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Abstract—Facilitating DRAM access is an essential part of
an application programming environment for FPGA computing.
Existing FPGA application programming environments primarily
focus on support for simple, regular memory access patterns, such
as block copy and streaming. This paper presents CoRAM++, a
programming environment for FPGA computing that is based on
an extensible set of data-structure-specific memory interfaces.
CoRAM++ supports complex data structures, such as multi-
dimensional arrays and linked lists, in addition to simple data
access patterns. CoRAM++ defines an appropriate application-
level interface for each supported data structure, and provides a
specialized soft-logic implementation of the supporting datapath
to memory We evaluated the effectiveness of the CoRAM++ data-
structure-specific approach in three application scenarios based
on streams, multi-dimensional arrays and linked lists. Our results
show that the CoRAM++ programming environment can offer
convenient application-level interfaces without penalizing DRAM
access performance.

I. INTRODUCTION

Motivation. All but the most trivial FPGA computing
applications require accessing data in external DRAM. In
the past, FPGA computing applications interacted directly
with low-level DRAM interfaces, which were tedious to use.
Direct interaction with the low-level DRAM interfaces also
locked the application logic to the non-portable wire-level and
timing-level details of the targeted FPGA device and board
environment. More recently, FPGA application programming
environments have layered simplifying application-level inter-
faces, supported by soft-logic shims, over native DRAM and
I/O interfaces [1]–[4]. Their abstracted application-level inter-
faces simplify interaction with DRAM and enable application
portability. However, existing programming environments have
predominantly focused on support for simple, regular memory
access patterns, such as block copy and streaming. This paper
presents the CoRAM++ programming environment, which
efficiently and extensibly supports complex data structures,
such as multi-dimensional arrays and linked lists, in addition
to simple data access patterns.

Relationship to CoRAM. At the highest level, CoRAM++
follows the previously proposed CoRAM [2] approach of
decomposing an FPGA computing application into separate
computation and control components (see Figure 1). The goal
of the CoRAM approach is to shield hardware computation
kernels from the complex and platform-specific interactions
with external DRAM. The hardware computation kernels are
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Fig. 1: CoRAM/CoRAM++ application decomposition into separate compute
and control, providing locally buffered data to a hardware computation kernel.

isolated to only interact with on-chip SRAM blocks (within
the application-level interface) for data input and output. A
multi-threaded C-like language—ultimately compiled to finite
state machines (FSMs)—supports the application developer
in expressing control sequencing: (1) the data movements
between the off-chip DRAM and the on-chip SRAM; and (2)
the invocations of the hardware kernels. An application can
comprise multiple control threads and hardware kernels.

To support this enforced decomposition, CoRAM divides
application-level interfaces into two parts: (1) the wire-level
port interfaces used by hardware kernels for accessing locally
buffered data; and (2) the set of commands used by control
threads for orchestrating data movements between DRAM
and the hardware kernels. The original CoRAM programming
environment supports a block copy application-level inter-
face. The hardware kernels use wire-level port interfaces that
specifically connect to local SRAM blocks, and the control
threads use commands that transfer small, contiguous blocks
of data between DRAM and the SRAM blocks. As originally
proposed, CoRAM’s application-level interface was meant to
serve as a universal primitive that is hardened in a future FPGA
in order to efficiently support all memory access patterns.

CoRAM++ Data-Structure-Specific Interfaces. CoRAM’s
application-level interface can be realized in today’s FPGAs
through a soft-logic implementation of the interface, but with
penalties in terms of both logic resource overhead and per-
formance [5]. CoRAM++ reduces these penalties by making
better use of the reconfigurability of the FPGA fabric to
provide a more customized datapath to memory. This improves
performance, reduces resource overheads, and offers increased
convenience to the application developer. CoRAM++ achieves
these goals through an extensible library of data-structure-
specific data transport modules, which each defines an ap-
propriate application-level interface.

For example, streaming a block of data from memory is a
common operation. A CoRAM++ application-level interface



for streaming provides control threads with specialized com-
mands relevant to initiating and monitoring data streaming
operations between DRAM and the hardware kernels. The
hardware kernels use stream-specialized wire-level port inter-
faces that resemble a FIFO, rather than an SRAM, in that
hardware kernels can only read (or write) the next item in the
sequence.

An application-level interface used to interact with other
data structures would be similarly specialized. For example,
the application-level interface for a multi-dimensional array
would provide commands for array traversal operations along
various dimensions and support selecting between multiple in-
memory data layouts at run time. The corresponding wire-level
port interface could provide either FIFO-style ports or SRAM-
style ports.

Below this abstraction, CoRAM++ allows data-structure-
specific application-level interfaces to generate streamlined
soft-logic implementations that can selectively instantiate com-
ponents in order to improve performance. These performance
benefits can be especially noticeable for irregular pointer based
structures. For example, the application-level interface for a
linked list could attach a hardware linked list engine directly
to a DRAM interface to accelerate linked list operations by
minimizing the latency of pointer chasing operations.

Paper Outline. Following this introduction, Section II
highlights contemporary FPGA computing programming envi-
ronments and their support for accessing DRAM. Section III
presents the workings of the CoRAM++ data-structure-specific
programming environment in greater detail. Section IV delves
into the construction of the CoRAM++ library of application-
level interfaces. Section V presents our evaluation of the
CoRAM++ data-structure-specific approach in three applica-
tion scenarios based on streams, multi-dimensional arrays, and
linked lists. Finally, Section VI concludes.

II. BACKGROUND AND RELATED WORK

Section I introduced the original CoRAM programming
environment and its application-level interface for DRAM [2].
Below we survey other FPGA computing programming envi-
ronments, which have primarily focused on supporting simple,
regular memory access patterns such as block copy and
streaming.

Altera and Xilinx both provide “system builder” tools to
assist in system integration ([6], [7]), which use buses to con-
nect DRAM interfaces, application components, and processor
cores. These tools support load-store and streaming interfaces.
and allow application developers to manually incorporate
descriptor-based DMA engines [8].

Maxeler MaxCompiler [9] supports streaming and array
operations, and like CoRAM and CoRAM++, decomposes
applications into kernels that compute and manager modules
that orchestrate computation and I/O. MaxCompiler includes
a Java-like language that can be used to assemble kernel
pipelines, and supports address generation modules for multi-
dimensional arrays.

Redsharc [3] supports hardware kernels with application-
level interfaces for streaming and block copy. Like CoRAM
and CoRAM++, Redsharc applications are decomposed into
separate control and compute components. In Redsharc, global
control is managed by software running on an embedded
processor.

RCMW [4] presents a virtualized FPGA board environment
which is portable across different physical FPGA boards
through the use of a shim layer. RCMW’s virtual environment
has support for streaming and block copy.

LEAP [1] provides an operating environment in which the
hardware kernels interface to “scratchpad” memory through
latency-insensitive channels (using a load-store interface). The
capacity of a scratchpad can exceed what can be held on-
chip in SRAM and is backed up by off-chip DRAM. An
automatic cache can be instantiated to serve fast local copies;
performance can be further enhanced by instantiating an auto-
matic cache prefetcher. Multiple hardware kernels—including
those on different FPGA boards—can share a coherent view of
the same virtualized scratchpad. LEAP provides a complete,
generic abstraction over the base DRAM subsystem, but does
not take advantage of optimizations that may be possible when
the application’s data access patterns are known.

Most similar to CoRAM++ in motivation is APMC [10],
which goes beyond simple data access patterns by includ-
ing a specialized descriptor-based DMA engine supporting
load-store, streaming, array, linked list, and tree based data
transfers. APMC allows application developers to write soft-
ware code to manage data transfers, which runs on a Xilinx
microblaze processor. APMC’s descriptor-based DMA engine
includes a scratchpad that can be used as a traversal cache [11]
to store the results of a data structure traversal for later reuse.

III. CORAM++ DATA-STRUCTURE-SPECIFIC
APPLICATION-LEVEL INTERFACES

A. Argument for Specializing in a Soft-Logic Context

The application-level interface for memory accesses pro-
vided by the original CoRAM programming environment is
based on a block copy paradigm. Hardware kernels interface
with on-chip SRAM blocks. CoRAM control threads issue
commands to cause transfers of small, contiguous blocks of
data between off-chip DRAM and on-chip SRAM.

While it is possible to map all data access patterns onto
a block copy paradigm, data-structure-specific application-
level interfaces can be more convenient for the application
developer. For example, in the original CoRAM a streaming
data transfer can be implemented through repeated block copy
commands issued by a control thread. However, the control
thread could be simplified if it could issue simple “fire-and-
forget” streaming commands to initiate and monitor streaming
operations. These simple commands also allow the control
thread to avoid the burden of handling subtle issues, such as
flow-control related deadlocks.

The hardware kernel could also benefit from specialized
interfaces for streaming. Rather than explicitly managing an



TABLE I: Currently supported data-structure-specific application-level interfaces.
Interface Description Port interfaces for hardware kernels Commands for control threads
Block Copy Copies blocks of data between

DRAM and local SRAM blocks.
enable, address, data out[], write,
data in[]

write ram(global addr,local addr,bytes)
read ram(global addr,local addr,bytes)
check status(transaction tag)

Read Stream Streams data from DRAM to a
hardware kernel.

empty, data out[], deq read stream(addr,size)
check status()

Write Stream Streams data from a hardware
kernel to DRAM.

full, data in[], enq write stream(addr,size)
check status()

Mult-dimensional
Array Reader

Transfers array data from DRAM
to a hardware kernel.

empty, data out[], deq read array(addr,dimension,layout,permuter)
read items(addr,dimension,layout,permuter,first,count)
check status()

Mult-dimensional
Array Writer

Transfers array data from DRAM
to a hardware kernel.

full, data in[], enq write array(addr,dimension,layout,permuter)
write items(addr,dimension,layout,permuter,first,count)
check status()

Linked List Traverses and merges linked lists,
streaming linked list data to a
hardware kernel when traversing.

empty, data out[], deq traverse list(addr)
merge lists(addr1,addr2)
check status()

SRAM as a circular buffer, the hardware kernel could utilize
an application-level interface providing FIFO-style ports.

The data-structure-specific approach of CoRAM++ can also
improve performance. The original CoRAM’s simple, generic
application-level interface is intended to serve as the universal
primitive supporting all memory access patterns, and would
perform well in a hardened implementation within a future
FPGA. But a soft-logic implementation of CoRAM on today’s
commodity FPGA falls short in performance and resource
overheads due to the inherent inefficiencies of soft logic.
A data-structure-specific approach can recoup some of these
losses in addition to providing a more convenient application-
level interface.

Consider a hardware kernel operating on data stored in a
linked list. Traversing the linked list requires pointer chasing
operations to follow the chain of linked list nodes, and may
also require pointer chasing to retrieve data payloads. While
pointer chasing operations are feasible under the original
CoRAM application-level interface, each pointer chasing op-
eration must be performed by the control thread using explicit
DRAM operations with very long latencies.

A command set that directly operates on linked lists not only
simplifies the control thread, but also permits performance
optimization by the underlying implementation. A linked list
application-level interface can include a linked-list-specific
engine that is be connected directly to a DRAM interface. As
will be explained in Section III-B, this module can make linked
list operations faster by minimizing latency when following
the linked list pointers, and batching data transfers across
the NoC. This linked list application-level interface might
provide better even performance than could be achieved by
a hardened implementation of CoRAM (which would not
allow custom soft-logic modules to be connected directly to a
DRAM interface, and consequently would incur many round
trips across the NoC when traversing a linked list).

B. Supported Data Structures and their Interfaces

This paper presents a subset of select data structure ex-
amples to demonstrate the concept of CoRAM++. We intend
the CoRAM++ data structure library to be extensible—over
time it will grow to include other key data structures that are

fundamental to computing [12] or critical to highly-valued ap-
plication domains. The currently supported data structures and
their application-level interfaces are summarized as follows:
• Block Copy: Copies small contiguous blocks of data
between DRAM and local storage. Allows random access by
the hardware kernel to data within a block. This is the same
interface supported by the original CoRAM application-level
interface.
• Read/Write Stream: Transfers a continuous stream of
data to or from consecutive DRAM locations. Allows sequen-
tial access by the hardware kernel to a single data element
at a time.
• Multi-dimensional Array: Streams a sequence of array
elements along any array dimension. Requires that the size
and dimensions of the array are defined at compile time.
Supports tiled layout optimizations. Allows sequential access
by the hardware kernel to a single data element at a time.
Includes support for permutation engines that reorder data
streams, which can be selected at run time.
• Linked list: Traverses and merges linked lists. Contains
a hardware linked list engine;1 Requires compile-time def-
inition of the linked list data structure. Allows sequential
access by the hardware kernel to a single data element at a
time when traversing the linked list.
As mentioned in Section I, each application-level interface

in CoRAM++ has two parts: (1) the wire-level port interfaces
that are attached to the hardware kernels for accessing locally
buffered data; and (2) the set of commands that are available to
the control threads to control data movements between DRAM
and the hardware kernels. Table I provides a summary of
the two-part application-level interfaces for the currently sup-
ported data structures. Except for block copy, the application-
level interfaces listed in in Table I all provide FIFO-style wire-
level port interfaces to hardware kernels. They could easily be
modified to provide SRAM-style hardware port interfaces that
allow random access to elements in a block of data.

In addition to the memory interfaces described above, a
special control-thread-side Scratchpad application-level inter-

1The hardware linked list engine follows pointers and collects payload data
for consumption by the application or attached merge engine. It contains a
small direct mapped cache and can be directly connected to a DRAM interface.



face allows control threads to access data from DRAM, and
can be configured to fetch blocks of data in order to take
advantage of data locality. Another control-thread-side Host
computer application-level interface allows control thread
to manage data transfers between a host computer and the
FPGA’s attached DRAM. The host computer interface can
also transfer run-time parameters, debugging information, and
benchmarking statistics. Finally, a Channel interface transmits
short messages between a hardware kernel and a control
thread, between two hardware kernels, or between two control
threads.

C. Code Example

This section illustrates a CoRAM++ streaming computation
code example. A CoRAM++ application developer creates an
application by: (1) designing the hardware kernels to perform
computation; (2) selecting the appropriate application-level
interface “agents” for the data structures; and (3) writing
the software control threads that sequence computation and
communication. We use the term “agents” to refer to the un-
derlying implementation objects that support the application-
level interfaces. Listing 1 provides the Verilog HDL excerpt
of a hardware kernel for a discrete Fourier transform (DFT)
kernel with streaming input and output interfaces. Listing 2
provides its corresponding control thread.

In Listing 1, lines 7-9 declare this kernel’s control thread,
referring to it by name “dft thread”; this effectively instanti-

Listing 1: Hardware kernel for CoRAM++ Streaming 64-input DFT.

1// dft.v: Hardware kernel code
2module dft_kernel();
3 wire in_rdy, dft_rdy,out_rdy,dft_done;
4 wire[255:0] dft_in_data;
5 wire[255:0] dft_out_data;
6 // Handle to the control thread
7 ControlThread #(.FNAME("dft_thread"),
8 .PARAMS("IN_ADDR=0;OUT_ADDR=0x800000;
9 SIZE=8192")) appThread;

10 // Streaming Agents for data transfers
11 ReadStream#(.ID(1),.TID("dft_thread"),
12 .WIDTH(256))
13 inData(.notEmpty(in_rdy),
14 .first(dft_in),.deq(in_rdy&&dft_rdy);
15 WriteStream#(.ID(2),.TID("dft_thread"),
16 .WIDTH(256))
17 outData(.data(out_data),
18 .notFull(out_rdy),
19 .enq(dft_done&&out_rdy));
20 // DFT IP core performing computation
21 DFT#(.SIZE(64),.PRECISION(64)) kernel(
22 .in(dft_in), .out(dft_out),
23 .out_valid(dft_done),
24 .issue(in_rdy&&dft_rdy),
25 .stall(dft_done&&!out_rdy);
26 . . . .
27endmodule

Listing 2: Control Thread for CoRAM++ Streaming 64-input DFT.

1// dft.c: Control thread code
2#include "StreamAgent.h"
3void dft_thread(int IN_ADDR,
4 int OUT_ADDR, int SIZE) {
5 Agent s_in=getStreamAgent(1);
6 Agent s_out=getStreamAgent(2);
7 . . . .
8 s_in.read_stream(IN_ADDR,SIZE);
9 s_out.write_stream(OUT_ADDR,SIZE);

10 while (STREAM_DONE !=
11 s_out.check_stream()) {}
12 . . . .
13}

ates a FSM that carries out the control sequencing in Listing 2.
Lines 11-14 (or 15-19) instantiate a FIFO-like read (or write)
port corresponding to the streaming agent s in (or s out). The
wire-level signals from the read and write ports are connected
to a normal Verilog module for DFT (lines 21-25). Matching
valid and stall signals provide handshaking between the DFT
module and the streaming input and output streaming agent
port interfaces.

Listing 2 shows a very simple example of a C-syntax
control thread. Lines 5 and 6 connect to the two streaming
“agents” with unique IDs 1 and 2 as arguments; one agent
provides input data, and the other transfers output data to
DRAM. The “read stream” (or “write stream”) command is
invoked in line 8 (or 9) to establish a read (or write) stream
of length SIZE starting from address location IN ADDR (or
OUT ADDR). The commands are non-blocking, and SIZE,
IN ADDR, and OUT ADDR could be supplied at run time
through the host computer interface. Lines 10-11 have a
short loop that repeatedly calls a non-blocking check stream
function until the “s out” data transfer has completed.

In general, control threads can use the common control
flow structures in the C language, including dynamically-
bounded loops and function calls, and can access data from
DRAM using the scratchpad application-level interface. When
mapping a control thread to a FSM, CoRAM++ compiles
function calls through inline expansion when possible, but can
also support function calls using a fixed-depth hardware stack
when inline expansion is not possible. As is the case with
the original CoRAM, a CoRAM++ application can employ
multiple control threads and hardware kernels. One control
thread can manage multiple ports, but a port can only be
managed by one control thread.

IV. IMPLEMENTING THE CORAM++ INTERFACES

After an application has been specified as its hardware
kernels, control threads, and the desired application-level in-
terfaces (such as the example in Section III-C), the CoRAM++
compiler combines the application components into an imple-
mentation ready for final processing by FPGA vendor tools.
The CoRAM++ compiler currently targets commodity FPGAs
from both Altera and Xilinx, and allows applications to specify
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Fig. 2: System-level design of a CoRAM++ FPGA computing application.

how DRAM interfaces and other communication interfaces are
mapped into a global address space.

We call the hardware modules implementing the
application-level interfaces “agents”. Control threads connect
to agents through a “command” interface, and hardware
kernels connect to agents through a “port” interface. In
general, port interfaces can include any combination of
wire-level ports, including multi-wire compound interfaces
such as FIFOs, SRAMs, and CAMs. When compiling
control threads to FSMs, the CoRAM++ compiler converts
agent-supported function calls into messages sent over these
hardware command interfaces, which might be directly
connected to the hardware port of an agent, or might be
transferred to an agent’s control thread2 that performs a
sequence of operations in response to the message.

CoRAM++ agent control threads are key to allowing
CoRAM++ to support the most convenient application-level
interfaces possible. Applications can send commands with
long-running effects to agents in a “fire-and-forget” fashion.
This “fire-and-forget” execution model allows agents to inde-
pendently perform complex data transfers on behalf of appli-
cation components. Although callback functions and manually
created control threads can also be used to manage complex
data transfers, a “fire-and-forget” mechanism provides the
most convenience to the application developer.

Figure 2 depicts the system-level design of an FPGA
computing application utilizing CoRAM++. The figure depicts
a number of different hardware kernels and control thread
FSMs. Various agents are inserted between the application
components (kernels and control FSMs) and the FPGA-
specific base infrastructure for accessing DRAM and for on-
chip data transport.3 This figure does not depict the low-level
implementation details of agents, such as agent control threads
or the point-to-point connections created by the Channel agent.

Agents created for CoRAM++ do not see the FPGA’s
device-specific base infrastructure directly, but are instead sup-
ported by a thin hardware virtualization layer, which provides
interfaces for:

2Agents themselves are developed within the CoRAM++ programming
environment and therefore can utilize the control thread abstraction to specify
control FSMs.

3While hardened DRAM interfaces are increasingly common, the
CoRAM++ programming environment is anticipating that fast and efficient
hardwired Network-on-Chip (NoC) data transport will also become available
in future FPGAs [13]. Until then, CoRAM++ adopts a soft-logic NoC [14]
as the means for systematic data transport between distributed components.

TABLE II: FPGA boards used in our evaluation.
FPGA Board Terasic

DE4
Xilinx
ML605

Xilinx ZC706

FPGA Altera
EP4SGX530

Xilinx
LX240T

Xilinx XC7Z045

Hard CPU Cores None None 2×ARM A9
Logic Cells 531,200 241,152 350,000
Block Memory 3.4 MB 1.8 MB 2 MB
Hard DSP blocks 1,024 768 900
DRAM Bandwidth 2×6.4 GB/s 6.4 GB/s 12.8 GB/s (Fabric only)

4.3 GB/s (Shared)
FPGA Vendor Tool Quartus 14.0 ISE 14.7 ISE 14.7

• Data transfers over the NoC between DRAM (or a
communication interface mapped into an address space) and
agent components.
• Messages between agents and directly connected hardware
kernels and control threads.
• Direct connections between agents and interfaces for
external DRAM and I/O.

This hardware virtualization layer makes it easier to port
the CoRAM++ interface library to different FPGAs. This
hardware virtualization layer also makes it possible to port
the CoRAM++ interface library to take advantage of the
programming environments discussed in Section II, for exam-
ple to make use of LEAP’s automatic cache and prefetching
mechanisms.

Most of the time, agents interact with the control thread
FSMs or the hardware compute kernels in order to support
application-level interface functionalities. Some memory ac-
cess patterns call for access accelerator agents that speed up
interaction with DRAM and I/O interfaces. Multiple acceler-
ator agents can be attached to a DRAM or I/O interface in a
chain. These accelerator agents are able to manipulate those
interfaces directly to minimize access latency. Accelerator
agents can also incorporate private caches or scratchpads. Ac-
celerator agents are essential for delivering good performance
on pointer-based irregular memory access patterns such as
linked lists, trees, and graphs.

V. EVALUATION

Our evaluation of the CoRAM++ programming environ-
ment seeks to demonstrate that CoRAM++ provides conve-
nient application-level interfaces without introducing undue
resource or run time overheads. We evaluated two application
scenarios that were bandwidth bound, and one that was latency
bound. This evaluation did not investigate compute bound
application scenarios, but discusses the resource overheads that
would affect compute-bound applications.

Table II describes the characteristics of the FPGA devel-
opment boards used in our evaluation. The Xilinx boards
were only used in the latency bound application scenario, and
experiments using the ZC706 operated on data in the higher-
bandwidth fabric-only DRAM interface.

A. Streaming Accesses

Our first application scenario shows that the run time and
resource overheads of CoRAM++ are acceptable for simple
streaming accesses. These experiments computed a 1D DFT



using a hardware kernel very similar to that of Listing 1
and control thread code very similar to that of Listing 2. We
used the host computer agent to manage the computation and
benchmark execution.

Our kernel used a Spiral-generated [15] 64-input double
precision DFT engine running at 200 MHz, streaming input
data from one DRAM interface and streaming output data
to the other DRAM interface on the DE4. Each experiment
computed on multiple contiguous data sets as a long stream.

Figure 3 presents our experimental results. Data streams
varied in size from 8 kilobytes to 64 megabytes. The figure
also includes read and write microbenchmarks, which stream
large amounts of data to or from sequential addresses in
DRAM, and demonstrate the best real-world performance that
can be achieved by the DRAM interfaces on the DE4. These
microbenchmarks show that the DE4 can achieve up to 97%
of peak bandwidth when reading, and over 96% of peak
bandwidth when writing.

The CoRAM++ benchmark achieved approximately 90% of
peak DRAM bandwidth on the DE4 when transferring 512
kilobytes of data, and matched the microbenchmark perfor-
mance when transferring at least 8 megabytes of data, which
shows that the run-time overheads of the CoRAM++ streaming
application-level interface does not prevent applications from
saturating an application’s DRAM interface. Performance on
smaller data sets was limited by the small data set size and
242-cycle latency of the DFT core. Since the 8 kilobyte data
transfer required 256 cycles due to the data width of the DE4’s
DRAM interfaces, the latency of the DFT core almost doubled
the minimum computation time.

The streaming DFT used approximately 32% of the logic
and 7% of the block memory available on the DE4. Table III
breaks this resource utilization down by component, showing
that the DRAM controllers and NoC consume significant
resources. An FPGA (such as [13]) that hardens these com-
ponents would incur less overhead. ShrinkWrap [16] could
also reduce NoC-related resource requirements for application
scenarios that are less bandwidth constrained.
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Fig. 3: Streaming double precision 64-input DFT performance and DRAM
controller microbenchmark results on the DE4.

TABLE III: CoRAM++ 1D DFT resource breakdown by component.
Component ALUT % Register % Block Mem %
DRAM Controllers 11.4 12.3 15.3
NoC 6.7 6.2 0
NoC Endpoints 16.3 23.8 25.6
Threads + Agents 9.0 12.8 44.9
Kernel 56.6 44.9 14.2
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Fig. 4: 2D (left) and 3D (right) DFT performance.

TABLE IV: Resource utilization for CoRAM++ and reference DFTs.
DFT Type Logic % Block Mem % DSP %
CoRAM++ 1024×1024 2D 62 58 35
CoRAM++ 512×512×512 3D 52 51 20
Reference [17] 1024×1024 2D 27 47 35

B. Multi-dimensional Array Accesses
Our second application scenario shows that CoRAM++ can

provide applications with convenient use of more complex
data structures, while giving the application developer choices
about data structure traversal and data layout in DRAM
that affect application performance. We used the the multi-
dimensional array agent, which allows the application devel-
oper to select array traversal order and data layout at run
time. Data may be stored in the common row-major order, or
may be stored in a tiled order. Data stored in tiled order can
be traversed quickly along any array dimension. The multi-
dimensional array agent can also be configured with a set of
data permutation engines, which can be activated at run time
to reorder data. In these experiments, we used permutation
engines to recover rows from tiles of data and transpose tiles
of data. We calculated 2D and 3D DFTs, which were each
decomposed into a 1D DFT along each dimension, using DFT
kernels that were generated using Spiral [15].
1. Strided Array Accesses

As a baseline, we first computed a 1024×1024 double
precision 2D DFT using row major data. This computation
required strided data accesses during column traversal, which
were inefficient because they caused misses in the DRAM row
buffer. Although our implementation reduced the number of
strided accesses by transferring blocks of 16 row elements at
a time, we only achieved 40% of peak throughput due to the
inefficient strided column traversal.
2. Tiled Array Accesses

We continued our evaluation using CoRAM++ tiled data
layout support, which allowed efficient array traversal along
any dimension. Akin, et al. demonstrated this approach for
2D and 3D DFT calculations on FPGAs [17]. Their cal-
culation uses the same Spiral-generated DFT and streaming
permutation engines as used in this paper, but uses a custom
data transfer engine dedicated to this particular tiled array
traversal, and custom data paths between DRAM controllers,
permutation engines, and DFT cores.

In contrast, the CoRAM++ 2D and 3D DFTs used the multi-
dimensional array agent, allowing run-time selection of array
traversal order and in-memory data layout, and an automati-
cally generated datapath to memory. This flexibility allowed
us to use a single FPGA programming file for each DFT size.
We computed double precision 2D and single precision 3D



DFTs using 4 kilobyte tiles, half of the DRAM row buffer size
on the DE4. We evaluated computation performance starting
from both row-major and tiled data layouts. Figure 4 shows
the performance of the following experimental configurations:
1) CoRAM++ Row-inline started with row-major data, con-
verted the data to tiled format inline during the first phase of
computation, and restored row-major format during the last
phase of computation.

2) CoRAM++ Row-extrapass was similar to CoRAM++
Row-inline, but restored row-major format using an extra
pass through memory after the computation was complete.

3) CoRAM++ Tiled started with and kept data in a tiled data
layout throughout the computation.

4) Reference shows results from [17], which also used a tiled
data layout throughout the computation.

The CoRAM++ Row-inline computation was very slow,
because the converting data back to row-major format during
the final phase of the computation required the same strided
accesses that were required within the row-major computation
discussed above. The CoRAM++ Row-extrapass computa-
tion improved performance in spite of the extra pass through
memory because it avoided strided memory accesses. Finally,
the CoRAM++ tiled computation allowed the CoRAM++
DFT match the performance of the reference calculation and
achieve 90% of peak performance.

Table IV shows that the CoRAM++ DFT incurred higher
resource utilization than the reference DFT. While the
CoRAM++ multi-dimensional DFT implementation did have
more overhead, this overhead paid for the flexibility and ease
of use provided by the CoRAM++ programming environment.
The reference DFT used a hand-designed data path, memory
address generation limited to the tiled array traversal in a fixed
dimension order, and did not include support for transferring
data to the FPGA from a host computer. In contrast, the
CoRAM++ multi-dimensional DFT used an automatically gen-
erated NoC for data distribution, supported run-time selection
of array layout in DRAM and array traversal method, and
included the host computer interface to transfer data between
the host computer and FPGA.

C. Linked List Accesses
Our final application scenario shows how data-structure-

specific application-level interfaces can simultaneously sim-
plify application development and improve performance. In
particular, we show that connecting data-structure-specific
components directly to a DRAM interface can portably im-
prove the performance of pointer-based data structures by
targeting FPGAs from both Altera and Xilinx.

This application scenario traversed linked lists and merged
sorted linked lists in place. Each experiment ran the control
threads, kernel, and agents at 100 MHz. Linked list nodes
contained a 4 byte pointer to a data payload and a 4 byte
pointer to the next node. Data payloads matched the width of
the DRAM controller on each FPGA—64 bytes on the DE4
and ML605, and 128 bytes on the ZC706. We evaluated 5
different ways to traverse and merge linked lists:

Next Pointer Data Pointer 

Linked List Data Payload data 

“Best Case” 

Linked List Data Payload data 

“Worst Case” 
8k 

Data layout in DRAM: 

Node Payload 
Linked List Structure: Pointers are 4 bytes, payload size matches the DRAM interface 

Fig. 5: Linked list configurations
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Fig. 6: Linked list traversal performance

1) Scratchpad-1 is the baseline implementation, and uses a
C-language linked list within the application control thread
using a typical software construction of linked list operations.
It accesses DRAM using the scratchpad agent, which was
configured to fetch a single row of data (matching the DRAM
interface width) at a time.

2) Scratchpad-8 is the same as Scratchpad-1 but fetches 8
rows of data at a time when loading data from DRAM to
exploit locality and amortize the cost of DRAM accesses.

3) Scratchpad-64 is the same as Scratchpad-1 but fetches 64
rows at a time.

4) Agent-Only uses the linked list agent to perform linked list
operations, and instantiates the hardware linked list engine
within the linked list agent (on the same side of the NoC
as the application components). The control thread triggers
linked list operations, and waits for their completion through
function calls provided by the linked list agent. These exper-
iments show the best possible performance achievable using
the original CoRAM programming environment, which could
not attach data-structure-specific logic to a DRAM interface.

5) Agent+Accelerator uses the linked list agent with the
hardware linked list engine attached to the DRAM interface
as an accelerator. The control thread triggers linked list
operations, and waits for their completion through function
calls provided by the linked list agent.

1. Linked List Traversal
Linked list traversal experiments were performed on “Best

Case” and “Worst Case” DRAM data layouts. The “Best Case”
linked list packed linked list nodes and data into contiguous
blocks, and the “Worst case” linked list separated linked list
nodes and data by 8 kilobytes, causing each DRAM access to
miss in the DE4’s DRAM row buffer, as shown in Figure 5.

Figure 6 shows the results of the traversal experiments. In
the Scratchpad experiments, increasing the number of rows
that were loaded by the scratchpad improved performance in
the “Best case,” but reduced performance on the “Worst case.”
The reason for this was that in the “Best Case,” all of the extra
data rows loaded by the scratchpad were used, but none of
these extra rows were used in the “Worst Case.” The Agent-
Only configuration delivered 1.7× the performance of the
baseline on the “Best case” data, and was slightly faster than
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Fig. 7: Sorted linked list merge performance

the baseline on the “Worst case” data, due to more efficient
linked list data processing.

The Agent+Accelerator (with a hardware linked list engine
directly connected to a DRAM interface) provided significant
performance improvements, traversing the linked list up to 9×
faster than the baseline traversal on the DE4, 8.5× faster on
the ML605, and 10.5× faster on the ZC706. This configuration
was also up to 5.2× faster than the Agent-only configuration.
These experiments show that the increased ease of use pro-
vided by CoRAM++ data-structure-specific application-level
interfaces can also portably improve performance through
including data-structure-specific logic attached directly to the
DRAM interface.
2. Sorted Linked List Merge

These experiments merged 100 pairs of sorted linked lists
which were each created by:
• Randomly assigning each of 100 keys to one list of each
pair. The keys were located in a contiguous block of DRAM
and aligned to the DRAM interface width of the FPGA.
• Creating a linked list node (pointing to the key) that had
a 50% chance of directly following the previous node in the
list, and a 50% chance of a random (8-byte aligned) location
within a 32 kilobyte address space.

Figure 7 shows the average run time for each sorted linked
list merge implementation, each of which had a standard devi-
ation of approximately 1% of the corresponding average run
time. The Agent+Accelerator linked list configuration was
once again much faster than all other linked list configurations,
due to lower latency DRAM accesses when chasing pointers.

Our linked list traversal and merge results show the advan-
tages of accelerators connected to a DRAM interface (reducing
the number of NoC round trips), and the general advantages of
a data-structure-specific approach to managing data transfers.
While the exact performance improvement over the origi-
nal CoRAM is specific to our implementation, any FPGA
programming environment that does not allow data-structure-
specific logic connected directly to DRAM interfaces would
suffer when performing pointer chasing memory accesses.

VI. CONCLUSIONS AND FUTURE WORK

As FPGAs grow larger, FPGA applications can afford
to expend resources on frameworks that simplify applica-
tion development and provide application portability. The
CoRAM++ framework conveniently and efficiently supports
simple and complex data access patterns through a library of
data-structure-specific interfaces. Our evaluation demonstrates
that CoRAM++ allows applications to saturate the bandwidth
provided by DRAM interfaces, match the performance of
hand designs, and use data-structure-specific modules that are

directly connected to a DRAM interface for up to 5.2× better
performance on data-dependent operations.

Future explorations using the CoRAM++ FPGA program-
ming environment will accelerate more data structures includ-
ing trees and graphs. We will also investigate hardware/soft-
ware codesign with the hard processor cores and caches of
hybrid CPU-FPGA systems, and target other FPGA program-
ming environments such as LEAP rather than specific FPGAs.
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