 3

0

K – 1 = 7

>

>

>

>

>

>

>
SRAM

Block

Figure 6: Block memory and binary tree based pipelined K-way

MC with single record output per cycle. Highlighted blue line

represents activated path in a given clock cycle.

FIFOs and such packed memory based implementation significantly

improves scalability of a single MC as the number of lists grows with

increasing problem size. Circuit level details of this MC is available

in [28] and skipped here for being out of scope.

The output bandwidth of a single MC is inadequate despite run-

ning at high frequency using latest technology node. For example, in

our 16-nm ASIC implementation a single 2048-way MC saturates

28GB/s bandwidth whereas the HBM based main memory subsys-

tem provides 512GB/s. Hence, approximately an order of magnitude

improvement in the multi-way merge throughput is required to utilize

full DRAM bandwidth, which can be achieved by parallel multi-way

merge. In the next section, general and our proposed method, namely

Parallelization by Radix Pre-sorter (PRaP), for parallel multi-way

merge implementation for SpMV are discussed.

4 PARALLEL MULTI-WAY MERGE

4.1 Parallelization by Partitioning

A natural way of parallelization is to 2D block the matrix, as depicted

in Figure 7, which will eventually generate segmented intermediate

vectors. The segmented intermediate vectors can be considered as

horizontally partitioned input lists for the MCs. We assume that

there are m such partitions. Hence, m MCs are deployed that inde-

pendently merge the lists in a particular partition and ultimately a

single segment of the resultant vector is produced by each MC. Thus

a throughput of m records per cycle instead of one can be achieved.

This parallelization method works well when the entire problem set,

i.e. all the input lists, fit in the on-chip memory. However, when the

problem set is too large to fit in the on-chip storage, as in our case,

this method becomes unscalable due to the reasons explained below.

During multi-way merge operation, the records in any particular

list are accessed sequentially. However, in every cycle only one

list dequeues a record and the selection of that list is practically

random. For large problems these lists will reside in the off-chip main

memory and random accesses will cause poor utilization of off-chip

bandwidth. One practical way to ensure full utilization of the off-chip

streaming bandwidth is to prefetch DRAM page (row buffer) size

data block (dpage) whenever a list is accessed off-chip and store the

block in on-chip memory, namely prefetch buffer, for a guaranteed
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Figure 7: Multi-way merge parallelization by partitioning in-

put lists for Two-Step SpMV. This method becomes unscalable

when the problem is larger than on-chip memory.

later reuse. For K input lists K such prefetch buffers are required.

For example, as shown in Figure 7, if dpage
= 2KB page size data

block for every list is prefetched, overall 2MB on-chip memory for

all the lists in a single partition is required for a 1024-way MC. If

there are 16 partitions, we require m×K ×dpage
= 32MB on-chip

memory just for the prefetch buffers itself. This is significantly large

amount to allocate for prefetch buffer as most of the on-chip memory

should be dedicated to store segment of x. It should be noted that

the on-chip memory requirement grows linearly with increasing

number of partitions m. Hence partitioning the input lists for parallel

multi-way merge operation is not scalable as it strictly depends on

limited on-chip memory.

4.2 Parallelization by Radix Pre-sorter (PRaP)

From the discussion above it is apparent that a parallelization scheme

that doesn’t require increasing prefetch buffer with more parallel

MCs is needed. In this work, we propose PRaP as a solution to this

problem, which is depicted in Figure 8. The idea is to implement p

independent MCs where each will only work on records with certain

radix within the keys. For that purpose, each record streamed from

DRAM is passed through a radix based pre-sorter and directed to

its destination MC. We define q as the number of Least Significant

Bits (LSBs) from the key of a record that is used as the radix for

pre-sorting as shown in Figure 9. Hence, the number of MCs is

p = 2q and, thus, a multi-way merge network with total output width

of p records per cycle can be achieved.

The main benefit of PRaP is that irrespective of p, the on-chip

prefetch buffer size is K × dpage, which is only 2MB given the

example previously. This is because all parallel MCs are fed data

from the same prefetch buffer. Since p can be incremented without

requiring more on-chip storage, PRaP is significantly scalable and

effective in handling large problems. It is important to note that

PRaP method of parallelization only works when it is guaranteed

that the sorted output list is a dense vector, as in the case for output

vector y in SpMV. We will elaborate this in later part of this section.

4.2.1 Radix Pre-Sorter Implementation. Without any loss of gen-

erality, we assume that the DRAM interface width is of p records.

Hence, whenever the ith list, li, is streamed from DRAM, records

ri, j to ri, j+ p is received in a single clock cycle as a part of the

prefetched data. These p records are then passed through pipelined

radix based pre-sorter as shown in Figure 10. The pre-soter is imple-

mented using a Bitonic sorting network [3] as p output per cycle is

K-way Merge Core 0

Radix (q LSBs) 

based pre-sorter 

….000b

….001b

….111b

….010b

Incoming 

records

from DRAM

2q wide output

K-way Merge Core 2q - 1

0, 8, 16, ….

7, 15, 31, ….

Example keys

K

K

1, 9, 17, ….

Figure 8: Parallelization by Radix Pre-sorter (PRaP).

{x x x x x x x x ,  x x x x x x x x x}. . . . . .
key value 

Record Radix used for PRaP pre-sort (q LSBs) 

Figure 9: Radix selection for pre-sort in PRaP.

r(i, j)

r(i, j+p)

Bitonic Pre-sorter (Sorts q LSBs)

Streaming

list l(i)

from 

DRAM

…001
b

…010
b

…010
b

…010
b

r(i, j)

r(i, j+x)

…010
b

…001
b

…000
b

…111
b

MC 2

MC 1

MC 0

MC 7

Parallel

MCs

Prefetch Buffer (K x dpage)

DRAM page size (dpage)

storage for K lists

Slots - Radix 0i

i

i

i

i

slot for radix 2 & list i

Slots - Radix 7

Slots - Radix 1

Slots - Radix 2

r(i, j+x)

Figure 10: Radix pre-sorter implementation using Bitonic

sorter and prefetch buffer. For explanation, we assume that ri, j

and ri, j+ x have the same radix.

required to match the input rate. In Figure 10, we have depicted the

Bitonic network in simplistic manner. The horizontal lines show the

data path of the records. The downward and upward arrows represent

comparison and swap operation in the ascending and descending

order respectively. It is important to note that only q bits of the keys

take part in the comparison operation of the pre-sorter. Hence the

logic resource requirement of PRaP pre-sorter is significantly less

than what is required for a one with full key comparison.

During the pre-sort, it is mandatory to maintain the original se-

quence of the records that possess the same radix. For example, as

shown in Figure 10, if ri, j and ri, j+ x both have the same radix

bits then ri, j should precede ri, j+ x. This is imperative because for

any given MC the input records of any list must be sorted w.r.t. the

rest of the bits other than the radix within key. After pre-sorting, the

outputs are stored in the prefetch buffer at the allocated location for

list li. The prefetch buffer allocates dpage size storage for each list.

Internally within the buffer for each list, the radix sorted records are

kept in separate slots for the ease of feeding to the appropriate MC.

For example, if the radix of record ri, j, radi, j, is 100b then record

ri, j is stored in the page buffer only for consumption by MC 4.

4.2.2 Load Balancing and Synchronization. It is possible for the

incoming lists to have keys that are imbalanced in terms of the

351



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sadi, et al.

Prefetch Buffer

(K x dpage)

DRAM page size

(dpage) storage

for K lists

…010b

…001b

…000b

MC 2

MC 1

MC 0

…111b
MC 7

Slots - Radix 0

Slots - Radix 7

Slots - Radix 1

Slots - Radix 2

Parallel Merge Cores

y(cp+0)

y(cp+1)

y(cp+p-1)

y(cp+2)

Records dequeued at cycle c = 0

Records dequeued at cycle c = 1

Records dequeued at cycle c = 2

{2, va2}

{18, va18}

{26, va26}

{2, va2}

{10, 0}

{18, va18}

{26, va26}

Original

output

Output with 

missing key  

{16, va16} {0, va0}{8, va8}

Store Queue

{31, va31} {7, va7}{15, va15}

{17, va17} {1, val1}{9, val9}

{18, va18} {2, va2}{10, 0}

Stream

out 

queued 

values 

to 

DRAM

Time

Figure 11: Load balancing and synchronization by insertion of

missing keys in PRaP when output is dense.

radices. In such case, the data are unevenly distributed among the

MCs and potential load imbalance will occur. More importantly, as

the independent MCs work only on a particular radix, further sorting

and synchronization among the output of cores should have been

required to generate a single sorted final output.

Both of the above issues can be effectively resolved from the ob-

servation that final output list is a dense vector. Hence it is guaranteed

that each MC will sequentially deliver records with monotonously

increasing keys (assuming sort in ascending order). Additionally,

it is also mandatory that each possible key, which is the row index

of the sparse intermediate vector in Two-Step SpMV, is present in

the resultant dense vector. For example, as shown in Figure 11, we

assume that the input data set with radix 010b = 2 doesn’t have any

record with key 10. For that reason, the MC 2 sequentially delivers

records {2,va2} (key 2 and value va2) and {18,va18}. Hence an

expected record with key 10 is missing at the output stream of MC 2.

To handle this scenario, we have included missing key check logic

in MC design. Whenever a missing key is detected at the output, that

key is artificially injected in between the original outputs along with

a value of ‘0’ and the following records are delayed. Thus, for the

given example, an artificial record {10,0} is injected after {2,va2}

and {18,va18} & {26,va26} are delayed.

Insertion of missing keys, necessitated by the dense output vector,

solves both the load imbalance and synchronization problem. Firstly,

even though data are unevenly distributed among the cores, at the

output each MC produces same number of records at similar rate.

Hence, effect of load imbalance is practically hidden even if it

occurs. Secondly, output from the p cores, ycp+ 0 to ycp+ p− 1,

can be independently queued in a store queue and synchronously

streamed out (dequeued) to DRAM. The records ycp+0 to ycp+ p−
1 are consecutive elements of the dense output vector. Furthermore,

records dequeued at cycle c and c+1 are also consecutive segments

of the dense vector. Thus, we don’t require any more sorting logic

to synchronize the outputs from p independent multi-way merge

cores. Therefore, in our proposed parallelization method PRaP we

can scale the design to multiple cores without increasing on-chip

buffer requirement and achieve required throughput to match the

streaming main memory bandwidth. We will see later that only q = 4

bit radix pre-sorting, i.e. 24
= 16 cores, is enough in our fabricated
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Figure 12: Construction of VLDI strings from delta index

ASIC to saturate the extreme HBM bandwidth that is in the order of

hundreds of GBs.

5 ADDITIONAL OPTIMIZATIONS

5.1 Meta-Data Compression

In Two-Step SpMV, the round trip of intermediate vectors (vks) in

sparse format to/from DRAM incurs off-chip traffic overhead. To

reduce this overhead, only the distance between two consecutive

elements can be stored instead of the absolute index position in the

intermediate vector. However, as the distances can vary within a

wide range, we propose a scheme, namely Variable Length Delta

Index (VLDI), that practically enables allocation of variable bit

width for meta-data.

This process is explained in Figure 12 using an example. The

original delta index of a nonzero requires 17 bits to express the

distance from its previous nonzero. First, the original delta index

is divided into multiple ‘VLDI blocks’ of predefined width. In this

example, the block size is 7 bits. If required, VLDI block comprising

the most significant bits is padded with extra zeros to encompass

the entire block as shown in Figure 12. Afterwards, each block is

appended with an extra leading bit to construct a ‘VLDI string’.

This extra bit helps in determining propagation of the original delta

index. A ‘1’ indicates continuation to the next string while a ‘0’

confirms the termination of the original delta index. It should be

noted that VLDI is only feasible for sequential generation and access

of a stream of elements, which is guaranteed for intermediate vectors

by Two-Step SpMV. As the column indices of the matrix stripes are

sequential and only read from DRAM by streaming access, it is also

possible to apply VLDI to compress the matrix.

5.1.1 VLDI String Length. The optimum VLDI string length, be-

sides the sparsity of the matrix itself, directly correlates to the num-

ber of nonzeros in the matrix stripes (Ak) and sparse vectors(vk)

that indirectly depends on the on-chip memory size. With smaller

on-chip memory the matrix stripe becomes narrow, due to smaller xk,

and renders more distance among nonzeros of Ak and vk on average.

Hence, a larger fixed length for the VLDI block is more efficient as

it reduces the one bit overhead of each string. However, making the

VLDI block too wide will cause wastage. Therefore, proper VLDI

string length is important given the platform’s on-chip fast memory

size and sparsity of the problem to achieve efficient compression.

For example, Figure 13 shows probability distribution of delta

index width for two different on-chip memory sizes, 5MB and

35MB.The total off-chip traffic for both on-chip storage sizes for a

range of VLDI string lengths are computed. Minimum traffic occurs

for VLDI string length of 9 bits and 5 bits, i.e. VLDI block length of

8 bits and 4 bits, for 5MB and 35MB on-chip memory sizes accord-

ingly for this problem. Hence, the hardware design parameters for a

given memory resource and problem characteristics can be tuned.
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5.1.2 Advantage. To elaborate the VLDI meta-data compression

benefit we have shown the total off-chip traffic for the example prob-

lem of 80M×80M random sparse matrix given above using 20MB

on-chip memory in Figure 14. Here we have separately shown the

compression capability when only vk (intermediate sparse vector)

is compressed and when both Ak (matrix stripe) and vk are com-

pressed. Several data precision for the value of nonzeros are used

for comparison. Since only meta-data is compressed by VLDI, the

compression ratio increases as data precision is decreased. In many

real life graphs, the edges of sparse matrix is unweighted, i.e. binary

matrix, where we only have meta-data for each nonzero. In such

cases VLDI can provide maximum compression benefit.

5.2 Iteration Overlap Optimization

Many applications, e.g. PageRank, use SpMV kernel iteratively

where the resultant vector y of one iteration serves as the source vec-

tor x in the following iteration. By overlapping the computations of

Two-Step SpMV in consecutive iterations, as depicted in Figure 15,

we can decrease off-chip traffic and significantly improve computa-

tion throughput. We name this optimization as Iteration overlapped

Two-Step (ITS).

As shown in Figure 15, ITS parallelly conducts step 2 of an

iteration along with step 1 of the following one instead of running the

iterations completely independently. Thus, off-chip traffic due to the

round trip of yi = xi+1 to/from DRAM at the transition of iterations

is effectively eliminated. The main enabler of this optimization

by iteration overlap is the fact that resultant vector of iteration i,

xi+1, is generated sequentially in Two-Step algorithm. Despite not

Overlapped in timeiteration i iteration i+1

Step 1 Step 2 Step 1 Step 2

x
i+1

x
i

x
i+1 x

i+2

Two source vector segment storages in fast memory are required:

1) for computation of Step1 in iteration i+1 and 2) for storing output of Step 2 in iteration i.

1st 2nd

Figure 15: Off-chip traffic optimized using Iteration overlapped

Two-Step (ITS) SpMV.

being able to store the entirety of yi on chip, it is possible to store a

segment similar to the source vector xi. Once a segment of yi = xi+1

is completely generated and stored in the on-chip memory, it is

possible to initiate computation of step 1 in the next iteration i+1.

While step 1 of iteration i+1 is conducted using the 1st segment of

the source vector xi+1, step 2 of iteration i continues concurrently

and stores the 2nd segment of the resultant vector xi+1 in another

on-chip buffer. Thus, computations of step 2 in iteration i and step 1

in iteration i+1 are overlapped in time.

Besides reducing off-chip traffic, a subtle but more important

advantage of ITS is that it keeps both the computation resources

active for step 1 and 2. This significantly improves overall SpMV

throughput and helps in saturating streaming bandwidth. The cost

of ITS is that it requires to buffer two source vector segments in

on-chip fast memory instead of one. Hence, for a given amount of on-

chip memory the maximum matrix dimension that ITS can handle

is roughly half of what general Two-Step can process. Therefore,

ITS offers a trade off between maximum problem dimension vs

performance and energy efficiency.

5.3 Optimization for Power-law Graphs

Power-law graphs, commonly found in social networks, possess node

distribution that varies with degree in an inverse power relationship.

Hence, there are a number of nodes, denoted as High Degree Nodes

(HDNs), that have disproportionately large number of neighbors. As

HDNs incur numerous collisions during accumulation in step 1 of

Two-Step SpMV, it is more efficient to use a separate pipeline with

specially tuned accumulator for HDNs. However, detection of HDN

efficiently during computation presents a challenge.

One way of HDN detection is to add one more bit in the stan-

dard format, e.g. RM-COO or CSR, and set the bit as a flag for

HDN. However, this requires change in widely used standard matrix

formats for one specific task only. On the other hand, prior HDN

information is too big to store on-chip for quick access. To resolve

this, we propose a Bloom Filter based detection scheme. Bloom

Filter [6, 7] is a compact data structure that enables membership

check for large data sets. As shown in Figure 16a, Bloom Filter is a

bit array that encodes membership information of an element in a

set through a number of hash functions. Each member from the set

is hashed to g random locations in the Bloom Filter array and the

corresponding bits are asserted to ‘1’. To check the membership, the

key of an element is similarly hashed to g bits. If all of the bits are

found to be ‘1’s, the element is deemed to be a member of the set.
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Figure 16: Bloom Filter filter based method to efficiently pro-

cess HDNs without significant on-chip memory overhead.

The idea of using Bloom Filter for power-law graphs is that

all the HDNs can be considered as a set. By streaming the meta-

data once from DRAM and using a threshold for the number of

neighbors (degree) of a node, the bit array of Bloom Filter can

be populated with the membership information of the HDNs. Row

index of each node is considered as the key for hashing. Later during

the computation, each node can be checked if it is considered as a

HDN or not. Depending on the result, proper computation pipeline

for partial SpMV during step 1 is selected. A block diagram of this

scheme is shown in Figure 16b. It should be noted that, Bloom Filter

can provide false positives, but never false negatives. That means, it

is possible that we treat a regular, i.e. not having high degree, node as

HDN. This doesn’t cause any considerable inefficiency as a regular

node will not cause significant stalls in the HDN pipeline.

5.3.1 Bloom Filter implementation. There are three important fac-

tors for Bloom Filter implementation, which are false positive ratio,

processing complexity and space overhead. Let m and q be the num-

ber of bits in Bloom Filter array and maximum number of members

in the HDN set respectively. The ratio qm is named as the load factor.

We denote g as the number of hash functions. Given these param-

eters, the probability of treating a non-member as member can be

given as the following [25].

fB = {1−1−
1

m
qg}g (1)

To encode and check membership, we need the hash functions to

produce g log2 m hash bits for the g random locations in the entire

array. If a SRAM block is used to store these m bits, this will mean

g accesses to the memory block. In this work, we have implemented

one memory access method proposed in [25]. In this case, the hash

functions need to produce log2 d +g log2 w hash bits, where d and

w are the number of words and word width of the SRAM block

respectively.

We consider an example graph ‘Twitter_www’ from KONECT

[19] graph collection. This graph has 52 million nodes and 1.9

billion edges with average degree of 74. Maximum degree of this

graph, i.e. highest number neighbors of a HDN, is 3 million. We

consider any node with more than thousand neighbors as HDN.

There are less than 0.1% such nodes. However, to be conservative

we consider a Bloom Filter design to encode 100K HDNs (q), i.e.

∼ 0.2% of the nodes for this example. From the analysis in [25],

for 2% false positive ratio, g = 4 and q = 1e5 the load factor is 0.1.

Hence we can calculate the number of bits required for Bloom Filter

as m = q0.1 = 1Mbits = 128KB, which is an insignificant on-chip

overhead. Additionally, using a SRAM block with word width of

w = 64 bits and d = 16384 words, the total number of hash bits

required is only log2 16384+ 3log2 64 = 14+ 18 = 32 bits. In our

implementation, we use simple XOR based hardware hash functions

to generate these hash bits. Thus, overall the space and processing

overhead for the detection of HDNs with a low false positive ratio is

reasonable and does not require significant resources.

6 ON-CHIP MEMORY REQUIREMENT

The on-chip memory requirement and the largest problem reported

for a number of custom hardware and COTS solutions of current

literature are given in Table 1. We compare these shared memory

solutions against our proposed ASIC without and with optimization

by iteration overlap, which are denoted as TS and ITS accordingly.

Our developed ASIC requires 10.5MB eDRAM scratchpad as fast

memory for vector storage (8MB) and prefetch buffer (2.5MB) along

with 0.5MB SRAM for computation core, thus 11MB fast storage in

total. As mentioned before, ITS causes the maximum problem size

to be half of what is possible with TS. Nevertheless, our proposed

solution requires relatively less on-chip memory while being able

to handle graphs with significantly larger dimension. For example,

despite using a huge 32MB eDRAM scratchpad the ASIC based

solution in [14] can only handle 8 million nodes without slicing and

partitioning larger graphs whereas the proposed solution can handle

multiple billion nodes with significantly smaller on-chip storage.

Table 1: Fast on-chip memory requirement and largest graph

dimension comparison of current and proposed solutions.

Solution Fast on-chip Max. vertices

memory size (MB) (Million)

FPGA [36] 8.4 2.3

ASIC [14] 32.0 8.0

CPU (single socket) [38] 20.0 95.0

CPU (dual socket) [20] 50.0 118.0

ITS (proposed ASIC) 11.0 2000.0

TS (proposed ASIC) 11.0 4000.0

It is should be noted that, since there is a lot of room to expand

on-chip memory using existing technology, our proposed solution

can be scaled easily for significantly larger problems. For example,
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if the source vector buffer is expanded from 8MB to 16MB, we will

be able to handle graphs with twice larger dimension, i.e graphs

with 4B and 8B vertices using ITS and TS accordingly. This ability

to scale is imperative for FPGA based implementation in handling

large graphs. This is because FPGA has very limited amount on-

chip Block RAM (BRAM) and efficiency of FPGA implementation

largely depends on the proper utilization of BRAM. FPGA solutions

in current literature have reported to handle only small graphs, such

2.3 million nodes in [36]. It should be noted that the total number of

edges in a graph is not relevant in determining on-chip memory size

for Two-Step SpMV implementation. Total edges only dictates the

requirement for main memory storage for our developed accelerator.

7 EXPERIMENTAL RESULTS

The proposed SpMV accelerator is implemented in multiple design

points in 16-nm FinFET ASIC (Figure 2) and Stratix® 10 FPGA

platforms. Table 2 lists the implementations for various design points

including the maximum problem dimension and maximum compu-

tation throughout of each implementation. The prefixes, namely TS,

ITS and ITS_VC, indicate implementation using straight forward

Two-Step, Iteration overlapped Two-Step and Iteration overlapped

Two-Step with VLDI vector compression respectively.

Table 2: Maximum graph dimension and throughput for differ-

ent design points and implementation variations of proposed

SpMV accelerator.

Platform/ Implementation Maximum Sustained computation

Design point ID nodes (M) throughput (GB/s)

TS_ASIC 4000 432

ASIC ITS_ASIC 2000 729

ITS_VC_ASIC 2000 656

TS_FPGA1 134.2 96
FPGA1

ITS_FPGA1 67.1 178

TS_FPGA2 67.1 190
FPGA2

ITS_FPGA2 33.6 357

7.1 ASIC based Implementation

For the ASIC, only the computation logic of the entire accelerator

system is fabricated. We implemented sixteen 2048-way MCs for

this ASIC. The two other basic parts of ASIC based accelerator,

i.e. HBM main memory and the eDRAM scratchpad, are emulated

using Cacti [9] and Destiny [23] tools. TS_ASIC only stores one

source vector segment in fast memory, the maximum matrix di-

mension it can handle is 4 billion. This is two times larger than

what ITS_ASIC and ITS_VC_ASIC can handle, i.e. 2 billion, since

these variations include iteration overlap optimization. However,

ITS_ASIC and ITS_VC_ASIC has relatively higher computational

throughput than TS_ASIC. ITS_VC_ASIC has relatively slower sus-

tained throughput than ITS_ASIC in terms of DRAM bandwidth

saturation as VLDI decreases the traffic while throughput of these

implementations are the same.

7.2 FPGA based Implementation

To demonstrate portability of the custom hardware design of our pro-

posed accelerator, we have implemented two design points in Intel®

Stratix® 10 FPGA (1SG280HU1F50E1VGS3), namely FPGA1 and

FPGA2 as shown in Table 2. FPGA1 handles relatively larger prob-

lems than FPGA2, but at the cost of less computational throughput.

FPGA1 utilizes available hardware resources to implement MCs

with more ways (64-way), i.e. more inputs, than FPGA2 (32-way).

More number of ways in MCs enables FPGA1 to handle larger

problems. However, FPGA1 has less parallel MCs than FPGA2. On

the other hand, FPGA2 implements MCs with less number of ways

while having more parallel cores. With more MCs FPGA2 can de-

liver higher throughput than FPGA1. For both FPGA1 and FPGA2,

scratchpad memory is synthesized using BRAM. The HBM main

memory system is simulated in the same way as ASIC assuming

four channels.

7.3 Performance and Efficiency Comparison

against Existing Solutions

We have compared the performance and energy efficiency of our

developed accelerator against a number of exiting custom hardware,

GPU, CPU and co-processor based solutions. A short description of

used custom hardware and GPU benchmarks along with references

are given in Table 3. For ease of description, we have assigned

an ID with each benchmark. For comparison with CPU and many-

core co-processor we have used Intel® Math Kernel Library (MKL)

routine ‘mkl_scoogemv’ on dual socket Xeon E5-2620 (22nm, 12

threads) CPU and Xeon Phi 5110P (22nm, 60 cores) co-processor.

Both of these architectures have 30MB last level cache (LLC). The

peak bandwidth is 102GB/s for the CPU and 352GB/s for the co-

processor.

Table 3: Custom hardware and GPU based benchmarks.

Architecture ID Description

BM1_ASIC 28-nm ASIC, 64 MB eDRAM scratchpad[14]
Custom

BM1_FPGA Virtex , 25 Mb BRAM & 90 Mb UltraRAM[37]
Hardware

BM2_FPGA Virtex-7, 67 Mb BRAM[36]

GPU BM1_GPU 8 nodes, Tesla M2050 (16GB GDDR5)[26]

7.3.1 Data Sets for Comparison. The graph data sets used for com-

parison against custom hardware and GPU solutions are given in

Table 4 and Table 5 accordingly. We have considered all relatively

large graphs, results of which are reported by the related work. It is

also noteworthy that most of the reported graphs by the custom hard-

ware and GPU solutions are small (only have few million nodes),

whereas our solutions can operate on much larger graphs as shown

in Table 2.

Data used for comparison with CPU and co-processor are listed

in Table 6. All these graphs (except last six) are collected from

University of Floria sparse matrix collection [10]. We also have used

a number of random Erdos Rényi [12] graphs for the demonstration

purpose of our proposed accelerator’s capability in handling large

problems. These synthetically generated graphs have names with

prefix ‘Sy’.

7.3.2 Performance against Custom Solutions. Figure 17 presents

performance comparisons in Giga Traversed Edges Per Second

(GTEPS) of our ASIC implementations against custom benchmarks.

The comparison results for different benchmarks are separated.
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Table 4: Graphs for comparison against custom benchmarks.

ID Description # Nodes (M) Avg. Degree # Edges (M)

FR Flickr [14] 0.82 12.00 9.84

FB Facebook [14] 2.93 14.31 41.92

Wiki Wikipedia [14] 3.56 23.81 84.75

RMAT RMATScale23 [14] 8.38 16.02 134.22

LJ LiveJournal [37] 7.80 14.38 69.00

WK Wikipedia [37] 2.40 2.08 5.00

TW Twitter [37] 41.6 35.30 1468.40

web-ND web-NotreDame [36] 0.33 4.61 1.45

web-Go web-Google [36] 0.88 5.83 5.11

web-Be web-Berkstan [36] 0.69 11.09 7.60

web-Ta wiki-Talk [36] 2.39 2.10 5.02

Table 5: Graphs for comparison against GPU benchmark.

ID Description # Nodes (M) Avg. Degree # Edges (M)

ara-05 arabic-2005 [26] 22.70 28.19 640.00

it-04 it-2004 [26] 41.30 27.85 1150.10

sk-05 sk-2005 [26] 50.60 38.53 1949.40

Table 6: Graphs for comparison with CPU and co-processor.

Name # Nodes (M) Avg. Degree # Edges (M)

patents 3.77 3.97 14.97

venturiLevel3 4.03 2.00 8.05

rajat31 4.69 4.33 20.32

italy_osm 6.69 1.05 7.01

wb-edu 9.85 5.81 57.16

germany_osm 11.55 1.07 12.37

asia_osm 11.95 1.06 12.71

road_central 14.08 1.02 16.93

hugetrace 16.00 1.50 24.00

hugebubbles 19.46 1.50 29.18

europe_osm 50.91 1.06 54.05

Sy-60M 60.00 3.00 180.00

Sy-70M 70.00 3.00 210.00

Sy-130M 130.00 2.23 290.00

Sy-.5B 500.00 1.74 870.00

Sy-1B 1000.00 2.58 2580.00

Sy-2B 2000.00 1.14 2270.00

Our ASIC implementations achieve order of magnitude improve-

ment over the FPGA benchmarks and several times faster than the

ASIC benchmark despite significantly less on-chip memory. As ex-

pected, solutions with iteration overlap optimization technique, i.e.

ITS_ASIC and ITS_VC_ASIC, has better speedup than TS_ASIC.

ITS_VC_ASIC achieves highest performance as the sustained com-

putation throughput is higher than system’s streaming bandwidth of

512GB/s and VLDI compression reduces off-chip traffic. It should

be noted that all graphs reported by these benchmarks are much

smaller than what our proposed accelerator can handle, as detailed

in Sec. 6.

Apart from the 3D DRAM bandwidth and ASIC technology,

the achieved speed-up can be contributed to mainly two factors.

Firstly, the proposed architecture does not incur any cache line

wastage due to the adoption of Two-Step algorithm. Secondly, main

memory bandwidth saturation is near peak sustained bandwidth for

the proposed architecture due to full DRAM streaming access. Thus,

the improvement in bandwidth utilization significantly surpasses the

overhead of Two-Step algorithm, i.e. main memory round trip of the

intermediate vectors.

Figure 18 shows the same for proposed FPGA implementations.

These are expected to achieve less performance than our ASIC imple-

mentation. However, the overall speedup against custom benchmarks

are significant. Energy efficiency comparison was not possible as

the related works didn’t report comparable metric on energy.
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Figure 18: Comparison of GTEPS for proposed FPGA imple-

mentations against custom hardware benchmarks.

7.3.3 Performance & E!iciency against GPU. Figure 19 shows the

performance and energy efficiency comparison of proposed ASIC

against GPU benchmark. Using ITS_VC_ASIC, we can achieve up

two orders of magnitude improvement in GTEPS. Efficiency im-

provement in terms of energy per edge traversal are up to three

orders of magnitude for almost every graph. This is expected be-

cause GPUs commonly consume high energy due to large number

of parallel cores and arithmetic units. Figure 20 depicts similar

comparison for our FPGA implementations. These plots also show

significant improvement in performance and efficiency over GPU

solution.

7.4 Comparison against CPU and Co-Processor

Figure 21 demonstrates the speedup and energy consumption of pro-

posed ASIC vs Intel® MKL on CPU and Xeon Phi co-processor. We

have only reported the results that we were able to run on these archi-

tectures. For example, we couldn’t successfully run graphs over 70M
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Figure 19: Comparison of a) GTEPS and b) Edge traversal en-

ergy for proposed ASIC accelerator with GPU benchmark.
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Figure 20: Comparison of a) GTEPS and b) Edge traversal en-

ergy for proposed FPGA accelerator with GPU benchmark.

and 30M nodes on Xeon E5 and Xeon Phi respectively. These plots

also show the performance of our proposed solutions on very large

(∼ billion nodes) graphs. The proposed ASIC achieves up to 800

and 1500 times improvement in GTEPS and energy consumption re-

spectively. Figure 22 depicts similar comparison for proposed FPGA

implementations. It should be noted that due to 2048-way multi-way

merge network our ASIC solution can handle much larger graphs

than FPGA implementations, which is also mentioned in Table 2. It

can be seen that our proposed accelerator on FPGA platform also

achieves significant (multiple orders of magnitude) improvements

both in terms of performance and efficiency for large graphs.

8 CONCLUSION

Large and highly sparse matrices pose a unique set of challenges

for SpMV in terms of scalability, performance and efficiency. This

work proposes an custom architecture for implementation of SpMV

algorithm that converts random accesses to regular accesses and

ensures full main memory streaming. The main contribution of this

work is to develop a scalable parallelization of multi-way merge op-

eration to handle large and highly sparse graphs without significantly

depending on fast on-chip memory. To the best of our knowledge,

such approach in solving SpMV is the first of its kind. As merge-sort

and sparse accumulation are fundamental operations in many other

SpMV: Performance & Efficiency vs CPU 
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Figure 21: Comparison of a) GTEPS and b) Edge traversal en-

ergy for our ASIC accelerator with CPU and co-processor.
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Figure 22: Comparison of a) GTEPS and b) Edge traversal en-

ergy for our FPGA accelerator with CPU and co-processor.

applications, this architecture can explored to be utilized beyond

SpMV.
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