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Abstract—Signals and datasets that arise in physical and
engineering applications, as well as social, genetics, biomolecular,
and many other domains, are becoming increasingly larger and
more complex. In contrast to traditional time and image signals,
data in these domains are supported by arbitrary graphs. Signal
processing on graphs extends concepts and techniques from
traditional signal processing to data indexed by generic graphs.
This paper studies the concepts of low and high frequencies
on graphs, and low-, high- and band-pass graph signals and
graph filters. In traditional signal processing, these concepts
are easily defined because of a natural frequency ordering that
has a physical interpretation. For signals residing on graphs,
in general, there is no obvious frequency ordering. We propose
a definition of total variation for graph signals that natura lly
leads to a frequency ordering on graphs and defines low-, high-,
and band-pass graph signals and filters. We study the design of
graph filters with specified frequency response, and illustrate our
approach with applications to sensor malfunction detection and
data classification.

Keywords: Signal processing on graphs, total variation, low
pass, high pass, band pass, filter design, regularization.

I. I NTRODUCTION

Signals indexed by graphs arise in many applications,
including the analysis of preferences and opinions in social
and economic networks [1], [2], [3]; research in collaborative
activities, such as paper co-authorship and citations [4];topics
and relevance of documents in the World Wide Web [5],
[6]; customer preferences for service providers; measurements
from sensor networks; interactions in molecular and gene
regulatory networks; and many others.

Signal processing on graphsextends the classical discrete
signal processing (DSP) theory for time signals and images [7]
to signals indexed by vertices of a graph. There are two basic
approaches to signal processing on graphs. The first one uses
the graph Laplacian matrix as its basic building block (see a
recent review [8] and references therein). The second approach
adopts the adjacency matrix of the underlying graph as its
fundamental building block [9], [10], [11]. Both frameworks
define fundamental signal processing concepts on graphs, but
the difference in their foundation leads to different definitions
and techniques for signal analysis and processing.
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Methods for Laplacian-based graph signal analysis emerged
from research on the spectral graph theory [12] and manifold
discovery and embedding [13], [14]. Implicitly or explicitly,
in these works graphs discretize continuous high-dimensional
manifolds fromRM : graph vertices sample a manifold and
connect to nearest neighbors as determined by their geodesic
distances over the underlying manifold. In this setting, the
graph Laplacian operator is the discrete counterpart to the
continuous Laplace-Beltrami operator on a manifold [12],
[15].

This connection is propagated conceptually to Laplacian-
based methods for signal processing on graphs. For example,
the graph Fourier transform defined and considered in [8],
as well as [16], [17], [18], [19], [20], [21], expands graph
signals in the eigenbasis of the graph Laplacian. This parallels
the classical Fourier transform that expands signals into the
basis of complex exponentials that are eigenfunctions of the
one-dimensional Laplace operator – the negative second order
derivative operator [8]. The frequencies are the eigenvalues
of the Laplace operator. Since the operator is symmetric
and positive semi-definite, graph frequencies are real-valued
and hence totally ordered. So, just like for time signals, the
notions of low and high frequencies are easily defined in
this model. However, due to the symmetry and positive semi-
definiteness of the operator, the Laplacian-based methods are
only applicable to undirected graphs with real, non-negative
weights.

In [9], [10], [11] we take a different route. Our approach
is motivated by the algebraic signal processing (ASP) theory
introduced in [22], [23], [24], [25], [26]; see also [27], [28],
[29], [30], [31] for additional developments. In ASP, the shift
is the elementary non-trivial filter that generates, under an
appropriate notion of shift invariance, all linear shift-invariant
filters for a given class of signals. The key insight in [9] to
build the theory of signal processing on graphs is to identify
the shift operator. We adopted the weighted adjacency matrix
of the graph as the shift operator and then developed appropri-
ate concepts ofz-transform, impulse and frequency response,
filtering, convolution, and Fourier transform. In particular, the
graph Fourier transform in this framework expands a graph
signal into a basis of eigenvectors of the adjacency matrix,
and the corresponding spectrum is given by the eigenvalues of
the adjacency matrix. This contrasts with the Laplacian-based
approach, where Fourier transform and spectrum are defined
by the eigenvectors and eigenvalues of the graph Laplacian.

The association of the graph shift with the adjacency matrix
is natural and has multiple intuitive interpretations. Thegraph
shift is an elementary filter, and its output is a graph signal
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with the value at vertexn given approximately by a weighted
linear combination of the input signal values at neighbors
of n [9]. With appropriate edge weights, the graph shift can
be interpreted as a (minimum mean square) first-order linear
predictor [23], [9]. Another interpretation of the graph filter
comes from Markov chain theory [32], where the adjacency
matrix represents the one-step transition probability matrix
of the chain governing its dynamics. Finally, the graph shift
can also be seen as a stencil approximation of the first-order
derivative on the graph1.

The last interpretation of the graph shift contrasts with
the corresponding interpretation of the graph Laplacian: the
adjacency matrix is associated with a first-order differen-
tial operator, while the Laplacian, if viewed as a shift, is
associated with a second-order differential operator. In the
one-dimensional case, the eigenfunctions for both, the first
order and second order differential operators, are complex
exponentials, since

1

2πj

d

dt
e2πjft = fe2πjft. (1)

Interpreting the Laplacian as a shift introduces an even sym-
metry assumption into the corresponding signal model, and
for one-dimensional signals [25], this model assumes that
the signals are defined on lines of an image (undirected line
graphs) rather than on a time line (directed line graphs). The
use of the adjacency matrix as the graph shift does not impose
such assumptions, and the corresponding framework can be
used for arbitrary signals indexed by general graphs, regardless
whether these graphs have undirected or directed edges with
real or complex, non-negative or negative weights.

This paper is concerned with defining low and high fre-
quencies and low-, high-, and band-pass graph signals and
filters on generic graphs. In traditional discrete signal pro-
cessing (DSP), these concepts have an intuitive interpretation,
since the frequency contents of time series and digital images
are described by complex or real sinusoids that oscillate at
different rates [33]. The oscillation rates provide a physical
notion of “low” and “high” frequencies: low-frequency com-
ponents oscillate less and high-frequency ones oscillate more.
However, these concepts do not have a similar interpretation
on graphs, and it is not obvious how to order graph frequencies
to describe the low- and high-frequency contents of a graph
signal.

We present an ordering of the graph frequencies that is
based on how “oscillatory” the spectral components are with
respect to the indexing graph, i.e., how much they change
from a node to neighboring nodes. To quantify this amount,
we introduce thegraph total variationfunction that measures
how much signal samples (values of a graph signal at a node)
vary in comparison to neighboring samples. This approach is
analogous to the classical DSP theory, where the oscillations
in time and image signals are also quantified by appropriately
defined total variations [33]. In Laplacian-based graph signal
processing [8], the authors choose to order frequencies based
on a quadratic form rather than on the total variation of the

1This analogy is more intuitive to understand if the graph is regular.

graph signal. Once we have an ordering of the frequencies
based on the graph total variation function, we define the
notions of low and high frequencies, as well as low-, high-, and
band-pass graph signals and graph filters. We demonstrate that
these concepts can be used effectively in sensor network analy-
sis and semi-supervised learning. In our experiments, we show
that naturally occurring graph signals, such as measurements
of physical quantities collected by sensor networks or labels
of objects in a dataset, tend to be low-frequency graph signals,
while anomalies in sensor measurements or missing data labels
can amplify high-frequency parts of the signals. We demon-
strate how these anomalies can be detected using appropriately
designed high-pass graph filters, and how unknown parts of
graph signals can be recovered with appropriately designed
regularization techniques. In particular, our experiments show
that classifiers designed using the graph shift matrix lead to
higher classification accuracy than classifiers based on the
graph Laplacian matrices, combinatorial or normalized.

Summary of the paper. In Section II, we present the
notation and review from [9] the basics of discrete signal pro-
cessing on graphs (DSPG). In Section III, we define the local
and total variation for graph signals. In Section IV, we use the
proposed total variation to impose an ordering on frequency
components from lowest to highest. In Section V, we discuss
low-, high-, and band-pass graph filters and their design. In
Section VI, we illustrate these concepts with applicationsto
corrupted measurement detection in sensor networks and data
classification, and provide experimental results for real-world
datasets. Finally, Section VII concludes the paper.

II. D ISCRETESIGNAL PROCESSING ONGRAPHS

In this section, we briefly review notation and concepts of
the DSPG framework that are relevant to this paper. A complete
introduction to the theory can be found in [9], [10], [11].

A. Graph Signals

Signal processing on graphs is concerned with the analysis
and processing of datasets in which data elements can be
connected to each other according to some relational property.
This relation is expressed though a graphG = (V ,A), where
V = {v0, . . . , vN−1} is a set of nodes andA is a weighted
adjacency matrix of the graph. Each data element corresponds
to nodevn (we also say the data element isindexedby vn),
and each weightAn,m ∈ C of a directed edge fromvm to
vn reflects the degree of relation of themth data element to
the nth one. Nodevm is an in-neighbor ofvn and vn is an
out-neighbor ofvm if An,m 6= 0. All in-neighbors ofvn form
its in-neighborhood, and we denote a set of their indices as
Nn = {m | An,m 6= 0}. If the graph is undirected, the relation
goes both ways,An,m = Am,n, and the nodes are neighbors.

Using this graph, we refer to the dataset as agraph signal,
which is defined as a map

s : V → C,

vn 7→ sn. (2)

We assume that each dataset elementsn is a complex number.
Since each signal is isomorphic to a complex-valued vector
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with N elements, we write graph signals as vectors

s =
[
s0 s1 . . . sN−1

]T
∈ CN .

However, we emphasize that each elementsn is indexed by
node vn of a given representation graphG = (V ,A), as
defined by (2). The spaceS of graph signals (2) is isomorphic
to CN , and its dimension isdimS = N .

B. Graph Filters

In general, agraph filter is a systemH(·) that takes a graph
signals as an input, processes it, and produces another graph
signals̃ = H(s) as an output. A basic non-trivial filter defined
on a graphG = (V ,A), called thegraph shift, is a local
operation that replaces a signal valuesn at nodevn with the
linear combination of values at the neighbors of nodevn

s̃n =
∑

m∈Nn

An,msm. (3)

Hence, the output of the graph shift is given by the product
of the input signal with the adjacency matrix of the graph:

s̃ =
[
s̃0 . . . s̃N−1

]T
= As. (4)

The graph shift is the basic building block in DSPG.
All linear, shift-invariant2 graph filters in DSPG are polyno-

mials in the adjacency matrixA of the form [9]

h(A) = h0 I+h1A+ . . .+ hLA
L. (5)

The output of the filter (5) is the signal

s̃ = H(s) = h(A)s.

Linear, shift-invariant graph filters possess a number of
useful properties. They have at mostL ≤ NA tapshℓ, where
NA = degmA(x) is the degree of the minimal polynomial3

mA(x) of A. If a graph filter (5) is invertible, i.e., matrix
h(A) is non-singular, then its inverse is also a graph filter
g(A) = h(A)−1 on the same graphG = (V ,A). Finally, the
space of graph filters is analgebra, i.e., a vector space that is
simultaneously a ring.

These properties guarantee that multiplyingA by any non-
zero constant does not change the set of corresponding linear,
shift-invariant graph filters. In particular, we can define the
normalized graph shift matrix

Anorm =
1

|λmax|
A, (6)

where λmax denotes the eigenvalue ofA with the largest
magnitude, i.e.,

|λmax| ≥ |λm| (7)

for all 0 ≤ m ≤ M−1. The normalized matrix (6) ensures the
numerical stability of computing with graph filtersh(Anorm)
as it prevents excessive scaling of the shifted signal, since
||Anorms|| / ||s|| ≤ 1. In this paper, we use the graph shift
Anorm instead ofA where appropriate.

2Filters arelinear if for a linear combination of inputs they produce the
same linear combination of outputs. Filters areshift-invariant if the result of
consecutive processing of a signal by multiple graph filtersdoes not depend
on the order of processing; i.e., shift-invariant filters commute with each other.

3The minimal polynomial ofA is the unique monic polynomial of the
smallest degree that annihilatesA, i.e.,mA(A) = 0 [34], [35].

C. Graph Fourier Transform

In general, a Fourier transform performs the expansion of a
signal into aFourier basisof signals that are invariant to filter-
ing. In the DSPG framework, a graph Fourier basis corresponds
to the Jordan basis of the graph adjacency matrixA (the
Jordan decomposition is reviewed in Appendix A). Following
the DSP notation, distinct eigenvaluesλ0, λ1, . . . , λM−1 of
the adjacency matrixA are called thegraph frequenciesand
form the spectrumof the graph, and the Jordan eigenvectors
that correspond to a frequencyλm are called thefrequency
componentscorresponding to themth frequency. Since mul-
tiple eigenvectors can correspond to the same eigenvalue, in
general, a graph frequency can have multiple graph frequency
components associated with it.

As reviewed in Appendix A, Jordan eigenvectors form the
columns of the matrixV in the Jordan decomposition (47)

A = VJV−1 .

Hence, thegraph Fourier transformof a graph signals is

ŝ = Fs, (8)

where F = V−1 is the graph Fourier transform matrix.
The valuesŝn of the signal’s graph Fourier transform (8)
characterize thefrequency contentof the signals.

The inverse graph Fourier transformis given by

s = F−1 ŝ = V ŝ. (9)

It reconstructs the original signal from its frequency contents
by constructing a linear combination of frequency components
weighted by the signal’s Fourier transform coefficients.

D. Frequency Response

The graph Fourier transform (8) also allows us to charac-
terize the effect of a filter on the frequency content of an
input signal. As follows from (5) and (8), as well as (47) in
Appendix A,

s̃ = h(A)s = F−1 h(J)Fs ⇔ F s̃ = h(J)ŝ. (10)

Hence, the frequency content of the output signal is obtained
by multiplying the frequency content of the input signal by
the block diagonal matrix

h(J) =



h(Jr0,0(λ0))

. . .
h(JrM−1,DM−1(λM−1))


 .

We call this matrix thegraph frequency responseof the filter
h(A), and denote it as

ĥ(A) = h(J). (11)

Notice that (10) extends theconvolution theoremfrom
classical signal processing [7] to graphs, since filtering a
signal on a graph is equivalent in the frequency domain to
multiplying the signal’s spectrum by the frequency response
of the filter.
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Fig. 1. Traditional graph representation for a finite discrete periodic time
series of lengthN .

E. Consistency with the Classical DSP

The DSPG framework is consistent with the classical DSP
theory. Finite (or periodic) time series can be representedby
the directed cycle graph shown in Fig. 1, see [24], [9]. The
direction of the edges represents the flow of time from past to
future, and the edge from the last vertexvN−1 to v0 captures
the periodic signal extensionsN = s0 for time series. The
adjacency matrix of the graph in Fig. 1 is theN × N cyclic
permutation matrix

A = C =




1
1

. . .
1


 . (12)

Substituting (12) into the graph shift (4) yields the standard
time delay

s̃n = sn−1 mod N . (13)

The matrix (12) is diagonalizable. Its eigendecomposition,
which coincides with the Jordan decomposition (47), is

C =
1

N
DFT−1

N



e−j 2π·0

N

. . .

e−j
2π·(N−1)

N


DFTN ,

whereDFTN is the discrete Fourier transform matrix. Thus,
as expected, the graph Fourier transform for signals indexed
by the graph in Fig. 1 isF = DFTN , and the corresponding
frequencies are4, for 0 ≤ n < N ,

e−j 2π
N

n. (14)

III. T OTAL VARIATION ON GRAPHS

In this section, we define he total variation on graph signals
that is based on the concept of graph shift.

In classical DSP, thetotal variation(TV) of a discrete signal
is defined as the sum of magnitudes of differences between two
consecutive signal samples [33]:

TV(s) =
∑

n

∣∣sn − sn−1

∣∣. (15)

For a finite time series, the periodicity conditionsn =
sn mod N yields a modified definition

TV(s) =

N−1∑

n=0

∣∣sn − sn−1 mod N

∣∣. (16)

The total variation (15) and (16) for time series or space
signals, such as images, has an intuitive interpretation: it

4In DSP, the ratio 2π
N

n in the exponent (14) sometimes is also called
frequency. In this case, the frequencies areN real numbers between0 and
2π. However, to remain consistent with the discussion in this paper, we refer
to the exponentials (14) as frequencies, and view them as complex numbers
of magnitude1 residing on the unit circle in the complex plane.

compares how the signal varies with time or space. These
concepts lie at the heart of many applications of DSP, in-
cluding signal regularization and denoising [33], [36], image
compression [37] and others.

The variation (16) compares two consecutive signal samples
and calculates a cumulative magnitude of the signal change
over time. In terms of the time shift (13), we can say that
the total variation compares a signals to its shifted version:
the smaller the difference between the original signal and the
shifted one, the lower the signal’s variation. Using the cyclic
permutation matrix (12), we can write (16) as

TV(s) = ||s−Cs||1 . (17)

The total variation (17) measures the difference between the
signal samples at each vertex and at its neighbor on the graph
that represents finite time series in Fig. 1.

The DSPG generalizes the DSP theory from lines and
regular lattices to arbitrary graphs. Hence, we extend (17)to
an arbitrary graphG = (V ,A) by defining the total variation
on a graph as a measure of similarity between a graph signal
and its shifted version (4):

Definition 1 (Total Variation on Graphs):The total varia-
tion on a graph(TVG) of a graph signals is defined as

TVG(s) = ||s−Anorms||1 . (18)

The definition uses the normalized adjacency matrixAnorm to
guarantee that the shifted signal is properly scaled for com-
parison with the original signal, as discussed in Section II-B.

The intuition behind Definition 1 is supported by the
underlying mathematical model. Similarly to the calculus
on discrete signals that defines the discretized derivativeas
∇n(s) = sn − sn−1 [33], in DSPG the derivative (and the
gradient) of a graph signal at thenth vertex is defined by the
graph shiftAnorm as

ds

dvn
= ∇n(s) = sn −

∑

m∈Nn

Anorm
n,msm. (19)

The local variationof the signal at vertexvn is the magnitude
|∇n(s)| of the corresponding gradient, and thetotal variation
is the sum of local variations for all vertices [33], [8]. In
particular, if we define the discretep-Dirichlet form

Sp(s) =
1

p

N−1∑

n=0

|∇n(s)|
p , (20)

then forp = 1 the form

S1(s) =

N−1∑

n=0

|∇n(s)| (21)

=

N−1∑

n=0

∣∣∣∣∣sn −
∑

m∈Nn

Anorm
n,msm

∣∣∣∣∣
= ||s−Anorms||1

defines the total variation of the graph signals. It coincides
with Definition 1.

The total variation defined through the1-Dirichlet form (21)
depends on the definition of the signal gradient at a graph
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vertex. For finite time DSP, the gradient is defined by the
discretized derivative∇n(s) = sn − sn−1 [33] and yields
the total variation (17). The DSPG extends the notion of the
shift to (3), which leads to the gradient (19) and the total
variation (18).

Remark. In [8], the frequencies are ordered using a 2-
Dirichlet form, i.e., a quadratic function.

IV. L OW AND HIGH FREQUENCIES ONGRAPHS

In this section, we use the total variation (18) to introducean
ordering on frequencies that leads to the definition of low and
high frequencies on graphs. We demonstrate that this ordering
is unique for graphs with real spectra and not unique for graphs
with complex spectra.

A. Variation of the Graph Fourier Basis

As discussed in Section II, the graph Fourier basis for
an arbitrary graph is given by the Jordan basis of the ad-
jacency matrixA. Consider an eigenvalueλ of A, and let
v = v0,v1, . . . ,vR−1 be a Jordan chain of generalized eigen-
vectors that corresponds to this eigenvalue. Let the indicator
function

ir =

{
0, r = 0

1, 1 ≤ r < R

specify whethervr is a proper eigenvector ofA or a general-
ized one. Then we can write the condition (43) on generalized
eigenvectors (see Appendix A) as

Avr = λvr + ir vr−1. (22)

Using (22), we write the total variation (18) of the gener-
alized eigenvectorvr as

TVG(vr) = ||vr −Anormvr||1 (23)

=

∣∣∣∣
∣∣∣∣vr −

1

|λmax|
Avr

∣∣∣∣
∣∣∣∣
1

=

∣∣∣∣
∣∣∣∣vr −

λ

|λmax|
vr −

ir
|λmax|

vr−1

∣∣∣∣
∣∣∣∣
1

.

In particular, whenvr is a proper eigenvector ofA, i.e. r = 0
andv0 = v, we havei0 = 0. In this case, it follows from (23)
that the total variation of the eigenvectorv is

TVG(v) =

∣∣∣∣1−
λ

|λmax|

∣∣∣∣ ||v||1 . (24)

When a frequency component is a proper eigenvector of
the adjacency matrixA, its total variation (24) is determined
by the corresponding eigenvalue, since we can scale all
eigenvectors to have the sameℓ1-norm. Moreover, all proper
eigenvectors corresponding to the same eigenvalue have the
same total variation. However, when a frequency component
is not a proper eigenvector, we must use (23) to compare its
variation with other frequency components. Finally, it follows
from (7) for ||v||1 = 1 that

TVG(v) =

∣∣∣∣1−
λ

|λmax|

∣∣∣∣ ≤ 1 +

∣∣∣∣
λ

|λmax|

∣∣∣∣ ≤ 2. (25)

Hence, the total variation of a normalized proper eigenvector
is a real number between0 and2.

B. Frequency Ordering

The total variation of the Fourier basis, given by (23)
and (24), allows us to order the graph frequency components
in the order of increasing variation. Following DSP conven-
tion, we call frequency components with smaller variations
low frequencies and components with higher variationshigh
frequencies.

Here, we determine the frequency ordering induced by
the total variation (24) for graphs that have diagonalizable
adjacency matrices, i.e., only have proper eigenvectors. This
ordering can be similarly extended to graphs with non-
diagonalizable adjacency matrices using the variation (23) of
generalized eigenvectors.5

The following theorem establishes the relative ordering of
two distinct real frequencies.

Theorem 1:Consider two distinct real eigenvalues
λm, λn ∈ R of the adjacency matrixA with corresponding
eigenvectorsvm andvn. If the eigenvalues are ordered as

λm < λn, (26)

then the total variations of their eigenvectors satisfy

TVG(vm) > TVG(vn). (27)

Proof: Since the eigenvalues are real, it follows from (26)
that the difference between the total variations of the two
eigenvectors satisfies

TVG(vm)− TVG(vn) =

∣∣∣∣1−
λm

|λmax|

∣∣∣∣−
∣∣∣∣1−

λn

|λmax|

∣∣∣∣
(a)
=

(
1−

λm

|λmax|

)
−

(
1−

λn

|λmax|

)

=
λn − λm

|λmax|
> 0,

which yields (27). Here, equality (a) follows from (7).
As follows from Theorem 1, if a graph has a real spectrum

and its frequencies are ordered as

λ0 > λ1 > . . . > λM−1, (28)

then λ0 represents the lowest frequency andλM−1 is the
highest frequency. Moreover, the ordering (28) is a unique
ordering of all frequencies from lowest to highest. This fre-
quency ordering for matrices with real spectra is visualized in
Fig. 2(a).

The next theorem extends Theorem 1 and establishes the
relative ordering of two distinct frequencies corresponding to
complex eigenvalues.

Theorem 2:Consider two distinct complex eigenvalues
λm, λn ∈ C of the adjacency matrixA. Let vm andvn be
the corresponding eigenvectors. The total variations of these
eigenvectors satisfy

TVG(vm) < TVG(vn) (29)

5Some real-world datasets are described by graphs with non-diagonalizable
adjacency matrices and thus require a proper ordering of frequency com-
ponents that correspond to generalized eigenvectors. An example of such a
dataset is the directed graph of hyperlink references between political blogs
used in Section VI-B.
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(a) Ordering of a real spectrum
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| LFHF |¸
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| Re. .

(b) Ordering of a complex spectrum

Fig. 2. Frequency ordering from low frequencies (LF) to highfrequencies
(HF) for graphs with real and complex spectra.

if the eigenvalueλm is located closer to the value|λmax| on
the complex plane than the eigenvalueλn.

Proof: This result follows immediately from the interpre-
tation of the total variation (24) as a distance function on the
complex plane. Sinceλmax 6= 0 (otherwiseA would have been
a zero matrix), multiplying both sides of (29) by|λmax| yields
the equivalent inequality

∣∣∣|λmax| − λm

∣∣∣ <
∣∣∣|λmax| − λn

∣∣∣. (30)

The expressions on both sides of (30) are the distances from
λm andλn to |λmax| on the complex plane.

As follows from Theorem 2, frequencies of a graph with a
complex spectrum are ordered by their distance from|λmax|.
As a result, in contrast to the graphs with real spectra,
the induced ordering of complex frequencies from lowest to
highest is not unique, since distinct complex frequencies can
yield the same total variation for their corresponding frequency
components. In particular, all eigenvalues lying on a circle of
radiusρ centered at point|λmax| on the complex plane have the
same total variationρ/|λmax|. It also follows from (7) that all
graph frequenciesλm can lie only inside and on the boundary
of the circle with radius|λmax|. The frequency ordering for
adjacency matrices with complex spectra is visualized in
Fig. 2(b).

Consistency with DSP theory.The frequency ordering
induced by the total variation (18) is consistent with classical
DSP. Recall from (14) that the cycle graph in Fig. 1, which
represents finite time series, has a complex spectrum

λn = e−j 2π
N

n

for 0 ≤ n < N . Hence, the total variation of thenth frequency
component is

TVG(vn) =
∣∣∣1− e−j 2πn

N

∣∣∣

=

∣∣∣∣1− cos
2πn

N

∣∣∣∣+
∣∣∣∣sin

2πn

N

∣∣∣∣ .

.

Im

¸0
.

.
.

.

.

¸1

¸2

¸N/2

¸N-1

¸N-2

Re

Fig. 3. Frequency ordering for finite discrete periodic timeseries. Frequencies
λm andλN−m have the same total variations since they lie on the same circle
centered around1.

Hence, the frequenciesλm andλN−m have the same variation,
and the induced order from lowest to highest frequencies is
λ0, λ1, λN−1, λ2, λN−2, . . ., with the lowest frequency corre-
sponding toλ0 = 1 and the highest frequency corresponding to
λN/2 = −1 for evenN or λ(N±1)/2 for oddN . This ordering
is visualized in Fig. 3, and it is the conventional frequency
ordering in DSP [7].

C. Frequency Ordering Based on Quadratic Form

Here we compare our ordering of the frequencies based
on the total variation with an ordering based on using the 2-
Dirichlet form, p = 2, like in [8]. Taking p = 2 in (20), we
get

S2(s) =
1

2

N−1∑

n=0

|∇n(s)|
2

=
1

2
||s−Anorms||22 (31)

=
1

2
sH (I−Anorm)

H
(I−Anorm) s.

This quadratic form defines the seminorm

||s||G =
√
S2(s), (32)

since (I−Anorm)
H
(I−Anorm) is a positive-semidefinite ma-

trix. The rationale in [8] is that the quadratic form is small
when signal values are close to the corresponding linear
combinations of their neighbors’ values, and large otherwise.

We introduce an ordering of the graph Fourier basis
from lowest to highest frequencies based on the graph shift
quadratic form. As we demonstrate next, this ordering coin-
cides with the ordering induced by the total variation.

The quadratic form (31) of an eigenvectorv that corre-
sponds to the eigenvalueλ is

S2(v) =
1

2
||v −Anormv||22

=

∣∣∣∣1−
λ

|λmax|

∣∣∣∣
2

||v||2 . (33)

Consider two real eigenvaluesλm andλn with correspond-
ing eigenvectorsvm and vn. If these eigenvalues satisfy
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λm < λn, then it follows from (33) that

S2(vm)− S2(vn) =

∣∣∣∣1−
λm

|λmax|

∣∣∣∣
2

−

∣∣∣∣1−
λn

|λmax|

∣∣∣∣
2

=

(
1−

λm

|λmax|

)2

−

(
1−

λn

|λmax|

)2

=
λn − λm

|λmax|2
(λm + λn − 2|λmax|) > 0.

Hence,S2(vm) > S2(vn), and we obtain a reformulation
of Theorem 1 for the graph shift quadratic form. As a con-
sequence, arranging frequency components in the increasing
order of their graph shift quadratic form leads to the same
ordering (27) from lowest to highest as the total variation.

A similar reformulation of Theorem 2 for the graph shift
quadratic form is demonstrated analogously, which leads tothe
same ordering of complex frequencies as the ordering induced
by the total variation.

V. FILTER DESIGN

When a graph signal is processed by a graph filter, its
frequency content changes according to the frequency re-
sponse (11) of the filter. Similarly to classical DSP, we can
characterize graph filters as low-, high-, and band-pass filters
based on their frequency response.

A. Low-, High-, and Band-pass Graph Filters

Following the DSP convention, we call filterslow-passif
they do not significantly affect the frequency content of low-
frequency signals but attenuate, i.e., reduce, the magnitude
of high-frequency signals. Analogously,high-passfilters pass
high-frequency signals while attenuating low-frequency ones,
and band-passfilters pass signals with frequency content
within a specified frequency band while attenuating all others.

The action of a graph filterh(A) of the form (5) on the fre-
quency content of a graph signals is completely specified by
its frequency response (11). For simplicity of presentation, we
discuss here graphs with diagonalizable adjacency matrices,
for which (11) is a diagonal matrix withh(λm) on the main
diagonal,0 ≤ m < M . In this case, the Fourier transform
coefficients of the filtered signal

s̃ = h(A)s

are the Fourier transform coefficients of the input signal
multiplied element-wise by the frequency response of the
filter:

F s̃ =



h(λ0)

. . .
h(λM−1)


 ŝ =




h(λ0)ŝ0
...

h(λM−1)ŝN−1


 .

Hence, to attenuate the frequency content of a signal insidea
specific part of the spectrum, we should design a filterh(A)
that for corresponding frequenciesλm satisfiesh(λm) ≈ 0.

Consider an example of ideal low-pass and high-pass filters
h(A) and g(A). Let the cut-off frequencyλcut equal to the
median of the bandwidth, i.e., be such that exactly half of

frequenciesλm are lower frequencies thanλcut. The frequency
responses of these filters are defined as

h(λm) = 1− g(λm) =

{
1, λm > λcut,

0, λm ≤ λcut.
(34)

As we demonstrate next, the design of such filters, as well
as any low-, high-, and band-pass graph filters, is a linear
problem.

B. Frequency Response Design for Graph Filters

A graph filter can be defined through its frequency response
h(λm) at its distinct frequenciesλm, m = 0, . . . ,M−1. Since
a graph filter (5) is a polynomial of degreeL, the construction
of a filter with frequency responseh(λm) = αm corresponds
to inverse polynomial interpolation, i.e., solving a system of
M linear equations withL+ 1 unknownsh0, . . . , hL:

h0 + h1λ0 + . . .+ hLλ
L
0 = α0,

h0 + h1λ1 + . . .+ hLλ
L
1 = α1,

... (35)

h0 + h1λM−1 + . . .+ hLλ
L
M−1 = αM−1.

This system can be written as



1 λ0 . . . λL
0

1 λ1 . . . λL
1

...
...

1 λM−1 . . . λL
M−1







h0

h1

...
hL


=




α0

α1

...
αM−1


 . (36)

The system matrix in (36) is a full-rankM × (L + 1) Van-
dermonde matrix [34], [35]. Hence, the system has infinitely
many exact solutions ifM ≤ L and one unique exact solution
if M = L+ 1.

When M ≥ L + 1, the system is overdetermined and
does not have an exact solution. This is a frequent case in
practice, since the number of coefficients in the graph filter
may be restricted by computational efficiency or numerical
stability requirements. In this case, we can find an approximate
solution, for example, in the least-squares sense.

As an example of filter construction, consider a network
of 150 weather stations that measure daily temperature near
major cities across the United States [38]. We represent these
stations with a directed6-nearest neighbor graph, in which
every sensor corresponds to a vertex and is connected to six
closest sensors by directed edges. The edge weight between
connected verticesvn andvm is

An,m =
e−d2

nm

√∑
k∈Nn

e−d2
nk

∑
ℓ∈Nm

e−d2
mℓ

, (37)

wheredn,m denotes the geodesical distance between thenth
andmth sensors. A daily snapshot of all150 measurements
forms a signal indexed by this graph, such as the example
signal shown in Fig. 4.

Fig. 5 shows the frequency responses of the low- and high-
pass filters for this graph that have degreeL = 10. These
filters are least-squares approximations of the ideal low- and
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12 F

71F

Fig. 4. Temperature measured by150 weather stations across the United
States on February 1, 2003

-0.5

0

0.5

1

1.5

Low frequencies                                                     High frequencies

Low-pass

High-pass

Fig. 5. Frequency responses of low-pass and high-pass filters for the sensor
graph in Fig. 4. The length of the filters is restricted to 10 coefficients.

high-pass filters (34). The frequency response in (35) for the
low-pass filter isαm = 1 for frequencies lower thanλcut and
0 otherwise; and vice versa for the high-pass filter. By design,
the constructed filters satisfy the relation [39]

h(A) = IN −g(A). (38)

If we require thath(A) and g(A) do not have the same
number of coefficients or if we use an approximation metric
other than least squares, the constructed polynomials willnot
satisfy (38).

VI. A PPLICATIONS

In this section, we apply the theory discussed in this paper
to graphs and datasets that arise in different contexts. We
demonstrate how the DSPG framework extends standard signal
processing techniques of band-pass filtering and signal regu-
larization to solve interesting problems in sensor networking
and data classification.

A. Malfunction Detection in Sensor Networks

Today, sensors are ubiquitous. They are usually cheap to
manufacture and deploy, so networks of sensors are used to
measure and monitor a wide range of physical quantities from
structural integrity of buildings to air pollution. However, the
sheer quantity of sensors and the area of their deployment
may make it challenging to check that every sensor is op-
erating correctly. As an alternative, it is desirable to detect

0

100

Low frequencies             High frequencies

Fig. 6. The frequency content of the graph signal in Fig. 4. Frequencies are
ordered from the lowest to highest.

(a) True measurement (b) Corrupted measurement

Fig. 7. A subgraph of the sensor graph in Fig. 4 showing the (a)true and
(b) corrupted measurement by the sensor located in ColoradoSprings, CO.

a malfunctioning sensor solely from the data it generates. We
illustrate here how the DSPG framework can be used to devise
a simple solution to this problem.

Many physical quantities represent graph signals with small
variation with respect to the graph of sensors. As an illustra-
tion, consider the temperature across the United States mea-
sured by150 weather stations located near major cities [38].
An example temperature measurement is shown in Fig. 4, and
the construction of the corresponding weather station graph
is discussed in Section V-B. The graph Fourier transform of
this temperature snapshot is shown in Fig. 6, with frequencies
ordered from lowest to highest. Most of the signal’s energy
is concentrated in the low frequencies. This suggests that the
signal varies slowly across the graph, i.e., that cities located
close to each other have similar temperatures.

A sensor malfunction may cause an unusual difference
between its measurements and the measurements of nearby
stations. Fig. 7 shows an example of an (artificially) corrupted
measurement, where the station located near Colorado Springs,
CO, reports a temperature that contains an error of20 degrees
(temperature at each sensor is color-coded using the same
color scheme as in Fig. 4). The true measurement in Fig. 7(a)
is very similar to measurements at neighboring cities, while
the corrupted measurement in Fig. 7(b) differs significantly
from its neighbors.

Such difference in temperature at closely located cities
results in the increased presence of higher frequencies in the
corrupted signal. By high-pass filtering the signal and then
thresholding the filtered output, we can detect this anomaly.

Experiment. We consider the problem of detecting a cor-
rupted measurement from a single temperature station. We
simulate a signal corruption by changing the measurement of
one sensor by20 degrees; such an error is reasonably small
and is hard to detect by direct inspection of measurements of
each station separately. To detect the malfunction, we extract
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(b) Colorado Springs, CO
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(c) Tampa, FL
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Fig. 8. The magnitudes of spectral coefficients of the original and corrupted
temperature measurements after high-pass filtering: (a) the true signal from
Fig. 4; (b)-(f) signals obtained from the true signal by corrupting the
measurement of a single station located at the indicated city.

the high-frequency component of the resulting graph signal
using the high-pass filter in Fig. 5 and then threshold it. If one
or more Fourier transform coefficients exceed the threshold
value, we conclude that a sensor is malfunctioning. The cut-off
threshold is selected automatically as the maximum absolute
value of graph Fourier transform coefficients of the high-pass
filtered measurements from the previous three days.

Results.We considered365 measurements collected during
the year 2003 by all150 stations, and conducted150× 365 =
54, 750 tests. The resulting average detection accuracy was
89%, so the proposed approach, despite its relative simplicity,
correctly detected a corrupted measurement almost9 times out
of 10.

Fig. 8 illustrates the conducted experiment. It shows fre-
quency contents of high-pass filtered signals that contain acor-
rupted measurement from a sensor at five different locations. A
comparison with the high-pass component of the uncorrupted
signal in Fig. 8(a) shows coefficients above thresholds that
lead to the detection of a corrupted signal.

B. Data Classification

Data classification is an important problem in machine
learning and data mining [40], [41]. Its objective is to classify
each element of the dataset based on specified characteristics

of the data. For example, image and video databases may be
classified based on their contents; documents are grouped with
respect to their topics; and customers may be distinguished
based on their shopping preferences. In all cases, each dataset
element is assigned a label from a pre-defined group of labels.

Large datasets often cannot be classified manually. In this
case, a common approach is to classify only a subset of ele-
ments and then use a known structure of the dataset to predict
the labels for the remaining elements. A key assumption in
this approach is that similar elements tend to be in the same
class. In this case, the labels tend to form a signal with small
variation over the graph of similarities. Hence, information
about similarity between dataset elements provides means for
inferring unknown labels from known ones.

Consider a graphG = (V ,A) with N vertices that represent
N data elements. We assume that two elements are similar to
each other if the corresponding vertices are connected; if their
connection is directed, the similarity is assumed only in the
direction of the edge. We define a signals(known) on this graph
that captures known labels. For a two-class problem, this signal
is defined as

s(known)
n =





+1, nth element belongs to class 1,

−1, nth element belongs to class 2,

0, class is unknown.

The predicted labels for all data elements are found as the
signal that varies the least on the graphG = (V ,A). That is,
we find the predicted labels as the solution to the optimization
problem

s(predicted)= argmin
s∈RN

S2(s) (39)

subject to
||Cs(known)−Cs||22 < ǫ, (40)

whereC is aN ×N diagonal matrix such that

Cn,n =

{
1, if s(known)

n 6= 0,

0, otherwise.

The parameterǫ in (40) controls how well the known labels are
preserved. Alternatively, the problem (39) with condition(40)
can be formulated and solved as

s(predicted)= argmin
s∈RN

(
S2(s) + α||Cs(known)−Cs||22

)
. (41)

Here, the parameterα controls the relative importance of
conditions (39) and (40). Once the predicted signals(predicted)

is calculated, the unlabeled data elements are assigned to class
1 if s(predicted)

n > 0 and another class otherwise.
In classical DSP, minimization-based approaches to signal

recovery and reconstruction are calledsignal regularization.
They have been used for signal denoising, deblurring and
recovery [42], [43], [44], [45]. In signal processing on graphs,
minimization problems similar to (39) and (41) formulated
with the Laplacian quadratic form (see (52) in Appendix B)
are used for data classification [46], [47], [41], [48], charac-
terization of graph signal smoothness [18] and recovery [8].
The problems (39) and (41) minimize the graph shift quadratic
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form (31) and represent an alternative approach to graph signal
regularization.

Experiments. We illustrate the application of graph signal
regularization to data classification by solving the minimiza-
tion problem (41) for two datasets. The first dataset is a
collection of images of handwritten digits4 and 9 from the
NIST database [49]. Since these digits look quite similar,
their automatic recognition is a challenging task. For each
digit, we use1000 grayscale images of size28 × 28. The
graph is constructed by viewing each image as a point in a
282 = 784-dimensional vector space, computing Euclidean
distances between all images, and connecting each image
with six nearest neighbors bydirectededges, so the resulting
graph is a directed six-nearest neighbor graph. We consider
unweighted graphs,6 for which all non-zero edge weights are
set to1.

The second dataset is a collection of 1224 online political
blogs [5]. The blogs can be either “conservative” or “liberal.”
The dataset is represented by a directed graph with vertices
corresponding to blogs and directed edges corresponding to
hyperlink references between blogs. For this dataset we also
use only the unweighted graph (since we cannot assign a
similarity value to a hyperlink).

For both datasets, we consider trade-offs between the two
parts of the objective function in (41) ranging from1 to 100.
In particular, for each ratio of known labels0.5%, 1%, 2%,
3%, 5%, 7%, 10% and 15%, we run experiments for199
different values ofα ∈ {1/100, 1/99, . . . , 1/2, 1, 2, . . . , 100},
a total of 8 × 199 = 1592 experiments. In each experiment,
we calculate the average classification accuracy over 100
runs. After completing all experiments, we select the highest
average accuracy for each ratio of known labels.

For comparison, we consider the Laplacian quadratic
form (52), and solve the minimization problems

s(predicted)= argmin
s∈RN

(
sT Ls + α||C(s(known)− s)||22

)
(42)

for two definitions of the Laplacian: standard (49) and normal-
ized (50). As before, the values of parameterα vary between
0.01 and 100. Since the Laplacian matrix can only be used
with undirected graphs, we convert the original directed graphs
for digits and blogs to undirected graphs by making all edges
undirected.

For a fair comparison with the Laplacian-based minimiza-
tion (42), we also test our approach (41) on the same undi-
rected graphs. These experiments provide an equal testing
ground for the two methods. In addition, by comparing results
for our approach on directed and undirected graphs, we
determine whether the direction of graph edges provides addi-
tional valuable information that can improve the classification
accuracy.

Results.Average classification accuracies for the handwrit-
ten digits images dataset and the blog dataset are shown,

6We have also considered weighted graphs with edge weights set to
exp(−d2n,m), wheredn,m is the Euclidean distance between thenth and
mth images. This is a common way of assigning edge weights for graphs
that reflect similarity between objects [50], [51], [16]. Results obtained for
these weighted graphs were practically indistinguishablefrom the results in
Fig. 9 and Fig. 10 obtained for unweighted graphs.
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Fig. 9. Classification accuracy of images of handwritten digits 4 and 9
using the graph shift-based regularization and Laplacian-based regularization
on weighted and unweighted similarity graphs.
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Fig. 10. Classification accuracy of political blogs using the graph shift-based
regularization and Laplacian-based regularization on an unweighted graph of
hyperlink references.

respectively, in Fig. 9 and Fig. 10. For both datasets, the
total variation minimization approach (41) applied to directed
graphs has produced the highest accuracies. This observation
demonstrates that using the information about the direction
of graph edges improves the accuracy of regularization-based
classification.

Furthermore, the approach (41) that uses the graph shift-
based regularization significantly outperforms the Laplacian-
based approach (42) on undirected graphs for the standard
and normalized Laplacian matrices. In particular, for small
ratios of known labels (under5%), the differences in average
accuracies can exceed10% for image recognition and20% for
blog classification.

Discussion.The following example illustrates how classi-
fication based on signal regularization works. Fig. 11 shows
a subgraph of40 randomly selected blogs with their mutual
hyperlinks. Fig. 11(a) contains true labels for these blogs
obtained from [5], while the labels in Fig. 11(b) are obtained
by randomly switching7 out of 40 labels to opposite values.
The frequency content of the true and synthetic labels as
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(a) True labels (b) Synthetic labels

Fig. 11. A subgraph of40 blogs labels: blue corresponds to “liberal” blogs
and red corresponds to “conservative” ones. Labels in (a) form a smoother
graph signal than labels in (b).

0
Low frequencies                      High frequencies

True labels

Synthetic labels

Fig. 12. Magnitudes of the spectral coefficients for graph signals formed by
true and synthetic labels in Fig. 11.

signals on this subgraph are shown in Fig. 12. The true
labels form a signal that has more energy concentrated in
lower frequencies, i.e., has a smaller variation than the signal
formed by the synthetic labels. This observation supports our
assumption that the solution to the regularization problem(41)
should correspond to correct label assignment.

Incidentally, this assumption also explains why the maxi-
mum classification accuracy achieved in our experiments is
96%, as seen in Fig. 10. We expect that every blog contains
more hyperlinks to blogs of its own type than to blogs of
the opposite type. However, after inspecting the entire dataset,
we discovered that50 blogs out of 1224, i.e., 4% of the
total dataset, do not obey this assumption. As a result,4% of
all blogs are always misclassified, which results in maximum
achievable accuracy of96%.

VII. C ONCLUSIONS

In this paper, we defined the concepts of low-, high-,
and band-pass graph signals and graph filters. These def-
initions are not straightforward extensions of the concepts
from the traditional discrete signal processing. Rather, we
defined them using the concept of frequencies in digital signal
processing on graphs introduced in [9]. We proposed a novel
definition of total variation of graph signals that measures
the difference between a signal and its shifted version. We
then used the total variation to order the graph frequencies
and to define low- and high-pass graph signals and graph
filters. We demonstrated how to design filters with specified

frequency response by finding least squares approximations
to solutions of systems of linear algebraic equations. We
applied these concepts and methodologies to the analysis
and learning of real-world datasets. We studied detection of
corrupted data in the dataset of temperature measurements
collected by a network of 150 weather stations across the U.S.
during one year, and classification of handwritten digit images
from the NIST database [49] and hyperlinked documents [5].
The experiments showed that the techniques presented in
this paper are promising in problems like detecting sensor
malfunctions, graph signal regularization, and classification of
partially labeled data.

APPENDIX A: JORDAN DECOMPOSITION

An arbitrary matrixA ∈ CN×N has M ≤ N distinct
eigenvaluesλ0, . . . , λM−1. Each eigenvalueλm hasDm cor-
responding eigenvectorsvm,0, . . . ,vm,Dm−1 that satisfy

(A− λm IN )vm,d = 0.

Moreover, each eigenvectorvm,d can generate aJordan chain
of Rm,d ≥ 1 generalized eigenvectorsvm,d,r, 0 ≤ r < Rm,d,
wherevm,d,0 = vm,d, that satisfy

(A− λm I)vm,d,r = vm,d,r−1. (43)

All eigenvectors and corresponding generalized eigenvectors
are linearly independent.

For each eigenvectorvm,d and its Jordan chain of sizeRm,d,
we define aJordan blockmatrix of dimensionsRm,d ×Rm,d

as

JRm,d
(λm) =




λm 1

λm
. . .
. . . 1

λm



∈ CRm,d×Rm,d . (44)

By construction, each eigenvalueλm is associated withDm

Jordan blocks, each of dimensionRm,d×Rm,d, where0 ≤ d <
Dm. Next, for each eigenvectorvm,d, we collect its Jordan
chain into aN ×Rm,d matrix

Vm,d =
[
vm,d,0 . . . vm,d,Rm,d−1

]
. (45)

We concatenate all blocksVm,d, 0 ≤ d < Dm and0 ≤ m <
M , into one block matrix

V =
[
V0,0 . . . VM−1,DM−1

]
, (46)

so that the blockVm,d is at position
∑m−1

k=0 Dk + d in this
matrix. Then matrixA is written in itsJordan decomposition
form as

A = VJV−1, (47)

where the block-diagonal matrix

J =



JR0,0(λ0)

. . .
JRM−1,DM−1

(λM−1)


 (48)

is called theJordan normal formof A. The columns ofV,
i.e., all eigenvectors and generalized eigenvectors ofA, are
called theJordan basisof A.
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APPENDIX B: CONNECTION WITH LAPLACIAN -BASED

VARIATION

The Laplacian matrix for an undirected graphG = (V ,A)
with real, non-negative edge weightsAn,m is defined as

L = D−A, (49)
whereD is a diagonal matrix with diagonal elements

Dn,n =

N−1∑

m=0

An,m.

Alternatively, the (normalized) Laplacian matrix is defined as

L = IN −D−1/2 AD−1/2 . (50)

The Laplacian matrix (49) has real non-negative eigenvalues
0 = β0 < β1 ≤ β2 ≤ . . . ≤ βN−1 and a complete set of
corresponding orthonormal eigenvectorsun for 0 ≤ n < N .

Similarly to the DSPG definition of the graph Fourier
transform (8), the Laplacian-based Fourier transform expands
a graph signals into the eigenbasis ofL [8]. The total variation
is defined as

TVL(s) =

N−1∑

n=0

(
∑

m∈Nn

An,m (sn − sm)
2

)1/2

, (51)

and the graph Laplacian quadratic form is

S
(L)
2 (s) = sT L s. (52)

In particular, the Laplacian quadratic form (51) of a Fourier
basis vector is

S
(L)
2 (un) = βn. (53)

It imposes the following order of the Laplacian Fourier basis
from the lowest frequency to the highest:

u0,u1, . . . ,uN−1. (54)
For a general graph, the total variation (18) and the graph

shift quadratic form (31) are different from the (51) and (52).
However, as we demonstrate in the following theorem, the
DSPG and the Laplacian-based approach to signal processing
on graphs lead to the same graph Fourier basis, notions of low
and high frequencies, and frequency ordering on any regular7

graph.
Theorem 3:The quadratic forms (31) and (52) induce the

same ordering on the graph Fourier basis for regular graphs.
Proof: Consider ad-regular graph with adjacency matrix

A. Since the Laplacian matrix (49) can be defined only for
undirected graphs with real non-negative edge weights, we
also require thatA = AT and has only real non-negative
entries. Hence,A has real eigenvalues and a complete set
of orthonormal eigenvectors [34], and its Jordan decomposi-
tion (47) becomes the eigendecomposition

A = VΛVT ,

whereΛ is the diagonal matrix of eigenvalues. Since the graph
is d-regular, its Laplacian matrix (49) satisfies

L = d I−A = V(d I−Λ)VT .

Hence,L andA have the same eigenvectorsun = vn, i.e., the
same graph Fourier basis. The corresponding eigenvalues are

7All vertices of a d-regular graph have the same degreed, so that∑N−1

m=0
An,m = d.

βm = d− λm. Since the smallest eigenvalue ofL is β0 = 0,
we also obtainλmax = d.

The graph shift quadratic form (31) of the eigenvectorvm

satisfies

S2(um) =
1

2

∣∣∣∣
∣∣∣∣
(
I−

1

d
A

)
um

∣∣∣∣
∣∣∣∣
2

2

=
1

2

(
1−

λm

d

)2

=
1

2d2
(d− λm)

2

=
1

2d2
β2
m

=
1

2d2

(
S
(L)
2 (s)

)2
. (55)

Sinceβ2/(2d2) is a monotonically increasing function forβ ≥
0, it follows from (55) that ordering the graph Fourier basisun,
0 ≤ n < N , by increasing values of the quadratic form (31)
leads to the same order as (54). Hence, the notions of low
and high frequencies, and frequency orderings from lowest
to highest coincide on regular graphs for the DSPG and the
Laplacian-based approach.
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