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ABSTRACT
GPU performance depends not only on thread/warp level
parallelism (TLP) but also on instruction-level parallelism
(ILP). It is not enough to schedule instructions within ba-
sic blocks, it is also necessary to exploit opportunities for
ILP optimization beyond branch boundaries. Unfortunately,
modern GPUs cannot dynamically carry out such optimiza-
tions because they lack hardware branch prediction and can-
not speculatively execute instructions beyond a branch.

We propose to circumvent these limitations by adapting
Trace Scheduling, a technique originally developed for mi-
crocode optimization. Trace Scheduling divides code into
traces (or paths), and optimizes each trace in a context-
independent way. Adapting Trace Scheduling to GPU code
requires revisiting and revising each step of microcode Trace
Scheduling to attend to branch and warp behavior, identi-
fying instructions on the critical path, avoiding warp diver-
gence, and reducing divergence time.

Here, we propose “Warp-Aware Trace Scheduling” for
GPUs. As evaluated on the Rodinia Benchmark Suite using
dynamic profiling, our fully-automatic optimization achieves
a geometric mean speedup of 1.10× on a real system by
increasing instructions executed per cycle (IPC) by a har-
monic mean of 1.12× and reducing instruction serialization
and total instructions executed.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors - Code
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1. INTRODUCTION
GPU architectures use a Single-Instruction, Multiple-

Thread (SIMT) model marshaling thousands of threads
across hundreds of cores, each thread having its own register
state but all threads sharing one program counter. Threads
are managed in groups called warps in CUDA, or alter-
natively wavefronts in OpenCL. Warp size varies, but for
CUDA, warps contain 32 threads. GPUs schedule an entire
warp of threads at once and warp threads cannot be sched-
uled separately. GPUs interleave warp execution to increase
resource utilization and instruction throughput.

Each new generation of GPUs provides increasing levels
of resources such as more registers, shared memory, func-
tional units, and arithmetic cores. Most efforts to manage
GPU resource utilization [17, 20, 25, 31, 32] have focused on
thread or warp-level parallelism (TLP). Our contribution in
this paper is to focus attention on the complementary use of
instruction-level parallelism (ILP) to improve resource uti-
lization. While this subject is well-understood for CPU ar-
chitectures, it has received little attention for GPUs.

Modern GPU architectures [30] have neglected ILP for
two major reasons. First, they typically lack branch predic-
tion and hardware support for speculation. Second, the con-
ventional GPU application has abundant TLP. However, as
GPUs become more general purpose, it will become increas-
ingly necessary to improve GPU performance by exploiting
ILP within a single thread. By contrast many CPUs, recog-
nizing the relative scarcity of ILP within basic blocks, imple-
ment hardware branch prediction, enabling faster execution
by successfully guessing branch outcomes and fetching and
executing instructions.

Trace Scheduling [9], first developed for microcode opti-
mization, attempts to decrease execution time by exposing
ILP across branch boundaries through static global instruc-
tion scheduling. Generally, Trace Scheduling organizes se-
quences of basic blocks, a series of instructions free of control
flow besides the last instruction, into regions called traces.
Optimization efforts then focus on scheduling instructions
within traces. Trace Scheduling proceeds in three steps.
Trace selection partitions basic blocks into traces. Trace



formation extends traces to expose additional opportunities
for the final step, local scheduling. Local scheduling sched-
ules instructions within each trace to reduce execution time.

Trace scheduling, as used previously for microcode, is not
immediately applicable to GPUs. The principal challenge
is avoiding warp divergence, which occurs when a warp’s
threads take different execution paths. GPUs serialize the
different executions, executing first one path, then the other,
at substantial cost to performance. It is well-established [6,
10–12,18,19,23,24] that avoiding divergence is performance
critical.

This paper describes Warp-Aware Trace Scheduling, a new
technique for GPU global instruction scheduling. Our op-
timization consists of three major steps, customized for the
GPU execution model. The first step selects traces that start
at basic blocks that are likely to be divergence-free. These
traces define the earliest non-divergent entry for scheduling
instructions for speculative execution. The second step har-
nesses the GPU’s native compiler infrastructure for predica-
tion. In the final step, the instruction scheduler schedules
long-latency memory operations (and their dependent in-
structions) as early as possible in a trace.

Because GPUs have little or no exception handling, any
such speculation must be conservative; a failed speculation
may reduce performance, but will not require rolling back
speculative computations. For this reason, we only speculate
on global memory load’s and arithmetic instructions. When
appropriate, the scheduler moves instructions from divergent
to non-divergent basic blocks, reducing divergence time.

We make the following contributions:

1. Comprehensive rethinking and redesign of CPU-
oriented trace scheduling techniques to accommodate
GPU requirements such as avoiding divergence when
possible, and reducing divergence time otherwise.

2. Development and evaluation of Warp-Aware Trace
Scheduling, a fully-automatic ILP optimization for re-
ducing execution time.

Across the entire Rodinia Benchmark Suite [5], run on a real
system (NVIDIA GTX 670), Warp-Aware Trace Scheduling
achieves a geometric mean speedup of 1.10× by improv-
ing instructions executed per cycle (IPC) by a harmonic
mean of 1.12× and reducing instruction serialization and
total instructions executed. Our results suggest that Warp-
Aware Trace Scheduling can be a promising way of improv-
ing single-thread performance on GPUs, thereby enabling
the architecture to execute a wider variety of programs.
More aggressive speculation, made possible by adding new
speculative load and exception check instructions (see Sec-
tion 4.3 for further details), and complementary optimiza-
tion will likely further increase performance.

The organization for the rest of the paper follows. Sec-
tion 2 describes PTX and our profiling infrastructure. Sec-
tion 3 motivates the importance of optimizing GPU ILP.
Section 4 first provides a brief overview of Trace Scheduling,
and then in subsequent subsections details our approach to
adapting Trace Scheduling to the GPU. Afterward, Section 5
describes our experimental methodology, and Section 6 re-
ports Warp-Aware Trace Scheduling’s results on the Rodinia
Benchmark Suite. Section 7 interprets and discusses our re-
sults, and Section 8 describes related work. Section 9 posits
future research opportunities to complement and improve
Warp-Aware Trace Scheduling, and Section 10 concludes.

2. BACKGROUND
To evaluate Warp-Aware Trace Scheduling, we develop

a PTX-to-PTX optimizer for fully automating profiling,
analyzing, and optimizing PTX [29], NVIDIA’s pseudo-
assembly language. Subsequently, the graphics driver com-
piles PTX into executable binary code. Our PTX toolchain
records dynamic program profiles, information to guide
Warp-Aware Trace Scheduling. While this section describes
PTX, our technology and ideas easily extend to HSA-based
systems. HSAIL [13], a low-level intermediate language,
functions similarly to PTX but supports a variety of pro-
cessor architectures from HSA Foundation members AMD,
ARM, Imagination, MediaTek, Qualcomm, Samsung, and
Texas Instruments.

For profiling purposes, we implement our own instrumen-
tation system rather than use the CUDA Profiling Tools
Interface (CUPTI) [28]. While CUPTI is capable of collect-
ing an extensive array of metrics, it can not collect each
thread’s behavior at every branch. Hence the need for our
own instrumentation.

Our tool takes as input a GPU program, and as output,
it produces an instrumented version of the program. Code
destined for GPU execution is called the GPU kernel. In the
instrumented version of the kernel, code is inserted before
every conditional branch to collect each threads’ branch be-
havior. The inserted code uses each thread’s ID to update
a unique counter for each branch direction. Consequently,
there is one counter per branch per thread. Library calls to
our tool are inserted before kernel invocations to allocate and
initialize GPU memory for branch counters and after kernel
invocations to compile the counters’ results. Each branch’s
statistics are reduced to a single percentage, the probability
of taking the branch. The probability is the number of times
the branch was taken divided by the total number of times
the branch was visited times 100.

PTX contains the following controlflow instructions: @,
call, ret, exit, and bra. We avoid interprocedural analysis
because after optimization for the Rodinia benchmarks, full
inlining occurs and no call instructions exist. Regardless,
our current implementation of Warp-Aware Trace Schedul-
ing is intraprocedural. Since our profiler only instruments
top-level functions, the instructions ret and exit behave
identically, ending execution. All PTX instructions may
conditionally execute based on a guard predicate, @{!}p.
The ! symbol is optional and performs logical negation.
The bra instruction defines conditional and unconditional
branching. In PTX, indirect branches are supported but
unimplemented. However, indirect function calls are im-
plemented. Conditional branches are formed by applying a
guard predicate to an unconditional branch. For the pur-
poses of this paper, a branch refers to a two-way conditional
branch. The rest of the paper reflects this definition. Our
optimizer effectively profiles the Rodinia benchmarks and
reflects PTX ISA version 3.2 [29].

For efficient GPU global instruction scheduling, it is nec-
essary to be aware of the GPU execution model and warp
divergence (see Section 1). Warp-Aware Trace Scheduling
minimizes execution time by exposing ILP while avoiding
divergence and reducing divergence time. Generally, GPU
execution proceeds as warps execute one common instruc-
tion at a time. However, when threads of a warp fail to
identically evaluate a branch, lockstep warp execution halts.
The warp’s threads diverge; the warp splits and its threads



take different execution paths. Execution proceeds in this
fashion until all the warp’s threads converge again, and all
the warp’s threads continue in lockstep.

In addition to its tracing capabilities, our tool also per-
forms analysis and optimization, representing GPU pro-
grams as a controlflow graph (CFG) and dataflow graph
(DFG). A CFG node represents a basic block (BB), a single-
entry single-exit code region. CFG edges are directed and
represent potential paths of control flow. In a DFG, nodes
represent instructions, and edges represent variable defini-
tions (outgoing edges), and variable uses (incoming edges)
through registers. The DFG does not contain edges for
data flow through memory. Instrumenting, analyzing, and
predicting occur automatically, only employing information
available in the GPU program’s source code.

3. MOTIVATION
Warp-Aware Trace Scheduling improves GPU resource

utilization by increasing ILP [30] to decrease overall exe-
cution time. GPU utilization is measured by thread-level
parallelism (TLP), the number of resident warps, and addi-
tionally, instruction-level parallelism (ILP). Table 1 summa-
rizes the GPUs’ historical technical specifications per thread
block and per streaming multiprocessor (SM). New GPU ar-
chitectures contain more local hardware resources (Special
Function Units, Instruction Issue, and Arithmetic Cores) ex-
ceeding the nominal growth in number of threads per SM.
Beyond NVIDIA GPUs, this progression is also depicted in
other companies’ GPU hardware [1, 15].

While adjusting occupancy, the ratio of the number of
resident warps to the maximum number of resident warps,
to expose TLP is routine, no suitably obvious and auto-
matic solution exists for increasing ILP. If these trends per-
sist, ILP will have expanding performance implications. We
propose to automatically and efficiently extract ILP using
Warp-Aware Trace Scheduling.

ILP describes the potential overlap between executing in-
structions. On the GPU, SMs schedule instructions from
ready warps of a block. At every instruction issue, an SM’s
warp scheduler selects a ready warp, if any, and issues the
warp’s next instruction to the warp’s threads. The duration
between instruction issue and completion is called latency.
Achieving full utilization requires “hiding” all latency; at ev-
ery clock cycle, all warp schedulers should have an instruc-
tion ready to issue.

4. GLOBAL INSTRUCTION SCHEDUL-
ING

Warp-Aware Trace Scheduling is a GPU-specific type of
global instruction scheduling. Global instruction schedul-
ing exposes ILP by grouping code, commonly basic blocks,
into regions and scheduling instructions within each region,
independently of other regions, to reduce execution time.
Generally, global scheduling performs the following steps:

Step Section Description

1. Trace Selection 4.1
assign basic blocks

to regions

facilitate local scheduling,

2. Trace Formation 4.2 potentially adding nodes

and edges

3. Local Scheduling 4.3
schedule instructions

within each region

Specification
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

per Block

Max Number of Threads 512 1024

per SM

Max Resident Blocks 8 16

Max Resident Warps 24 32 48 64

Max Shared Memory 16KB 48KB

Number of 32-bit Registers 8K 16K 32K 64K

Special Function Units 2 4 8 32

Instruction Issue
0.25 1 2 8

(per Clock Cycle)

Arithmetic Cores 8 32 192

Table 1: Historical streaming multiprocessor (SM)
and thread block characteristics based on CUDA
Compute Capability

Faraboschi et al. [8] provide a comprehensive survey of global
instruction scheduling.

The following sections address our modifications to Trace
Scheduling’s basic steps to create Warp-Aware Trace Sched-
uling for GPUs. Global scheduling algorithms may use dif-
ferent definitions of region. Our scheduling algorithm defines
region as a trace, pioneered by Fisher [9], and more exten-
sively described by Ellis [7]. A trace is a set of basic blocks
where each basic block is a predecessor of the next basic
block, and the set is cycle free. The rest of the paper refers
to regions as traces.

4.1 Trace Selection
Trace selection, the first step in global scheduling, groups

sequences of frequently executed basic blocks into traces.
Generally, given a weighted controlflow graph (CFG), trace
selection chooses a seed node, a start node for the trace,
and grows a trace, adding an adjacent node to the trace.
All nodes are only visited once and the process repeats un-
til all nodes are visited. The goal is to recognize paths of
frequently executed basic blocks, identifying the program’s
critical path.

In contrast to prior work, trace selection for GPUs must
adapt to the GPU-specific challenge of avoiding warp diver-
gence. The challenge is creating traces defining the earli-
est non-divergent entry for scheduling instructions for spec-
ulative execution. Algorithms 1 and 2 present our GPU
Trace Selection and Best Successor Of algorithms.
Compared with prior work [8], our algorithms differ in two
important respects: seed selection and trace growth to pro-
mote efficient local scheduling and divergence avoidance for
GPUs.

Prior work selects traces by traversing CFG nodes or
edges weighted by profile-generated execution frequency of
basic blocks or branch paths respectively. Then, in prior
work, trace selection grows traces forward, traversing the
seed’s child nodes, and backward, traversing the seed’s par-
ent nodes.

If divergence exists among frequently executed basic
blocks, prior approaches to seeding and growing traces could
make it worse, scheduling instructions from non-divergent



Algorithm 1 GPU Trace Selection Algorithm

1 function Trace Selection(Set nodes)
/∗ nodes sorted by CFG tree-height and divergence. ∗/

2 while there are unvisited nodes do
3 seed = next unvisited node /∗ Select a seed ∗/
4 Mark seed visited
5 current = seed
6 loop /∗ Grow trace forward ∗/
7 s = Best Successor Of(current)
8 if s == 0 exit loop
9 Add s to the trace

10 Mark s visited
11 end loop
12 end while
13 end function

Algorithm 2 GPU Best Successor Of Algorithm

1 function Best Successor Of(Node src)
2 Edge e = the highest probability edge
3 among all src’s outgoing edges
4 if Probability(e) ≤ MIN PROB return 0
5 n = e’s target
6 if n is visited return 0
7 return n
8 end function
9

10 function Probability(Edge e)
11 return e’s weight
12 end function

basic blocks to divergent basic blocks. Instead, our algo-
rithm begins by generating a list of seeds, nodes likely to be
non-divergent. From these seeds the algorithm only grows
forward, never backward. Therefore all trace roots are likely
non-divergent. This assists local scheduling to avert diver-
gence and reduce divergence time (see Section 4.3). Finally,
we substitute dynamic profiling of program branch behav-
ior instead of execution frequency because branch behavior
provides additional insight differentiating basic block’s warp
behavior.

As mentioned previously (see Section 2), we developed a
PTX optimizer for automatically profiling, analyzing, and
optimizing PTX [29], CUDA’s virtual instruction set archi-
tecture (ISA). Our PTX toolchain records dynamic program
profiles to guide Warp-Aware Trace Scheduling.

Our GPU Trace Selection algorithm starts with a set
of seed nodes, gathered using a breadth-first traversal on the
CFG and sorted by the following properties:

• Control-equivalent to program entry node

• Loop head

• Contains PTX synchronization or communication in-
structions (e.g. bar and membar)†

• Control-equivalent to a basic block containing PTX
synchronization or communication instructions

Ties are broken by most likely predicted successor. The
result is a list sorted by breadth-first tree-height of likely

†instructions that assume uniform, non divergent warp
behavior

non-divergent nodes. For reference, the definitions for dom-
inance, post-dominance, and control-equivalence [2] are in-
cluded below:

Definition (Dominance). A node A dominates a node B
if and only if all paths from the start node to B go through
A.

Definition (Post-Dominance). A node A post-dominates
a node B if and only if all paths from B to the exit node
go through A.

Definition (Control-Equivalence). A node A is control-
equivalent to a node B if A dominates B and B post-
dominates A.

After choosing a seed, GPU Trace Selection only grows
traces forward. Warp-Aware Trace Scheduling’s objective
is to schedule instructions as early as possible and in non-
divergent basic blocks. Traces with non-divergent roots rep-
resent this intent. We do not allow traces to grow backward
because of the need to avoid divergence.

In prior work, Smith [33] also only grew traces forward,
but in his algorithm the next unscheduled basic block is
selected as the new seed, contrary to the general approach
of identifying the next node by highest execution count. Our
Trace Selection algorithm prioritizes non-divergent basic
blocks, necessarily skipping basic blocks.

During trace growth, the GPU Best Successor Of al-
gorithm (Algorithm 2) determines the most likely succes-
sor based on branch prediction. The MIN PROB variable
(line 4) is a cutoff criterion to stop trace growth when a likely
successor cannot be determined since the branch prediction
does not distinguish divergent and non-divergent branches,
an additional reason for our deliberate approach to seed
choice. Our results (see Section 6) evaluate the applicabil-
ity of branch prediction without regard for warp behavior.
Searching for a MIN PROB value maximizing performance,
MIN PROB was experimentally determined to be 65.

The example CFG in Figure 1 contains three traces
(A B C, D E F , and G I), four if-
statements (A,B,C; D,E,F ; J ,K,L; and G,H,I), and one
loop (D,E,F ). The example contains one branch, J , af-
fected by the MIN PROB criterion. Nodes A, C, D, J , F ,
and G include conditional branches. Nodes B, E, K, and
H end with unconditional branches. Nodes A, C, G, and I
form a control-equivalent set. D is control-equivalent to F
and J is control-equivalent to L. Note too, Trace #1 stops
at C because D is a loop head and Trace #2 stops at F
because traces cannot traverse a backedge (see definition of
trace, Section 4). Node J does not start a trace because its
branch fails the MIN PROB criterion. While the example
demonstrates the MIN PROB criterion’s effects on a branch
off the critical path, a branch like J could just as likely lie
on the critical path.

A reversal in a single branch’s behavior can drastically
affect trace selection. Suppose C’s edge probabilities were
reversed, C D is predicted 5 and C J is predicted
95. Three traces would be selected, A B C J ,
D E F , and G I. Longer traces tend to increase
local scheduling opportunities.

4.2 Trace Formation
Compared to prior work, Warp-Aware Trace Scheduling

forms traces most similar to Fisher’s original proposal for
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Figure 1: An example controlflow graph (CFG) with
three traces: Trace #1 (A B C), Trace #2
(D E F ), and Trace #3 (G I). Nominally,
all single nodes, not already in a trace represent a
trace (e.g. H).

CPUs [9]. However, unlike prior work, GPU trace forma-
tion respects program source code block structure, leaving
it intact. All explicit attempts to form longer traces are con-
spicuously absent. However, contrary to Fisher, GPU traces
are implicitly enlarged. After Warp-Aware Trace Schedul-
ing, during the code’s subsequent passage through the GPU
compiler toolchain, predication is automatically performed.
For PTX synchronization instructions, GPU trace formation
adds extra edges to the trace to create scheduling constraints
to preserve correct program behavior.

Many prior works, for example Superblock [14] and Hy-
perblock [22] scheduling, advanced structure-transforming
innovations to decrease implementation effort of bookkeep-
ing, expand traces, and enable optimization. Superblock
scheduling forms longer traces by removing side entrances
via tail duplication, and Hyperblock scheduling explicitly
applies predication.

PTX code sequence before. . .
... ...

25 setp.*.* %p0, ...;
... ...

28 @%p0 bra BB0;

29 ...
... ...

39 ...

40 BB0:
... ...

. . . and after if-conversion
... ...

25 setp.*.* %p0, ...;

29 @!%p0 ...
... @!%p0 ...

39 @!%p0 ...
... ...

Table 2: Example PTX code sequence showing the
application of if-conversion using predication

After Warp-Aware Trace Scheduling, ptxas (or the CUDA
device driver) compiles PTX to SASS [26]. SASS supports
predication which ptxas employs for optimization, like if-
conversion. To complement NVIDIA’s toolchain, Warp-
Aware Trace Scheduling ignores opportunities to form longer
traces, relying on ptxas and later predicate-modifying opti-
mizations (see Section 9 for how to potentially weaken de-
pendence on NVIDIA’s GPU toolchain to explicitly lengthen
GPU traces).

GPU trace formation expects PTX code sequences,
matching the pattern in the top half of Table 2, will be
optimized to straightline code. The instruction on line 25

sets the branch’s condition and on line 28, the branch to
label (basic block) BB0 is executed if predicate register %p0

is true, skipping lines 29 through 39. The code sequence
in the bottom half of Table 2 represents the above sequence
after applying if-conversion, using predication. After if-
conversion, line 28 is removed and code between lines 29 and
39 will conditionally execute based on !%p0. The ! symbol
performs logical negation.

For PTX synchronization instructions, GPU trace forma-
tion adds extra edges to the trace to create scheduling con-
straints to preserve correct program behavior.

4.3 Local Instruction Scheduling
Local scheduling, historically referred to as local com-

paction, moves instructions within but not between traces
to improve ILP. Consider two instructions, A and B, and
B is a conditional branch. Moving A above B is called
upward code motion and the opposite transformation, mov-
ing A below B, is called downward code motion. Depen-
dences define execution-order constraints between instruc-
tions. During upward code motion, an instruction breaks its
control dependence on the preceding branch. If the instruc-
tion’s new basic block has multiple successors, this motion is



Restricted [4] General [4] Boosting [34] Deviant (ours)

excludes texture,
shared,

Scheduling Restrictions Legal and Safe Legal none
and constant memory

operations and all

store instructions

shadow register file,

Hardware Support none
non-trapping

shadow store buffer,
and none

instructions support for re-executing

instructions

Exception Handling for
prohibited ignored supported absent

Speculative Instructions

Table 3: Characterizing global scheduling models from prior work and our new GPU model (found on the
far right). Most GPUs contain limited exception handling capabilities (shown in more detail in Table 4); The
GPU provides no mechanism to detect exceptions.

Exception Support

Arithmetic

Integer
No mechanism to detect occurrence

‡

Floating-Point

Memory

Texture
CUDA runtime error “unknown error” at

Constant
conclusion of kernel execution, available

Shared
on host device (CPU)

Global

Table 4: GPU exception handling by instruction
type (for NVIDIA GPUs)

speculative because it is uncertain whether the instruction’s
result will be needed. The following restrictions govern code
motion:

Legal – Preserve sequential correctness

Safe – Prevent any exception caused by
speculative execution from terminating execution

Prior work enforced exception handling to varying degrees
with hardware and software support. Table 3 describes the
general scheduling models’ policies and enforcement strate-
gies to obey the aforementioned restrictions. The rightmost
column in Table 3 summarizes our new GPU scheduling
model. In general, the GPU is unsafe (see CUDA C Pro-
gramming Guide [27], Section F.2). On the GPU, arith-
metic exceptions, like integer and floating-point division by
zero, underflow, and overflow, are not signaled, no mecha-
nism exists to detect the exception, and execution continues
normally. Additionally, as Table 3 and Table 4 indicate, all
GPU memory operations are unsafe, speculatively executing
a memory operation can cause an error and may be reported
only after kernel execution concludes. Warp-Aware Trace
Scheduling conforms to the CUDA Programming Model’s
exception handling policy. We say the GPU global sched-
uling model is deviant because GPU execution continues

‡CUDA C Programming Guide [27], Section G.2.
Floating-Point Standard

even if errors occur, failing to conform to (deviating from)
prior scheduling models.

Because GPUs have such weak exception handling mech-
anisms, our scheduler only speculates on global load’s
and arithmetic instructions and prohibits speculation of all
store instructions and texture, shared, and constant mem-
ory operations. Looking forward, we recommend adding new
instructions, a speculative load and an exception check, pro-
viding a safe and practical solution to govern data specula-
tion, similar to instructions (PREFETCHh) used by current In-
tel 64 architectures [16]. A speculative load always succeeds,
never causes a page fault, and sets a valid flag. exception
check tests the valid flag.

Warp-Aware Trace Scheduling’s local trace scheduler per-
forms no scheduling on instructions within basic blocks.
It only performs scheduling on instructions between basic
blocks. During PTX-to-SASS translation, ptxas performs
register allocation and scheduling within basic blocks. When
scheduling instructions between basic blocks, Warp-Aware
Trace Scheduling’s local trace scheduler only applies upward
code motion, removing instructions from the top of one ba-
sic block and appending them to the bottom of their new
basic block. The local trace scheduler never moves an in-
struction down, not even an instruction in its native basic
block. Remember the details of GPU trace selection in Sec-
tion 4.1. By construction, trace roots are the earliest, likely
non-divergent basic block to schedule into. The scheduler
greedily schedules instructions to minimize execution time
on the critical path, so it is possible that at scheduling’s
conclusion some basic block schedules have been lengthened.
The main objective is to increase ILP and additionally, sep-
arate dependent global memory load’s and store’s, sched-
uling load’s as early as possible, because generally, load’s
and store’s respectively begin and end chains of dependent
instructions.

4.3.1 Bookkeeping
To maintain program correctness (legality) during sched-

uling, it may be necessary to insert copies of moved instruc-
tions, a process called bookkeeping, also known as compen-
sation. The instruction copies are referred to as compen-
sation code. Due to GPU-specific warp behavior, Warp-
Aware Trace Scheduling’s bookkeeping is tightly controlled



BB3

              ...
mul.wide.s32 %rd13, %r4,  4;
add.s64      %rd14, %rd2, %rd13;
cvt.s64.s32  %rd7,  %r6;
add.s64,     %rd8,  %rd6, %rd7;
bra.uni      BB3;

34
35
36
37
38

...

10

100

BB1

100

90

BB2:
ld.shared.f32  %f5,   [%rd3];
cvt.rn.f32.s32 %f6,   %r9;
mul.f32        %f7,   %f5, %f6;
st.shared.f32  [%r2], %f7;
bra.uni      BB3;              

39
40
41
42
43
44

BB2

...

BB3:
mul.wide.s32  %rd15, %r3,   %rd8;
add.s64       %rd12, %rd1,  %rd15;
              ...

45
46
47

...
...              ...

mov.u32       %r11,  %ctaid.y;
add.s32       %r12,  %r8, 1;
mov.u32       %r1,   %tid.y;
mov.u32       %r2,   %tid.x;
             ...
setp.ne.s32   %p2,   %r2,   0;
shl.b64       %rd16, %rd4,  6;
mov.u64       %rd17, __param_0;
add.s64       %rd18, %rd17, %rd16;
mul.wide.s32  %rd19, %r2,   4;
add.s64       %rd2,  %rd18, %rd19;
ld.global.f32 %f4,   [%rd2];
@%p2 bra BB2;

BB0

10
11
12
13

21
48
49
50
51
52
53
22

BB3

BB3:
mul.wide.s32  %rd15, %r3,   %rd8;
add.s64       %rd12, %rd1,  %rd15;
shl.b64       %rd16, %rd4,  6;
mov.u64       %rd17, __param_0;
add.s64       %rd18, %rd17, %rd16;
mul.wide.s32  %rd19, %r2,   4;
add.s64       %rd2,  %rd18, %rd19;
ld.global.f32 %f4,   [%rd2];
              ...

45
46
47
48
49
50
51
52
53

...

              ...
mul.wide.s32 %rd13, %r4,  4;
add.s54      %rd14, %rd2, %rd13;
cvt.s64.s32  %rd7,  %r6;
add.s64,     %rd8,  %rd6, %rd7;
bra.uni      BB3;

34
35
36
37
38

...

             ...
mov.u32     %r11, %ctaid.y;
add.s32     %r12, %r8, 1;
mov.u32     %r1,  %tid.y;
mov.u32     %r2,  %tid.x;
             ...
setp.ne.s32 %p2,  %r2,      0;
@%p2 bra BB2;

10
11
12
13

21
22

...
...

10

100

BB0

BB1

39
40
41
42
43
44

100

BB2

BB2:
ld.shared.f32  %f5,   [%rd3];
cvt.rn.f32.s32 %f6,   %r5;
mul.f32        %f7,   %f6, %f3;
st.shared.f32  [%r2], %f7;
bra.uni      BB3;              

90

Before After

Figure 2: Example local scheduling of an if-else-statement. The if is predicted likely not taken. Conse-
quently, during local scheduling, instructions from BB3 (lines 48 – 53) are moved upward into BB1. After local
scheduling note line 53, a global memory load, will be speculatively executed.

to avoid inserting instruction copies into divergent basic
blocks, thereby reducing divergence time.

Typically, compensation is required to correct misspecu-
lation. However, Warp-Aware Trace Scheduling only spec-
ulates global load’s, never store’s, and maintains original
basic block boundaries and order of conditional branches.
Consequently, Warp-Aware Trace Scheduling is recovery-free
(i.e. it requires no support for misspeculation to preserve
program correctness).

Starting from the trace root’s successors, the local trace
scheduler, respecting data dependences, attempts upward
code motion to schedule instructions on the trace from root
to leaf, preferring to schedule in the trace’s root to poten-
tially achieve earliest possible execution. If an instruction
cannot be scheduled in the root and another convergent ba-
sic block cannot be found, the scheduler begins to schedule
the next instruction. Loops are scheduled independently.
The scheduler operates without a model of instruction laten-
cies. Consequently, our approach greedily schedules based
on branch prediction, and as previously mentioned can pro-
duce unbalanced basic blocks, preferring to schedule instruc-
tions to minimize critical path execution. The result is a
scheduler that attempts to minimize overall execution time
and divergence time, without inducing additional warp di-
vergence or increasing divergence time.

Figure 2 demonstrates warp-aware local scheduling on an
if-else-statement. The example contains one trace: BB0

BB2 BB3. The figure’s left side depicts the original
code sequence, before local scheduling, and the right side de-
picts the optimized code sequence, after local scheduling. No
instructions are moved from BB2 because these instructions
(lines 41–43) depend on the shared load instruction on line
40. The scheduler only speculates on global load’s. Most

of BB3’s instructions (lines 48–53) are moved upward into
basic block BB1. However, instructions on line 46 and 47

remain because line 47 depends on line 46, which in turn de-
pends on line 37 (register %rd8). While it is possible to move
the instructions on lines 46 and 47 to BB1, local scheduling
is not optimized to avoid increasing execution time. The
scheduler considers CFG structure and branch profiling to
identify divergence and avoid it as well as increasing diver-
gence time. In this instance, considering BB0 BB1’s edge
weight (10 ), the scheduler determines that BB1 is a diver-
gent basic block and prevents scheduling extra instructions
into it. If the scheduler determined BB1 non-divergent, the
scheduler would schedule instructions on lines 46 and 47 to
both BB1 and BB2.

5. EXPERIMENTAL METHODOLOGY
We evaluated Warp-Aware Trace Scheduling using the

Rodinia Benchmark Suite [5]. The benchmarks were com-
piled using CUDA 5.5 with full optimization (O3), tar-
geted for a compute capability 3.0 device (sm 30) using the
NVIDIA driver version 319.37, the driver version accompa-
nying CUDA 5.5. Programs were profiled, analyzed, and
optimized using the optimizer we developed and previously
discussed (see Section 4.1). All results are from execution
on an NVIDIA GTX 670 (a compute capability 3.0 device),
not simulation.

Results for each benchmark were measured as an average
of at least 10 runs and reflect kernel, not whole program,
performance. Different input sets were used for training
and testing. Besides performance, the results before and
after our optimization are identical. While current GPUs
contain weak exception handling capabilities, Warp-Aware
Trace Scheduling maintains sequential correctness (i.e. legal-
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Figure 3: Kernel speedup and normalized instructions executed per cycle (IPC) with Warp-Aware Trace
Scheduling on the Rodinia benchmarks. Geometric mean speedup and harmonic mean IPC are found on the
right.

ity, see Section 4.3). Our technique only speculates global
loads, never stores (see Section 4.3).

6. RESULTS
Figure 3 demonstrates the performance benefit of Warp-

Aware Trace Scheduling applied to the Rodinia Benchmark
Suite on a real system. On Figure 3’s dual y-axis, kernel
speedup is on the left and normalized instructions executed
per cycle (IPC)§ is on the right. IPC results were recorded
using NVIDIA’s profiler and represent relative IPC after
Warp-Aware Trace Scheduling over the baseline (original)
IPC. The bottom x-axis shows benchmark names and on
the top x-axis, the corresponding names of the benchmark’s
kernels.

Shown on the far right of Figure 3, across the Rodinia
benchmarks, the geometric mean speedup is 1.10×. In terms
of speedup, notable standouts include particlefilter(n)’s
kernel, 1.34×; particlefilter(f)’s find index kernel, 1.35×;
leukocyte’s IMGVF kernel, 1.23×; and srad’s srad cuda 2,
1.22×. heartwall produces the only negative speedup per-
formance mark at 0.98×.

Comparing speedup to IPC, the results are markedly cor-
related. Intuitively, identifying and improving IPC on crit-
ical program paths can reduce overall execution time. On

§the number of executed instructions divided by the num-
ber of SMs divided by elapsed clocks

the far right, across the Rodinia benchmarks, the IPC’s har-
monic mean is 1.12×.

6.1 Performance Analysis
If Warp-Aware Trace Scheduling automatically identifies

no opportunities, it leaves the kernel unchanged. Specifi-
cally, Warp-Aware Trace Scheduling dismisses kernels if:

• there are too few (or no) branches to speculate

• trace selection fails; unpredictable critical path

• the program contains insufficient ILP

Intuitively, if no branches exist in a program, there are no
basic block boundaries to schedule across, and global sched-
uling will have marginal performance benefit. In our eval-
uation, the branches in Rodinia’s kernels are mostly pre-
dictable, containing a majority of branches with lopsided ra-
tios (e.g. 90 – 10). Based on our trace selection’s MIN PROB
criterion (see Section 4.1), too many 50 – 50 branches, or
other suitably balanced branches, can thwart identification
of program critical path and trace generation. Finally, if the
program contains insufficient ILP to expose, again, global
instruction scheduling will be ineffective.

We inspected SASS to affirm our technique’s results and
identify and understand related ptxas optimizations. Scru-
tinizing the differences in SASS before and after applying
our optimization we concluded our optimization had success-
fully identified program’s critical path and divergent basic



blocks and hoisted instructions above branches. Since SASS
is not executable binary microcode but rather just another
(virtual) low-level assembly language, more thorough anal-
ysis was done using NVIDIA’s profiler, collecting statistics
from hardware counters. Analyzing complementary hard-
ware counters reported by NVIDIA’s profiler suggests mod-
est increases to cache misses and instruction replay overhead
in order to expose additional ILP and increase IPC is a de-
sirable tradeoff to achieve higher overall performance.

Warp-Aware Trace Scheduling is applied before ptxas op-
timization and register allocation. On average the total
number of used registers increased by 4. In particular, ker-
nels in lud, nw, and srad showed the greatest increases in
number of used registers by 17, 16, and 14, respectively but
these increases did not affect occupancy (see Section 3).

6.2 IPC Analysis
Note that increasing IPC (instruction throughput) does

not always result in a corresponding improvement in execu-
tion time. For instance, notice the difference between IPC
and speedup for nw’s needle cuda shared1 (see Figure 3).
Increasing IPC may also increase the percentage of replayed
instructions, a negative performance metric. The percentage
of replayed instructions is calculated as:(

instructions issued − instructions executed

instructions issued

)
× 100,

the difference between the number of instructions issued by
the number of instructions executed, and:

instructions issued ≥ instructions executed.

Replay is a hardware optimization to hide instruction la-
tency. When a variable, long-latency instruction, such as
a ld/st instruction stalls the pipeline, the stalling warp is
removed from the pipeline and the pipeline starts executing
ready instructions from a previously waiting warp. Later,
the original stalling instructions will be reissued and hope-
fully, execute faster. A replay could occur due to a local
cache miss, memory bank conflict, and non-uniform mem-
ory access.

To further investigate and identify the source of per-
formance improvements, for each benchmark we used
NVIDIA’s profiler to gather global memory replay overhead,
shared memory replay overhead, and instruction replay over-
head. For benchmarks that showed positive performance im-
provements, no correlation between either replay overhead
and IPC, or replay overhead and speedup was found. These
results reinforce our hypothesis that IPC can substitute for
TLP (e.g. occupancy), to improve GPU resource utilization
and attain higher performance, even at the expense of in-
creases to negative performance metrics.

6.3 Summary
Warp-Aware Trace Scheduling, like prior global schedul-

ing techniques, primarily focuses on reducing execution time
by increasing ILP (IPC) on the critical path. However, its
unique features to avoid divergence and reduce divergence
time contribute to improved performance. Targeting and re-
ducing divergence time achieves reductions in negative per-
formance metrics, such as instruction serialization and total
instructions executed. The next section describes Figure 3’s
results, focusing on increasing ILP, avoiding divergence, and
reducing divergence time for faster program execution.

7. DISCUSSION
This section studiously interprets some benchmarks’ per-

formance results reported in the previous section. First,
Table 5 reflects on benchmarks’ kernels not amenable
to Warp-Aware Trace Scheduling. To begin, Warp-
Aware Trace Scheduling disregards kernels that contain
limited or no branches, no control flow. backprop’s
bpnn adjust weights cuda only contains one branch. Dy-
namic profiling indicates it is taken and immediately en-
counters an exit instruction. Consequently, global schedul-
ing would be ineffective.

In leukocyte’s GICOV kernel, few branches exist and
each basic block’s arithmetic intensity, the ratio of arith-
metic instructions to off-chip memory instructions, is high.
Consequently, increasing ILP will have only marginal perfor-
mance benefit because sufficient ILP exists within each basic
block. lud’s lud internal contains no branches. lud’s sec-
ond kernel, lud perimeter, contains few lopsided (e.g. 90 – 10)
branches and many even (e.g. 50 – 50) branches. Attempting
to select expansive traces in lud perimeter fails.

In particlefilter(f), normalize weights kernel has a suf-
ficient number of branches and its critical path is clearly
defined. However, its critical path skips an extreme amount
of the program; most often, the kernel exits without per-
forming much computation.

For particlefilter(f)’s other kernel, sum kernel, intense
computation is only found within its single loop. Warp-
Aware Trace Scheduling restricts upward code motion to
within traces, never between traces. It is likely sum kernel
would benefit from loop unrolling, a complementary opti-
mization to trace scheduling (for further details, see Sec-
tion 9).

Returning to Figure 3, these kernels generally contain pre-
dictable branches, enable selection and formation of long
traces, and contain sufficient ILP to effectively employ global
scheduling.

Among Rodinia, cfd’s cuda compute flux is unique in its
use of the unroll pragma. This pragma tells the compiler
to replace a loop with a repeated sequence of the loop’s
instructions, with fewer branch instructions between. For
cuda compute flux after unrolling, no loops, no backedges,
remain, allowing Warp-Aware Trace Scheduling to select a
single long trace from the kernel.

Only heartwall’s kernel produces negative speedup.
Note the fractional increase in IPC. Here, while Warp-
Aware Trace Scheduling was effective uncovering ILP, slow-
down was produced because our heuristics to avoid diver-
gence failed, scheduling extra instructions to divergent basic
blocks. Considering the ILP exposed and our conservative
approach to speculation, reversing kernel ’s negative perfor-
mance may still not achieve distinct performance benefits.
For heartwall, the overriding performance problem is not
limited ILP but rather low global memory bandwidth due
to inefficient memory access patterns.

A marked contrast exists between IPC and speedup for
lavaMD’s kernel gpu cuda. For kernel gpu cuda, Warp-
Aware Trace Scheduling fails to appreciably improve exe-
cution time because loops are scheduled independently and
kernel gpu cuda’s global memory instructions are isolated in
two tight loops.

Both mummergpu’s kernels are problematic for global
scheduling. printKernel ’s execution time is dominated by
one large loop containing numerous divergent branches with



Benchmark Kernel Number of branches
Critical Path
(MIN PROB)

Arithmetic Intensity

backprop bpnn adjust weights cuda 1 7 7

cuda initialize variables ∅ 3 3

cfd cuda time step ∅ 3 3

cuda compute step factor ∅ 3 3

gaussian
Fan1 1 3 3

Fan2 3 7 7

leukocyte GICOV kernel 7 3 3

lud
lud perimeter 3 7 3

lud internal ∅ 3 3

particlefilter(f)
normalize weights kernel 3 3 7

sum kernel 7 3 7

Table 5: Rodinia benchmarks’ kernels for which Warp-Aware Trace Scheduling identified insufficient ILP
opportunities to justify application of global scheduling techniques

few global load’s to speculate. With safer data speculation
support, like the solution proposed in Section 4.1, more ag-
gressive speculation could enable higher performance. mum-
mergpuKernel ’s problems only differ in that it contains
nested loops. A loop optimization, or the combination of
global scheduling and loop optimization, may produce bet-
ter results.

Warp-Aware Trace Scheduling achieves impressive perfor-
mance results for particlefilter(n)’s kernel and particle-
filter(f)’s find index kernel. But the increase in IPC, an
indicator of the degree of ILP, is minimal. In these kernels,
Warp-Aware Trace Scheduling’s results are attributable to
reduced divergence time and scheduling instructions from
divergent basic blocks to non-divergent basic blocks. Com-
paring the original and optimized kernels using NVIDIA’s
profiler shows a marked reduction in instruction serializa-
tion and total instructions executed.

8. RELATED WORK
Trace Scheduling, initially proposed by Fisher [9], now

dominates current approaches to global instruction schedul-
ing. Works related to Fisher’s Trace Scheduling mostly vary
regarding trace shape and schedule construction. For further
information, Faraboschi et al. [8] survey global instruction
scheduling and region shapes.

Specifically, much related work pertains to enhancing
ILP on VLIW/EPIC (IA-64) architectures. These archi-
tectures employ dynamic hardware branch prediction as
well as hardware parallelism detection and extraction tech-
niques. GPUs are simple in-order SIMT (Single-Instruction
Multiple-Thread) architectures without hardware branch
prediction and analogous hardware parallelism detection
and extraction. Without enhancement, Trace Scheduling
could not successfully navigate between the GPU architec-
ture’s pitfalls and challenges. Warp-Aware Trace Schedul-
ing emits performance by adapting global scheduling to the
GPU execution model and avoiding divergence.

Regarding static GPU controlflow analyses to enable op-
timization, Coutinho et al. [6] propose a static branch di-
vergence analysis. Their analysis could complement but
not substitute for dynamic profiling because Warp-Aware
Trace Scheduling requires accurate determination of pro-

gram critical path, not just differentiation of divergent and
non-divergent instructions.

Various software-only GPU-specific optimizations gener-
ally target divergence. Branch fusion, proposed by Coutinho
et al. [6], merges common code from divergent program
paths using their aforementioned static branch divergence
analysis. Han et al. [12] describe two optimizations: itera-
tion delaying and branch distribution. Iteration delaying im-
proves performance by targeting a divergent branch within
a loop, executing iterations following the branch and de-
laying execution of iterations that do not follow the branch
until later. Hopefully, the delayed iterations execute with
more threads, achieving higher resource utilization. Branch
distribution functions similarly to branch fusion.

9. FUTURE WORK
We plan to investigate the following strategies to expose

additional ILP for higher performance: trace expansion, lo-
cal scheduling, and misspeculation support. Warp-Aware
Trace Scheduling could benefit from trace-enlarging tech-
niques, like Superblock scheduling’s tail duplication [14] and
Hyperblock scheduling’s predication [22]. If loops dominate
runtime, potential loop optimizations include loop unrolling
and Software Pipelining [21].

Regarding local scheduling, our current approach could be
augmented with accurate modeling of instruction latencies.
Further, alternative list scheduling heuristics could produce
more efficient schedules. Our local scheduler only applies
upward code motion, but precedent suggests downward code
motion could provide additional performance benefits.

Finally, with precise exceptions and efficient misspecula-
tion support, more aggressive speculation is possible. Sec-
tion 4.3 describes adding new speculative load and excep-
tion check instructions. Currently, only a fraction of poten-
tial, long latency, memory instructions are speculated and
no store instructions since current GPUs provide no hard-
ware support for handling exceptions.

Using ILP rather than TLP to support effective latency
hiding could lead to additional optimizations, trading kernel
characteristics, like occupancy, for higher performance. For
instance, register pressure can have negative performance
impact. Substituting ILP for TLP could reduce register



pressure without exceeding the warp scheduler’s ability to
hide long-latency memory instructions.

Potentially, with divergence analysis like the analysis pro-
posed by Coutinho et al. [6], dependence on trace selection’s
MIN PROB criterion could be reduced or eliminated. Local
scheduling could also benefit from more accurate identifica-
tion of divergence.

Discussed in more detail in Section 4.1, traces are identi-
fied using dynamic profiling. Alternatively, trace selection
could use static branch prediction heuristics [3]. However,
no study exists demonstrating static GPU branch predic-
tion to be suitable, sufficient in branch coverage and accu-
racy, for enabling optimization. Additionally, our current
profiling approach could be enhanced to allow application
of Warp-Aware Trace Scheduling during just-in-time (JIT)
compilation. Currently, our profiling approach’s overhead
makes this impractical.

10. CONCLUSION
This paper presented a detailed implementation and eval-

uation of Warp-Aware Trace Scheduling, the first fully-
automatic speculative global scheduling optimization for
GPUs. We revisited and revising Trace Scheduling’s three
major steps for the GPU architecture. First, during trace se-
lection, the kernel is partitioned into traces with likely non-
divergent roots. Next, in trace formation, our implementa-
tion adds edges to synchronization instructions to constrain
scheduling and preserve correct program behavior. Finally,
instructions within traces are scheduled to improve ILP and
hide global memory latency, if possible, breaking control de-
pendences and speculating on instruction execution. Fur-
thermore, our local scheduling effectively avoids divergence
and reduces divergence time.

Our evaluation of Warp-Aware Trace Scheduling on a real
GPU system demonstrates significant performance improve-
ments in execution time and IPC for 17 benchmarks and 24
kernels. Overall, Warp-Aware Trace Scheduling automati-
cally achieves a geometric mean 1.10× speedup using dy-
namic profiling, improving IPC by 1.12× (harmonic mean),
and reducing instruction serialization and total instructions
executed. These current results reinforce our implementa-
tion approach and basic concepts for our global instruction
scheduling technique. Executing our plans for future work,
composing additional optimizations with Warp-Aware Trace
Scheduling, we anticipate more higher performance improve-
ments.
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