
MINACE filter classification algorithms for ATR 
using MSTAR data 

Rohit Patnaik and David Casasent 

Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 

ABSTRACT 
A synthetic aperture radar (SAR) automatic target recognition (ATR) system based on the minimum noise and 
correlation energy (MINACE) distortion-invariant filter (DIF) is presented.  A set of MINACE filters covering different 
aspect ranges is synthesized for each object using a training set of images of that object and a validation set of confuser 
and clutter images.  No prior DIF work addressed confuser rejection.  We also address use of fewer DIFs per object than 
prior work did.  The selection of the MINACE filter parameter c for each filter is automated using training and validation 
sets.  The system is evaluated using images from the Moving and Stationary Target Acquisition and Recognition 
(MSTAR) public database.  The classification scores (PC) and the number of false alarm scores for confusers and clutter 
(PFA and PCFA respectively) are presented for the benchmark three-class MSTAR database with object variants and two 
confusers.  The pose of the input test image is not assumed to be known, thus the problem addressed is more realistic 
than in prior work, since pose estimation of SAR objects has a large margin of error.  Results for both confuser and 
clutter rejection are presented. 

Keywords:  Automatic target recognition (ATR), distortion-invariant filters, minimum noise and correlation energy 
(MINACE) filter, synthetic aperture radar (SAR) object classification 

1. INTRODUCTION 
Our concern is automatic target recognition (ATR) using synthetic aperture radar (SAR) imagery.  We present our initial 
SAR ATR module designed using images from the Moving and Stationary Target Acquisition and Recognition 
(MSTAR) public dataset1.  The database consists of X-band SAR images with 1ft. x 1 ft. resolution.  We use a subset of 
the MSTAR database for three-class object classification and we address confuser and clutter rejection.  We consider 
recognition of several versions (variants) of three objects: BMP2 (an armored personnel carrier), BTR70 (an armored 
personnel carrier), and T72 (a tank), and rejection of two objects: D7 (a bulldozer), and ZIL131 (a truck).  For each 
target, images were captured at two different depression angles (15° and 17°) over a full 0°-360° range of aspect view 
(pose).  About 200-300 different aspect view images of each object are available.  The BMP2 and T72 have variants 
present in the database.  These are vehicles with different serial numbers.  A benchmark experiment was proposed2 to 
evaluate MSTAR classification algorithms in which the BMP2, BTR70, and T72 are used as object classes.  All aspect 
views of the three targets at a 17° depression angle are used for training.  The test set consists of all aspect views of the 
three targets (and their variants) to be recognized at a different 15° depression angle, and all aspect views of the two 
confusers (D7 and ZILI31) to be rejected at a different 15° depression angle.  Note that we use a new set of confusers D7 
and ZIL131 than did prior work.  Most prior work used the 2S1 (a rocket launcher) and the D7 as the standard confusers 
to be rejected; Reference 3 also presented results using the standard confusers.  The confusers we chose to reject are less 
like military vehicles than are the original ones, as noted earlier3.  No images of the variants are present in the training 
set.  Table 1 lists the number of images available for each of the targets and their variants and confusers at the two 
depression angles.  A ‘-’ entry indicates that the images of the variant are not used in the training stage.  We use the 
BMP2-9563 and the T72-132 as the references for the two objects in the training stage as prior work3 did.  Thus, the 17° 
images of the BMP2-9566, BMP2-c21, and the T72-812 and T72-s7 are not used in the training stage. 

The object classification system should recognize objects with a 2° difference in depression angle and also recognize 
variants (and handle a 2° difference in depression angle) without having trained on such images.  We also consider 
rejection of confuser and clutter images.  The MSTAR clutter database consists of 100 clutter scenes of size 1478x1784 
pixels.  These images are mainly trees, etc.  In earlier work4, a screener was applied to each clutter scene to generate a 
total of 1616 64x64 pixel clutter regions of interest.  To evaluate clutter rejection performance, we use these 1616 clutter 
chips as the clutter to be rejected.  All test inputs are evaluated versus the filters for the three targets.  The highest match-



score is used to evaluate the performance of the system.  If the filter for the correct target produces the highest match-
score, it contributes to PC if the match-score is ≥ some threshold, otherwise it is rejected.  If the highest match-score for a 
confuser or clutter image is ≥ the threshold, it contributes to PFA (confuser false alarms) or PCFA (clutter false alarms) 
respectively.  When variants are not considered, PC is a percentage out of 587.  When recognition of variants is required, 
PC is a percentage out of 1365.  PFA is a percentage out of 548 and PCFA is a percentage out of 1616.  One can vary the 
match-score threshold to obtain receiver operating characteristic (ROC) curves for PC vs. PFA and then choose a suitable 
operating point.  The equal error rate (EER) is an accepted comparison operating point on the ROC for which (1 – PC = 
PFA).  We use this operating point to compare our results to prior work.  For evaluating clutter rejection performance, one 
also considers PD, the percentage of targets that are detected (regardless of whether classification is correct). 

Table 1.  Number of aspect views of each target available at a 17° and 15° depression angle, ‘-’ indicates images of the variants are 
available but are not used in the training stage.  

 BMP2 T72 
 9563 9566 c21 BTR70 132 812 s7 

D7 ZIL131 

17° 233 - - 233 232 - - 299 299 
15° 195 196 196 196 196 195 191 274 274 

 

Most prior DIF SAR work divided the full 360° of aspect angular range into 12-16 bins of smaller sizes.  In all prior 
DIF work, the aspect angle of the input was assumed known.  However, pose estimation of SAR objects is known to be 
poor with ±20° range of pose estimation errors5.  We wish to use fewer MINACE filters per object than did prior work 
and we do not assume that the aspect angle of the test input is known.  If the pose of an input test image is assumed 
known, performance results have been shown to improve6.  Reference 6 notes that if the input pose is assumed known, 
the EER improves by 5% (from 23%-18%), and the PFA (at PD = 90%) drops from 45% to 25%.  Our goals are also to 
automate the selection of the MINACE parameter c.  We use a validation set of only a few confuser and clutter images to 
select c.  The extended maximum average correlation height (EMACH) filter has been used for MSTAR classification4.  
However, the selection of the EMACH filter parameter β seems to require lots of test set data.  No prior DIF work has 
considered confuser rejection.  We also note that no prior three-class MSTAR paper has considered both confuser and 
clutter rejection.  In this paper, we present a SAR ATR system for the above database based on the minimum noise and 
correlation energy (MINACE) distortion-invariant filter (DIF) 7.  For each target, a set of MINACE filters is synthesized 
covering different angular ranges.  To synthesize the MINACE filters for an object, a training set of images of that object 
and a validation set of confuser and clutter images is used to select the MINACE filter parameter c.  The MINACE filter 
for each object is a combination of images of that object only; it does not contain any confuser or clutter images.  Thus, 
no false-class training is done.   

We now discuss the image preprocessing we use.  The original target chips range from 128x128 pixels to 192x193 
pixels in size.  We use the central 64x64 pixels of each of these target chips; it contains the target, its shadow and 
background clutter.  Not all images are centered.  However, since DIF correlation-based approaches are shift-invariant, 
we do not recenter the images.  All training and test images are 64x64 pixels.  SAR images have a large dynamic range.  
We log-scale the images as log10(I+1), where I represents the intensity of a particular pixel, to reduce the dynamic range.  
Most prior work has used log-scaled images.  The log-scaled images are energy-normalized to have unit energy before 
synthesizing the MINACE filters and before performing recognition correlations.  All target and clutter chips are 
normalized this way.  Energy normalization of images is needed because of the large range of energy differences present 
between different aspect view images of the same object.  However, this makes all targets more similar (thus 
recognition is more difficult) and it makes clutter rejection more difficult.  The rest of this paper is organized as follows.  
In Sect. 2, we discuss prior work using the MSTAR database.  Section 3 describes the MINACE filter theory.  Section 4 
presents our MINACE filter-synthesis algorithm.  In Sect. 5, we present results for three-class object classification and 
confuser and clutter rejection. 

2. PRIOR MSTAR THREE-CLASS WORK 
We now discuss prior MSTAR three-class work.  Our main concern is methods that have been applied to three-class 
object classification (with variants) while considering rejection of confusers or clutter.  We note that no prior MSTAR 
work has addressed both confuser and clutter rejection.  Additionally, we do not consider comparisons to prior work that 



assumed the pose of an input image was known, as such work is not fair.  In prior MSTAR classification results, an 
operating point corresponding to a detection rate PD = 90% is usually used, and results are presented using the 
conditional classification rate, PCC, the number of detected objects that are correctly classified.  The PC we use is PCCPD.  
When we discuss PC scores for prior work, we thus reduce PCC by a factor of PD.  A discussion of prior MSTAR work 
follows.  All results are presented using images at a 17° depression angle for training and images at a 15° depression 
angle for testing. 

A distance-based mean square error (MSE) template-matching method2 was applied to the three-class database.  For 
each object, 36 templates were synthesized, each template covered 10° in aspect range (aspect bin) and was formed by 
averaging over all training images in the aspect bin.  They considered three-class object classification (including 
variants) and rejection of two confusers (two tanks not present in the MSTAR public database).  There was no discussion 
of log-scaling or energy normalization of target chips.  They achieved a poor EER of 30%, that is, PC = 70% at PFA = 
30%.  They did not assume that the pose of an input object was known.  Thus, the results presented are fair. 

Support vector machines (SVMs) have been used for MSTAR classification6,8,9.  Reference 6 applied a new support 
vector representation and discrimination machine (SVRDM) to the three-class database and considered recognition of 
variants and rejection of the two standard confusers.  All images were log-scaled but were not energy normalized.  The 
pose of test inputs were not assumed known.  They achieved an EER of 23% and at PD = 90%, they achieved PC = 
85.4% and PFA = 45.3%.  They also achieved PCFA = 0% at PD = 90% using a different set of clutter chips than the ones 
we use here.  In Ref. 8, a polynomial SVM was applied to the three-class database and recognition of variants was 
considered.  However, confuser rejection was not considered and a PC = 93% was reported.  A Gaussian SVM9 was also 
used on the three-class database and recognition of variants and rejection of the two standard confusers, the 2S1 and the 
D7 were considered.  A pose estimation algorithm9 was noted and claimed to produce an average error of less than 8°.  
However, for classification results, they assumed the pose of an input image was known.  Thus, the results presented are 
artificially better.  They obtained a PFA = 34.3% at PC = 84.9% (PD = 90%). 

The performance of several other classifiers were evaluated in Refs. 9 and 10.  All classifiers were applied to the 
three-class database.  Recognition of variants and rejection of the 2S1 and D7 confusers were considered and the aspect 
angle of a test input was assumed known.  Performance results were presented at PD = 90%.  In Ref. 9, a template 
matching method (using 12 average templates per object) gave a PC = 80.4% and a poor confuser rejection score of PFA 
= 46.5%.  The perceptron method achieved PC = 82.9% but a very poor PFA = 72.8%.  An optimal hyperplane classifier 
gave PC = 84.6% and PFA = 61.5%.  All these PFA scores are very poor.  In Ref. 10, a template matching method (using 
12 templates per object) gave a PC = 80.4% and a PFA = 47%.  A multi-resolution principal component analysis (PCA) 
method gave PC = 79.7% and PFA = 40%.  And, a quadratic mutual information classifier gave PC = 84% and PFA = 46%.  
Again, all the confuser rejection PFA results are very poor.  Among all the classifiers in Refs. 9 and 10, the Gaussian 
SVM obtained the best scores of PC = 84.9% and PFA = 34.3%.  However, the pose of the input test images were 
assumed known. 

A feature space trajectory (FST)3 classifier using shift-invariant magnitude Fourier transform features was applied to 
the three-class MSTAR database.  Target chips were log-scaled and energy normalized.  The aspect angles of input test 
images were not assumed known.  An EER score of 17%, i.e., PC = 83% and PFA = 17%, was obtained (recognition of 
variants and rejection of the two standard confusers were considered).  This is the best EER score in prior work when 
aspect angle was not assumed known.  A continuous prototype version of the FST was also proposed11, which produces 
a smoother manifold than the FST did.  A low pass filter was applied to obtain a smoother trajectory.  They obtained 
scores of PC = 87.7% and PFA = 20.8% at PD = 90%.  However, these results are suspect, since they assumed the pose of 
the test inputs were known. 

We now address prior DIF work.  No prior MSTAR DIF work considered confuser rejection.  Thus, we can only note 
the classification PC scores when no rejection threshold is used.  A combination of the maximum average correlation 
height (MACH) filter and the distance classifier correlation filter (DCCF)12 was applied to the three-class database and 
recognition of variants was considered.  Sixteen aspect bins were used for each target, thus 48 MACH filters were used.  
A pose-estimation algorithm based on morphological processing of the input images was proposed but does not seem to 
have been employed.  The pose of the input images were assumed known, although Ref. 12 implies it was not, since the 
performance results using the DCCF are almost identical in Refs. 12 and 13, and Ref. 13 clearly states that the test input 
poses were assumed known.  An input image is correlated versus MACH filters covering the correct aspect bin for each 
of the targets and if the peak-to-sidelobe ratio (PSR) scores are above an acceptable threshold, DCCFs are applied to the 
input image to classify it.  They obtained PC = 97% (with variants) and confuser rejection was not addressed.  That 



work12 presented clutter rejection scores using the original 100 MSTAR clutter scenes and scores of PD = 96% and PCFA 
= 0.083/km2 for a total of 24 km2 of data (this is a total of two clutter false alarms) were shown.  We cannot directly 
compare our clutter rejection performance to this work since we use a different set of clutter chips.  We note that their 
future work12 shows poorer clutter rejection results. 

The polynomial distance classifier correlation filter (PDCCF)13 was applied to the three-class database but confuser 
or clutter rejection was not addressed.  They obtained an excellent PC = 99.1% (with variants).  However, test set 
performance was used to determine which aspect bin filters for which object classes had to be extended to the PDCCF 
case and to determine which filter powers (parameters) to use and how many PDCCF filters to use per aspect bin per 
class.  Additionally, the pose of the input test images were assumed known.  Thus, the results are suspect.  In Ref. 4, the 
extended maximum average correlation height (EMACH) filter was applied to the ten-class MSTAR database.  Sixteen 
EMACH filters were used per object (a total of 48 filters for the three-class case).  Test images were correlated versus all 
filters.  Thus, input pose was not assumed known.  We computed the PC score (with variants) for the three-class case to 
be at least 84.4%.  That work4 presented object detection-clutter rejection performance.  However, clutter and variant 
data were used in the training stage, thus results are suspect.  For ten-class data (using EMACH filters) without variants, 
they achieved PCFA = 2.5% at PD = 95% and PCFA = 1.25% at PD = 90%.  The corresponding PCFA scores when variants 
were included were 4% and 2.5% respectively. 

From this review of prior work, considering only cases when the aspect view of the test input is not assumed known 
and cases where confuser rejection was considered, we can expect PC scores of ≈ 70% and PFA scores of ≈ 30%.  Thus, 
high scores are not expected.  Clutter rejection with PCFA = 2.5% can be expected (in detection).  We want to use fewer 
filters per object than prior work did and wish to automate the selection of the MINACE filter parameter c. 

3. MINACE FILTER THEORY 
This section describes the version of the original MINACE filter7 that we use.  Vectors (matrices) are denoted as lower 
(upper) case bold letters.  All data are in the Fourier Transform (FT) domain.  The 2-D FT of the filter is 
lexicographically ordered into a column vector h.  The 2-D FT of each training set image included in the filter is 
lexicographically ordered into a column vector xi of the data matrix X.  The filter is required to give a specified 
correlation peak value for each training set image included in the filter; these values (usually one) are specified by the 
elements of a column vector u.  These peak constraints are described by 

 [ ]TH 111 K== uhX , (1) 

where ( )H denotes the complex conjugate (Hermitian) transpose.  To improve performance, the filter h is also required 
to minimize a combination of correlation plane energy due to training images and correlation plane energy due to 
distorted versions of the objects to be recognized.  We use zero-mean white Gaussian noise to model the expected 
distortion power spectrum.  We choose the energy function to be minimized as 

 Thh H=E , (2) 

where T is a diagonal matrix whose diagonal entries are the spectral envelope of the training images and noise at each 
frequency.  That is, 

 )],(),,(max[),( kkckkkk NST = , (3) 

 )],(,),,(),,(max[),( 21 kkkkkkkk
TNSSSS K= , (4) 

where Si is a diagonal matrix whose diagonal entries are the elements of the lexicographically ordered 2-D power 
spectrum (|FT|2) of training image i, NT is the total number of training images, N is the identity matrix, the maximum 
value in S is normalized to one, and c (0 ≤ c ≤ 1) controls the variance of the noise.  The Lagrange multiplier solution 
that minimizes the expression in Eq. (2) subject to the constraints in Eq. (1) is 

 uXTXXTh )( 1H1 −−= . (5) 

The filter parameter c and the images to be included in the filter are selected using a set of training images and a set 
of validation images (Sect. 4.2).  S is based on all the images in the training set, not just the ones included in the filter.  
Thus, S and T (for a fixed c) do not change as new training images are included in the filter.  This is computationally 



attractive as S for a filter needs to be computed only once while T has to be computed once every time c is changed.  
The MINACE filter can be shown to be a linear combination of training images that have been preprocessed by T-1/2.  A 
lower value of c makes the filter minimize correlation plane energy due to training images more and makes T-1/2 
emphasize higher spatial frequencies.  This makes the filter more discriminative to false objects but it makes recognition 
of distorted versions of an object more difficult.  A higher value of c makes the filter emphasize correlation plane energy 
due to noise (that models distortions) more and makes T-1/2 emphasize lower spatial frequencies.  This improves the 
distortion-tolerance performance of the filter but it also makes the rejection ability of the filter worse.  Thus, c trades-off 
recognition versus rejection performance.  Since T in Eq. (3) is based on the max( ) operator, as c is varied, T does not 
change for all spatial frequencies, e.g. as c is increased, the value of T at higher spatial frequencies does not change. 

4. MINACE FILTER SYNTHESIS 

4.1. Issues in MINACE SAR Recognition Filters 
We now note several issues in the use of MINACE filters for SAR classification. 

 
1. Do not assume that the aspect angle of an input test image is known 

Pose estimation of SAR objects is known to be poor with a ±20° range of errors5.  Thus, we do not assume that the 
pose an input test image is known.  Most prior work assumed pose was known.  If the aspect angle of a test image were 
known, classification performance improves considerably since the outputs of fewer filters need be considered for 
classification. 

 
2. The number of filters needed per object must be determined 

Prior MSTAR DIF work used sixteen filters per object4,12 (a total of 48 filters for the three-class database).  There 
was no discussion of why sixteen filters per object were needed.  We wish to automate the selection of the number of 
filters needed per object based on the performance of the filters on the training and validation sets (the validation set for 
a filter consists of a few confuser and clutter images that should be rejected by the filter).  Currently, we start by using 
two filters per object; each filter covers 180° of aspect range.  If the filter-synthesis algorithm does not produce an 
acceptable design for either filter, we resynthesize the filters for that object using three filters per object, and so on. 

 
3. Guidelines are needed for the number of training images N to be included in a filter 

If most or all of the available training set images for a filter have to be included in a filter before it can recognize all 
training set images (that is, before it produces correlation peak values ≥ some specified threshold for all of the training 
set), the filter is expected to have poor recognition performance on the test set.  However, for the MSTAR database, we 
found that a maximum limit on the number of images included in the filter does not seem to be an issue (we present data 
in Sect. 4.2).  Thus, we do not presently limit the maximum value of N. 

 
4. How c affects good clutter rejection performance 

From initial tests, we found that a higher value of c seems to be better for clutter rejection (we show data supporting 
this in Sect. 4.2).  This is different from other databases (e.g. IR).  For other databases, a lower value of c is better for 
clutter rejection.  This is expected, since use of a lower c value emphasizes higher spatial frequencies and this should 
make clutter and targets more different; clutter in SAR is specular and this and our use of energy normalized imagery 
seems to be the reason for the different trends.  We note that clutter rejection performance improves when more filters 
per object are used.  We note that only two prior MSTAR DIF papers4,12 considered clutter rejection. 

 
5. How c affects good confuser rejection performance 

From initial tests, we found that a lower value of c is better for confuser rejection (data is shown in Sect. 4.2).  This 
is expected since a lower value of c emphasizes higher spatial frequencies and should make the filter more 
discriminative against confuser images and thus confuser rejection performance improves.  Thus, for good clutter 
rejection performance, we need to use a higher value of c, while for good confuser rejection performance we need to use 



a lower value of c.  Selecting a value for c to meet both of these objectives is thus a challenging problem.  If rejecting 
clutter images is not of concern, we can obtain better confuser rejection performance by using a lower value of c.  We 
note that no prior MSTAR work considered both clutter and confuser rejection. 

 
6. An initial value for c is needed 

We use a starting value of c = 0.003.  We then increased and decreased it and analyzed training and validation set 
results. 

 
7. Specifying a minimum training set peak constraint 

We add images to the filter until the filter produces correlation peak values ≥ the minimum training set peak 
constraint for all training set images.  We chose this value to be 0.9. 

 
8. Selection of the maximum confuser and clutter validation peak values allowed and the number of confuser and clutter 
false alarms allowed during filter synthesis 

From initial tests, we chose the thresholds to be 0.7.  We do not allow any clutter false alarms during filter synthesis.  
Clutter typically does not have structure and clutter errors indicate that the MINACE filter is not using the structure 
information in recognizing true objects and discriminating them against other objects.  We allow 10% confuser false 
alarms during training, that is, we allow two confuser validation peaks out of 20 to be above 0.7.  In prior work, poor 
confuser rejection performance (usually around 30%) was obtained, and we do not expect excellent confuser rejection 
results.    We initially assumed that confuser false alarms would be due to images in the same aspect range as that of the 
filter.  However, from initial tests, we found that confuser false alarms also occur due to confuser images outside the 
aspect range of the filter.  This further supports the fact that, if we assume that the pose of an input test image is known, 
the confuser rejection performance improves and misleading results occur. 

4.2. Initial Data Trends 
This section presents initial data trends and discusses our choice for the parameters of the MINACE algorithm.  To 
obtain initial results, we chose to recognize the BMP2-9563 object and reject two (new) confusers (D7 bulldozer, and 
ZIL131 truck) and twenty clutter chips.  We formed MINACE filters to recognize the 90°-270° aspect range (180° 
aspect range) synthesized with different values of c.  The training set for each filter consists of all available images at a 
17° depression angle in the aspect range of the filter.  We first synthesize the filter with the image closest to an aspect 
view of 180° (back view of the vehicle).  This filter was correlated versus the rest of the images in the training set and 
the training set image producing the lowest correlation peak value was noted.  That image was then included in the filter, 
a new filter was synthesized and the process was repeated until all images had been included in the filter.  The 
performance of each of the filters as more images were added to it was evaluated for PC using all 108 test set images of 
the BMP2-9563 object at a 15° depression angle and in the aspect range covered by the filter.  PFA performance was 
measured using ten images (out of 274) of each of the confusers at a 15° depression angle; and PCFA performance was 
measured using twenty clutter chips.  We used approximately every 27th confuser image beginning with the first image.  
In the MINACE algorithm, the validation set for each filter consists of the same 20 confuser and 20 clutter images used 
here.  No variant data was considered in these initial trend tests. 

If the correlation peak for a BMP2 test image is ≥ a threshold, it contributes to PC, if the correlation peak for a 
confuser image is ≥ the threshold, it contributes to PFA, and if the correlation peak for a clutter chip is ≥ the threshold, it 
contributes to PCFA.  To see trends, we plot these correlation peak values as the number of images N included in the filter 
is increased.  Figures 1 and 2 show test results for the filters with two different values of c (0.0003 and 0.003).  There are 
a total of 111 training set image of the BMP2.  Thus, the horizontal axis in all figures is N and ranges from 1 to 111.  In 
each figure, we also show (as a function of N) curves of the minimum correlation peak for the full training set (curve □), 
the minimum true test peak (curve ○), and the correlation peak required to achieve PC = 95% on the test set (curve *). 

Figure 1a shows results for all 108 test set images at a 15° depression angle; the three curves noted are also shown.  
We see that test set peaks increase as more images (N) are added to the filter and then beyond N ≈ 70 the increase in 
peak height is negligible.  We considered requiring the filter to have some minimum number of images included, but 
found this was not necessary.  In Fig. 2a, we see the same trend but the curve tends to flatten out at a lower N level with 



a larger value of c.  The flattening out of the test peaks with N seems to simply indicate that the training and test set 
images are different due to the different depression angles.  The minimum true test peak (curve ○) is noticeably below 
the threshold for PC = 95% (curve *).  From this, we see that there are several outliers in the test set and thus we consider 
the 95% * curve in our analysis. 

 

Figure 1.  Correlation peak values for the test and validation set images for the 90°-270° aspect range filter with a lower c = 0.0003. 

We next consider performance versus clutter; the correlation peaks for each of the 20 clutter chips are shown in Figs. 
1b and 2b.  If we use the * curve as our threshold and operate in the flat region of the curve, there is only one clutter 
false alarm in Fig. 1b and none with a larger c value in Fig. 2b.  Thus, a higher value of c is better for clutter rejection, as 
we noted earlier. 

We next consider confuser rejection.  Figs. 1c and 2c, and 1e and 2e, show the correlation peaks for the five 
confusers in each class in the 180° angular range of the filter.  The confuser peaks are much lower in Figs. 1c and 1e 
with a smaller value of c.  Thus, a lower c is best to improve confuser rejection.  Figs. 1d and 2d, and 1f and 2f, show the 
correlation peak values for the five confusers outside the aspect range of the filter.  These peaks are also large and are 
often larger than those in the angular range.  Thus, we must check all confusers at all aspects versus each filter.  Thus, if 
the input object’s pose is assumed known, better results are expected.  Using the * curve as our threshold, we find 
several confuser false alarms.  This is expected, since prior work typically had PFA > 30%. 



We find the * threshold (for PC = 95%) to be larger (≈ 0.8) for a higher value of c (it is ≈ 0.7 for the lower value of c) 
in Fig. 1.  This is expected, since a larger c emphasizes lower spatial frequencies and thus makes training and test data 
more similar.  In MINACE filter synthesis, we use c = 0.003 for the initial value (as in Fig. 2) as clutter rejection is 
better.  In synthesis, we check the correlation peak values for the validation set clutter and confusers and require their 
values to be < 0.7, which is below our expected true correlation peak threshold of 0.8 (the * curve in Fig. 2).  For 
different objects and for filters with a smaller aspect angle range, different thresholds were not used but should improve 
performance.  We note that when recognition of variants is considered, we expect to have to reduce the threshold below 
0.8, hopefully not too much below 0.7 (to limit PFA). 

 

Figure 2.  Correlation peak values for the test and validation set images for the 90°-270° aspect range filter with a larger c = 0.003. 

4.3. MINACE Synthesis Algorithm 
Our current MINACE filter-synthesis algorithm follows. 

1. Initialize c to 0.003.  Set the correlation peak threshold for the training images true_th to 0.9 and the correlation 
peak threshold for the confuser and clutter images in the validation set false_th to 0.7. 



2. Synthesize a filter using one of the images from the training set with this value of c.  We choose the image 
closest to the aspect view in the center of the aspect range of the filter (e.g. for a filter covering 90°-180° in 
aspect range, we choose the image with aspect view closest to 135°) as the first image. 

3. Correlate this filter with the remaining images in the training set.  If any of the correlation peaks are below 
true_th, then add the image with the lowest correlation peak to the filter and synthesize a new filter with the 
new and the first image.  Continuing this process ensures that the designed filter will recognize all training set 
images with correlation peaks ≥ some minimum (in this case, 0.9).  For training set images included in filter 
synthesis, the filter (by definition) gives correlation peaks of 1.0 to satisfy the correlation peak constraints. 

4. Repeat step (3) and continue including more images from the training set in the filter, until the filter gives 
correlation peaks ≥ true_th with all images in the training set.  We note that this step terminates if all available 
training set images are included in the filter. 

5. Correlate this filter with the confuser and clutter images in the validation set.  Note the number of confuser and 
clutter validation peaks that are ≥ 0.7.  We presently allow at most two confuser false alarms and zero clutter 
false alarms from the validation set.  If there are more than two confuser false alarms, we decrease c by 0.0005, 
otherwise if there are any clutter false alarms, we increase c by 0.0005.  In both cases, we repeat steps (2)-(4) 
after changing the value of c.  If no filter (or value of c) can be found with the required validation set 
performance, we terminate filter synthesis. 

If a filter cannot be synthesized, we use more filters per object (we first try three filters, then four per object, etc.). 

5. THREE-CLASS TEST RESULTS 
We now present performance results for the MINACE filters for the BMP2, BTR70 and T72.  Filters could not be 
synthesized for any of the three objects using only two or three filters per object.  We first present performance results 
for the filters for the BMP2 and the T72 (each used four filters per object).  For the BMP2 object, the test set consists of 
195 images of the BMP-9563, 196 images of each of the two variants (9566 and c21), 274 images of each of the two 
confusers (D7 and ZIL131) all at a 15° depression angle, and 1616 clutter images.  A test image is correlated with all 
filters for the object (aspect range is not assumed known).  The highest correlation peak value is used to compute 
performance scores.  If the correlation peak for BMP2-9563 test images is ≥ a threshold, it contributes to Pobj.  If the 
correlation peak for an image of the variants is ≥ the threshold, it contributes to Pvar.  Pobj is a percentage out of 195, Pvar 
is a percentage out of 392.  PC is the performance on the test set objects (including variants); it is a percentage out of 
587.  If a confuser or clutter peak is ≥ the threshold, it contributes to PFA or PCFA.  PFA is a percentage out of 548 and 
PCFA is a percentage out of 1616.  Table 2 shows these scores as the correlation peak threshold Th is varied.  We also 
show the individual Pobj and both Pvar variant scores (percentage out of 196) and the individual PFA scores for each 
confuser (percentage out of 274). 

Table 2.  Performance scores for one-class (BMP2) object classification with variants and with confuser and clutter rejection using 
four filters of the object. 

Pvar PFA Th Pobj 9566 c21 Total PC D7 ZIL131 total PCFA 

0.774 90.26 72.96 83.16 78.06 82.11 4.38 10.95 7.66 0.06 
0.764 92.31 73.47 84.69 79.08 83.48 4.74 12.77 8.76 0.12 
0.762 92.31 74.49 85.71 80.10 84.16 4.74 13.50 9.12 0.12 
0.754 93.33 77.04 87.76 82.40 86.03 6.57 16.42 11.50 0.25 
0.744 93.85 78.57 91.84 85.20 88.07 9.12 21.17 15.15 0.25 
0.738 94.36 79.59 92.35 85.97 88.76 9.49 22.99 16.24 0.31 
0.733 94.36 81.63 94.39 88.01 90.12 9.85 25.55 17.70 0.43 

 

From Table 2, we see that the ZILI31 object produces many more false alarms than the D7 object.  The ZIL131 truck 
looks more like a target than the D7 bulldozer.  We note that the same trend occurs for filters for all objects.  Also note 
that the recognition performance for the c21 variant is significantly better than the recognition performance for the 9566 
variant.  The clutter rejection performance is very good (< 0.5% for PC = 90.12%).  We can achieve PC > 90% (with 



variants) at PFA = 17.7% and PCFA (clutter) = 0.43%.  These scores are all better than prior work, but only one object is 
considered.  For the other BTR70 object filters, we obtained better results: PC = 95.41% (this object has no variants, this 
is probably why results are better) at PFA = 4.74% and PCFA = 0.25%.  One can produce receiver operating characteristic 
(ROC) curves for the data and then select a threshold or an operating point to provide the performance desired, better PC, 
better PFA, etc.   

We now evaluate the set of four MINACE filters for the T72 object.  The test set consists of 196 images of the T72-
132 and 195 and 191 images of the two variants, 812 and s7, respectively.  The number of confuser and clutter images is 
the same as before.  Pobj is a percentage out of 196, Pvar is a percentage out of 386, and PC is a percentage out of 582.  
Table 3 shows the performance scores when four filters per object are used as Th is varied.  The T72 filters have very 
poor confuser rejection performance.  For example, for Pobj = 95.39%, PFA = 33.94%, while for the BMP2, for Pobj = 
94.36%, PFA = 16.24%.  If the confuser rejection performance of the filters for one of the objects is poor, the confuser 
rejection performance for the three-class object case will also be poor.  We also note from Table 3 that the recognition of 
the T72-812 variant is very difficult.  For example, for Pobj = 94.39%, the recognition rate for the T72-812 variant is only 
62.56%, that is 30% less than for the object.  We thus used six filters per object for the T72 object (using the same 
MINACE synthesis rules as before).  The PFA score dropped from 33.94% to 20.07% at a Pobj of 94.39%.  For PC = 
80.07%, the PFA score dropped from 33.58% to 26.46%.  Thus, we use six filters per object for the T72 object in our 
three-class tests. 

Table 3.  Performance scores for one-class (T72) object classification with variants and with confuser and clutter rejection using four 
filters of the object. 

Pvar PFA Th Pobj 812 s7 Total PC D7 ZIL131 Total PCFA 

0.740 80.10 31.79 61.26 46.37 57.73 13.87 16.06 14.96 0.43 
0.734 82.14 34.36 64.4 49.22 60.31 14.60 18.25 16.42 0.43 
0.724 84.18 40.00 69.11 54.40 64.43 16.79 22.63 19.71 0.43 
0.717 86.22 42.05 70.68 56.22 66.32 18.98 24.45 21.72 0.43 
0.706 88.27 47.69 75.39 61.40 70.45 21.17 28.10 24.64 0.50 
0.699 90.31 50.26 77.49 63.73 72.68 22.26 31.39 26.82 0.50 
0.690 92.35 54.36 81.68 67.88 76.12 25.18 35.77 30.47 0.62 
0.680 93.88 62.05 84.29 73.06 80.07 29.20 37.96 33.58 0.80 
0.679 94.39 62.56 84.29 73.32 80.41 29.56 38.32 33.94 0.80 
0.673 94.90 67.18 84.29 75.65 82.13 34.31 41.61 37.96 0.80 
0.668 95.92 70.77 85.34 77.98 84.02 36.13 43.43 39.78 0.87 

 

We now present the performance of the full system for three-class object classification (with variants) and with 
confuser and clutter rejection using four filters each for the BMP2 and BTR70, and six filters for the T72.  An input test 
image is correlated versus all 14 filters and the highest correlation peak is used to determine performance scores.  PC is a 
percentage out of 587 when variants are not considered; it is a percentage out of 1365 when variants are included.  We 
obtained an EER of 27%.  We note that using six filters per object for all three objects, the PC score at the EER point 
increases by 3%, that is PC = 76% for a PFA of 24%.  Since this is a significant increase, we compare our results to prior 
work when six MINACE filters per object are used (a total of 18 filters).  Table 4 presents three-class object 
classification scores (with and without variants) using six filters each for the BMP2, BTR70, and T72. 

We now compare our results to prior work.  The only fair prior work apart from our earlier work3 (EER = 17%) is the 
MSE template-matching method2 which achieved a poor EER of 30%.  By fair, we mean not assuming the pose of the 
inputs images is known, not including variants in the training set, and evaluating confuser rejection performance.  
Reference 6 notes that if the input pose is assumed known, the EER improves by 5% (from 23%-18%) and the PFA (at PD 
= 90%) drops from 45% to 25%. 

Since we are considering DIFs, we consider prior DIF work.  The EMACH filter work4 used sixteen filters per object 
and achieved PC ≥ 84.4% (with variants) for the three-class database (we extracted this score from ten-class data) but 
confuser rejection was not considered.  And, clutter and variant data was used in the training stage.  By comparison, we 
obtain better PC = 90.26% (with variants) than prior work when no rejection threshold is used.  Since the PDCCF 



work13 used test data in the training stage and assumed the test input pose was known (Sect. 2), their PC = 99.1% score is 
not a valid score for comparison.  We obtain an EER of 24% which is 6% better than the MSE template-matching 
method2 and we use a total of 18 templates versus the 108 templates used in that work or the 48 filters used in other DIF 
work.  The various other classifiers (other than the Gaussian SVM) evaluated in Refs. 9 and 10 achieved PC scores 
ranging from 79.7%-84.6% and PFA scores ranging from 40%-72.8%.  We achieve similar PC scores ranging from 80%-
85.1% and better PFA scores ranging from 35.4%-50.2% without assuming the aspect angle of the test images to be 
known, while they9,10 did.  Our clutter rejection performance is better than prior work4 which achieved PCFA = 4% at PD 
= 95% and PCFA = 2.5% at PD = 90%.  Our related PCFA scores are 1.7% and 1.2% respectively. 

The scores we have presented here are from initial work.  Our main objectives were to use few filters per object and 
automate the selection of the MINACE filter parameter c.  Presently, we use the same filter-synthesis rules for each 
object.  In future work, we will examine the use of different filter-synthesis rules for different objects and the use of 
different test thresholds peaks for different filters.  These modifications and the use of a peak-to-correlation plane energy 
ratio (PCER) match-score instead of the correlation peak are expected to improve performance results in future work. 

Table 4.  Performance scores for three-class (BMP2, BTR70, and T72) object classification and detection (with and without variants) 
and with confuser and clutter rejection using six MINACE filters per object. 

PC PD PFA 
Th w/o 

variants 
w/ 

variants 
w/o 

variants 
w/ 

variants D7 ZIL131 Total 
PCFA 

0.775 90.80 75.02 93.19 79.34 13.50 28.83 21.17 0.87 
0.771 91.14 75.60 93.53 80.00 14.60 31.39 22.99 0.93 
0.769 91.31 76.04 93.70 80.73 15.33 32.48 23.91 0.93 
0.763 91.99 77.07 94.38 82.05 17.15 35.04 26.09 0.99 
0.758 92.16 78.02 94.55 83.15 18.25 38.32 28.28 0.99 
0.755 92.67 78.39 95.06 83.66 20.80 39.05 29.93 0.99 
0.753 92.84 79.05 95.23 84.32 22.63 40.88 31.75 0.99 
0.749 93.02 79.63 95.57 85.13 26.64 43.43 35.04 1.05 
0.747 93.36 80.00 95.91 85.49 26.64 44.16 35.40 1.05 
0.745 93.53 80.59 96.08 86.23 27.74 45.62 36.68 1.05 
0.742 93.70 81.03 96.42 86.74 30.29 47.81 39.05 1.05 
0.740 94.04 81.68 96.93 87.69 32.12 48.54 40.33 1.11 
0.738 94.04 82.05 97.10 88.35 32.85 49.64 41.24 1.11 
0.734 94.72 83.00 97.79 89.38 35.40 51.82 43.61 1.18 
0.727 95.57 84.03 98.81 90.99 37.59 55.11 46.35 1.18 
0.723 95.91 84.54 99.15 91.72 40.15 56.57 48.36 1.24 
0.718 96.25 85.05 99.66 92.60 41.97 58.39 50.18 1.30 
0.707 96.42 86.01 99.83 94.14 47.45 62.41 54.93 1.42 
0.702 96.42 86.74 99.83 95.02 50.36 64.23 57.30 1.67 
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