
Generating FPGA-Accelerated DFT Libraries

Paolo D’Alberto∗

Yahoo!
{pdalbert@yahoo-inc.com}

Peter A. Milder, Aliaksei Sandryhaila, Franz Franchetti
James C. Hoe, José M. F. Moura, and Markus P̈uschel
Department of Electrical and Computer Engineering

Carnegie Mellon University
{pam,asandryh,franzf,jhoe,moura,pueschel}@ece.cmu.edu

Jeremy R. Johnson
Department of Computer Science

Drexel University
jjohnson@cs.drexel.edu

Abstract

We present a domain-specific approach to generate high-
performance hardware-software partitioned implementa-
tions of the discrete Fourier transform (DFT) in fixed point
precision. The partitioning strategy is a heuristic based
on the DFT’s divide-and-conquer algorithmic structure and
fine tuned by the feedback-driven exploration of candidate
designs. We have integrated this approach in the Spi-
ral linear-transform code-generation framework to support
push-button automatic implementation. We present eval-
uations of hardware–software DFT implementations run-
ning on the embedded PowerPC processor and the recon-
figurable fabric of the Xilinx Virtex-II Pro FPGA.

In our experiments, the 1D and 2D DFT’s FPGA-
accelerated libraries exhibit between 2 and 7.5 times higher
performance (operations per second) and up to 2.5 times
better energy efficiency (operations per Joule) than the
software-only version.

1 Introduction

The goal of a hardware-software partitioned implemen-
tation is to achieve the fast execution time of a hardware
implementation while retaining the flexible programma-
bility of a software implementation. Typically, the most
computation-intensive kernels that are conducive to hard-
ware acceleration are extracted from an algorithm and real-
ized as hardware, while the remaining computations are car-
ried out in software. In such a scenario, the hardware ker-

∗The author worked on this project during his post-doctoratefellowship
at the ECE department in CMU

nels are utilized in different contexts under software control.
Thus, the hardware–software implementation combines the
flexibility of software and the performance benefits of hard-
ware.

In general, the determination of an optimal partitioning
strategy while satisfying a set of constraints is an NP-hard
problem [1] and several heuristic methods for its solution
have been proposed (e.g., [8,9]). In this paper, we present a
domain-specific approach to generating high-performance
hardware–software implementations of fast Fourier trans-
form algorithms (FFT). The partitioning strategy is based
on heuristics derived from the FFT’s divide-and-conquer al-
gorithmic structure and further refined by feedback-driven
exploration of candidate designs.

The discrete Fourier transform (DFT) is an important
primitive underlying many DSP applications. Fast algo-
rithms to compute the DFT—called FFT algorithms—have
been studied extensively and they are known to exhibit a
regular structure (i.e., an FFT algorithm decomposes a large
DFT into many smaller DFTs recursively). From this gen-
eral structure, we infer that the hardware accelerated kernels
must be in the form of throughput-optimized DFT cores for
small problem sizes. When considering two-power prob-
lem sizes (i.e., DFTs on2n points), we only need to con-
sider two-power sized DFT kernels (i.e.,DFT2k). By off-
loading the appropriate kernels into hardware, the software
receives the benefit of hardware acceleration and yet can
still compute arbitrary (sized) DFTs on top of the available
kernels. Different kernels synthesized in hardware yield dif-
ferent performance (e.g., operations per second) and neces-
sitate different amounts of resources (e.g., logic or number
of BRAM).

As a consequence, the DFT partitioning problem be-
comes the problem of selecting the appropriate set of

throughput-optimized two-power sized DFT cores to sat-
isfy a given resource constraint (logic, power, energy) while
maximizing a scalar metric, such as performance. We
present our solution to this problem in two parts. First,
in what we call the forward design problem, we make use
of the Spiral [14] generator framework to automatically
produce a hardware–software implementation given a pre-
specified partitioning strategy, in our case defined by the set
of DFT cores available in hardware. These hardware cores
are generated using Spiral [12, 13] and are often faster and
smaller than other available implementations. Second, we
solve the inverse design problem: given the desired con-
straints and an objective function, select the optimal set of
two-power-sized DFT cores to include in hardware. To-
gether, the overall design generation problem is solved by
first solving the inverse design problem by emulating the
hardware cores (i.e., without synthesizing any DFT cores)
and then the resulting forward design problem, given the
candidate hardware cores. In solving the inverse design
problem, a simple scalar optimization metric (e.g., runtime)
is used to maximize the performance for a single DFT prob-
lem size. The scalar metric can also be defined as the aver-
age performance over multiple problem sizes (to optimize
a DFT library) or a composite function that takes into ac-
count a combination of performance, power, and logic cost
simultaneously.

As a demonstration, we present experimental results
of applying our automatic generator to create hardware–
software implementations of the DFT for the Xil-
inx XUP2VP development board with a Virtex-II Pro
XC2VP30 FPGA. The 1D and 2D DFT problems of two-
power and non-two-power sizes are partitioned into soft-
ware (running on one of the two PowerPC cores in the
FPGA) and hardware (comprised of the DFT cores instanti-
ated in the reconfigurable fabric). The specific partitioning
strategy to be decided in these experiments is which two
two-power DFT kernels, ranging between size25 to 210,
must be synthesized in hardware to maximize a single prob-
lem’s performance or the average library performance. Our
evaluation includes the optimization of runtime, energy and
power, and thus their Pareto tradeoff. In this paper, we fo-
cus solely on hardware–software solutions for embedded-
system implementations; for example, see [14] for high-
performance software solutions or [12,13] for custom hard-
ware solutions.

Synopsis. In Section 2, we briefly survey the related
work. In Section 3, we present the necessary background
for the DFT, Spiral and our evaluation platform. In Sec-
tion 4, we first present the forward design problem of how
to generate a concrete implementation from a DFT formula
and a partitioning decision. In Section 5, we present the in-
verse design problem of arriving at the optimal partitioning
strategy. We present our experimental results in Section 6

and conclude in Section 7.

2 Related Work

Companies like XtremeData and DRC are position-
ing FPGAs on the fast memory interconnects of high-
performance PC workstations. These technologies promote
a new computation paradigm with FPGAs as first-class pro-
cessing elements alongside of traditional microprocessors.

An algorithm will nevertheless need to be partitioned—
ideally with performance-critical kernels in hardware and
control-intensive kernels in software—to take advantage of
these new hybrid hardware–software platforms; an algo-
rithm needs this partitioning because 1) not all sections ben-
efit from hardware acceleration and 2) hardware accelera-
tors may requirenewhardware data paths that are difficult
to synthesize onto an FPGA.

The hardware–software partitioning problem is based on
the ability to determine and isolate the part of a computa-
tion that could be realized into specialized hardware, for
which we could improve performance, energy, size or any
other composed measure. The general hardware–software
partitioning problem has been shown to be NP-hard [1]. Ef-
ficient heuristic partitioning procedures have been studied
(e.g., [8, 9]). In these works, the most difficult challenge
is in choosing the appropriate granularity of representation
in the computation graph; for example, a node can repre-
sent an instruction, a loop, a function call, or a module.
This issue is addressed by system level design languages
such asSpecSyn[5, 6]. The development frameworks for
these languages deploy search techniques and implementa-
tion strategies based on the ability to represent and manipu-
late specific solution features at various levels of abstraction
and where the user is always welcome to interact during the
design process.

The subject of this paper is the domain-specific parti-
tioning of the DFT where high-level algorithmic knowledge
greatly simplifies the viable implementation space. There
have been other scenario-specific partitioning methods de-
veloped for image processing (e.g., [16]), scalability of a
design (e.g., [19]), reactive systems (e.g., [17]) and custom
processor applications (e.g., [7]).

3 Background

We provide the necessary background on the 1D and 2D
DFT, FFTs, the program generator Spiral, and the Virtex-II
Pro platform.

DFT and FFT. The DFT is a matrix-vector multipli-
cation x 7→ y = DFTn x, wherex, y are the input and
output vector, respectively, of lengthn, andDFTn is the
n × n DFT matrix, given byDFTn = [ωkℓ

n]0≤k,ℓ<n,
ωn = exp(−2πj/n), j =

√
−1.

Algorithms for the DFT are sparse structured factoriza-
tions of the transform matrix [15]. For example, the Cooley-
Tukey fast Fourier transform algorithm (FFT) can be written
as

DFTmn → (DFTm ⊗In)Dm,n(Im ⊗ DFTn)Lmn
m . (1)

Here,Im is them × m identity matrix;Dm,n is a diagonal
matrix, andLmn

m is the stride permutation matrix, both de-
pending onm andn (see [15] for details). The Kronecker,
or tensor product is defined as

A ⊗ B = [ak,ℓB]k,ℓ for A = [ak,ℓ]. (2)

For example,

Im ⊗ DFTn =

DFTn

. . .
DFTn

 . (3)

Similarly, the 2D DFT of an input of sizem×n is given by
a matrixDFTm×n that, using the row-column method, can
be broken down as

DFTm×n → (DFTm ⊗In)(Im ⊗ DFTn). (4)

Both (1) and (4) represent divide-and-conquer algo-
rithms. For example, (1) asserts thatDFTmn x can be com-
puted in four steps by first permutingx with Lmn

m , dividing
the computation intom consecutiveDFTn subvectors of
lengthn (see (3)), scaling withDm,n, and finally dividing
the computation inton DFTm to subvectors at striden.

In fixed-point implementations, scaling is often used to
avoid overflow. This is formally captured by replacing
aboveDFTn with 1

n
DFTn in the formulas above. In par-

ticular, every so-calledbutterflyDFT2 is then succeeded by
a scaling of1

2
(i.e., each vector element is shifted right by

one bit).
Spiral. Spiral [14] is a program generation and opti-

mization system for transforms. In Spiral, the formalism
above is called SPL (signal processing language); a decom-
position like (1) is called arule. For a given transform, Spi-
ral recursively applies these rules until all transforms have
reached a pre-defined basic problem size (often 2). These
rules are then compiled to generate one algorithm repre-
sented as a matrix formula. There are many formulas for
each transform due to the choices of expansion. For ex-
ample, in (1) different factorizations can be chosen (i.e.,
different m and n). The formula is then structurally op-
timized using a rewriting system, which performs formula
level vectorization, parallelization, and loop optimizations,
if needed. Finally, the resulting formula is compiled into ac-
tual C code or Verilog. Theperformanceof the implemen-
tation (e.g., runtime, power, energy, error) is measured or
estimated and fed back into a search engine, which decides

how to modify the algorithm, using a dynamic program-
ming search. Eventually, this feedback loop terminates and
outputs thebestimplementation found. The entire process
is depicted in Figure 1.

Spiral takes a similar approach to generate hardware im-
plementations of transforms, currently restricted to the DFT
[12]. In this case a model is used to aid the feedback driven
optimization [11].

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e
a
rc

h
/L

e
a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Figure 1. The code generator Spiral

Platform: Virtex-II Pro. We demonstrate and eval-
uate our approach by generating hardware-software parti-
tioned implementations of the DFT for the Xilinx XUPV2P
development board, which contains the Xilinx Virtex-II
Pro XC2VP30 FPGA. The software portion of the parti-
tioned implementation is executed on one of the two Pow-
erPC405 processor cores embedded in the FPGA; the hard-
ware data path of the partitioned implementation is mapped
onto the FPGA’s reconfigurable fabric. The hardware and
software communicate through the DSOCM (data-side on-
chip memory) interface in the Virtex-II Pro architecture. A
block diagram of this arrangement is shown in Figure 2. We
briefly elaborate on the relevant platform parameters.

The embedded PowerPC 405 processor is a 300MHz
in-order pipelined processor supporting integer operations
only. The processor can access 512 MByte of DRAM
on the XUPV2P board with a bandwidth of approximately
80MByte/second. Each PowerPC processor is also served
by separate 1-cycle 16-KByte instruction and data caches.
We run embedded Linux 2.4.27 on the PowerPC with the
peripherals necessary to enable remote telnet through Eth-
ernet (i.e.,openssh). In this setup, the main Spiral engine
is running on a separate workstation host. Executables for
the PowerPC processor are generated, compiled, and linked
on the remote host and communicated to the XUP board via
Ethernet.

Virtex-II Pro FPGA

200 MB/sec
OCM bus

PPC 405
300 MHz

cache

memory
controller

to off-chip DDR DRAM

HW core
100 MHz

Figure 2. Virtex II Pro: hardware–software
platform for experiments.

The Virtex-II Pro XC2VP30 FPGA has 13,969 reconfig-
urable slices, 136 18-bit hard multipliers and 136 2KByte
BlockSelect RAMs (BRAMs). The DSOCM interface in
the Virtex-II Pro architecture allows the PowerPC proces-
sor to memory-map up to 16 BRAMs in the fabric with 158
MByte/sec and 198 MByte/sec in read and write bandwidth.
The reconfigurable fabric is clocked at the frequency of the
DSOCM interface (100MHz). All of our FPGA configura-
tions are created using Xilinx EDK tools.

4 Automatic Partitioning of Transforms

In this section, we explain the automatic partitioning of
the DFT for a given set of hardware accelerators. Further-
more, we explain how we map the (partitioned) formula into
inter-operating hardware and software. In this paper, we re-
strict the discussion to the 1D and 2D DFT, but the method-
ology is applicable to the domain of linear transforms.

To generate partitioned implementations for a given
transform, the Spiral system searches over a space of candi-
date algorithms that compute the transform. Different algo-
rithms lead to different hardware–software partition bound-
aries and thus different final performance.

4.1 Partitioning: Idea

Fast divide-and-conquer algorithms for the DFT are
equivalent to the recursive application of breakdown rules
like (1) and (4) (for 1D and 2D DFTs, respectively). Both
rules compute multiple smaller 1D DFTs recursively and
combine their results. The structure of these breakdown
rules directly suggests a good partitioning strategy, namely
to compute the subproblemsDFTm and DFTn in hard-
ware, and to let the software orchestrate the conquer step.
Depending on the size ofm and n, DFTm and DFTn

may need to be further factorized to use smallerDFT hard-
ware kernels that can fit within the available FPGA logic
resources.

In all of the factorizations, theDFT kernels occur in the
context of a tensor product with an identity matrix. In par-

ticular,Im⊗DFTn (see (3)) indicatesm data parallel appli-
cations ofDFTn to a vector of lengthmn. In hardware, for
a wide vector that is presented sequentially as a stream of
data flits, we can instantiate a single pipelined implementa-
tion of DFTn and reuse itm times for the complete vector.
Using the known identity

DFTm ⊗In = Lmn
m (In ⊗ DFTm)Lmn

n , (5)

we can convertDFTm ⊗In into the same form plus two
data permutations to be handled in software; these permuta-
tions do not allocate extra memory space because they man-
age data movement through the temporary buffers used by
the hardware cores.

The Spiral hardware core generator currently only gener-
ates DFT cores of two-power problem sizes. However, us-
ing (1), we can decompose the problem for other sizes into a
two-power portion and a non-two-power portion. Then, the
hardware can accelerate the former, while the latter portion
must be implemented in software. We will present experi-
mental results for this type of problem.

To summarize, based on an analysis of the DFT formula
structure, we can restrict our choices of hardware cores to
different sized streaming pipelined DFT kernel implemen-
tations. In this restricted partitioning problem, the key de-
gree of design freedom is in choosing the appropriate set of
DFT kernel sizes to be synthesized into the available FPGA
resources in order to maximize the desired metric. For most
performance metrics, this means choosing the set of kernel
sizes that maximizes the computation off-loaded from the
PowerPC processor into the FPGA fabric.

4.2 Partitioning: Formal method

We use a rewriting system [3] that constructs partitioned
FFTs for a given DFT. The partitioning algorithm is en-
coded as a set ofrewrite rulesthat operate in tandem with
breakdown rules such as (1). The input to the rewrite sys-
tem is a transform tagged “to be partitioned”, and a list of
available hardware cores. The output is one or a set of par-
titioned formulas.

Tags. Throughout the rewriting process, partitioning in-
formation is propagated usingtags. We introduce two tags:

A
︸︷︷︸

partition

and A
︸︷︷︸

HW

.

A formula A tagged withpartition needs to be partitioned;
however, its partitioning is not yet known. For a formula
A that is not tagged no further rewriting needs to be done
and it is implemented in software. For a formulaA tagged
with HW, this decision has been made andA is mapped to
hardware cores.

Rewriting rules. In order to extract hardware-mappable
sub-formulas, we utilize a set of rewriting rules summarized

Table 1. Rewriting rules for hardware–
software partitioning.

A
|{z}

partition

→ A Software only (6)

A
|{z}

partition

→ BC
|{z}

partition

Break down (7)

A B
|{z}

partition

→ A
|{z}

partition

B
|{z}

partition

Distribution (8)

DFTm ⊗In

| {z }

partition

→ L
mn

m
(In ⊗ DFTm

| {z }

HW

)Lmn

n
If DFTm in HW

(9)

DFTm ⊗In

| {z }

partition

→ DFTm

| {z }

partition

⊗In If DFTm not in HW

(10)

Im ⊗ DFTn

| {z }

partition

→ Im ⊗ DFTn

| {z }

HW

If DFTn in HW

(11)

Im ⊗ DFTn

| {z }

partition

→ Im ⊗ DFTn

| {z }

partition

If DFTn not in HW

(12)

in Table 1. For example, rule (8) distributes the partition tag
across factors of a product; rule (9) implements the iden-
tity (5), effectively mappingDFTm ⊗In to the form (3)
compatible with streaming pipelined DFT cores. Note that
any rule where the left side is untagged (as (1) and (4)) can
be applied “inside” a tagged expression, leaving the tag un-
changed.

Base cases. When the desired set of hardware DFT ker-
nel sizes is known, those DFT kernels are encoded asbase
caseswhich cannot be broken down further. The base case
rule (11) matches subformulas of the formIm ⊗ DFTn

whereDFTn is a hardware supported DFT kernel size. This
is because a streaming pipelined DFT core efficiently han-
dles any number of consecutive, data-parallel applications
to an input stream.

Lastly, the software termination rule (6) is the rule in-
dicating that everything that cannot be further rewritten is
implemented in software. This rule is used when no other
rules apply, ensuring that a subformula is mapped to hard-
ware whenever beneficial (e.g., determined by the feedback
system).

Rewriting process. The input to the rewriting system is
a tagged transform, for instance

DFTn
︸ ︷︷ ︸

partition

or DFTm×n
︸ ︷︷ ︸

partition

.

In a final partitioned formula, the tag “partition” has been

removed, and all subformulas are either untagged or tagged
as “HW”.

The rewriting system contains three rule sets: 1)break-
down rules(1) and (4), 2)partitioning rules(8)–(12), and
3) thecleanup rule(6).

Example. We show a partitioning example of a
DFTmnr, wherer is a small odd prime number (for in-
stance 3 or 5), andm and n are two-powers (e.g.,m =
2ℓ). We assume the availability of two streaming hardware
cores,Ik⊗DFTm, andIk⊗DFTn. The input to our rewrit-
ing system is the tagged problem specification,

DFTmnr
︸ ︷︷ ︸

partition

.

The rewriting system first applies (1), producing subprob-
lems of sizemn and r. Then, the partitioning rule set is
applied. In the next breakdown step, the system applies (1),
reducing the problem of sizemn into m andn. The parti-
tioning rule set is applied again, and finally, the cleanup rule
(6) is applied, leading to the partitioned formula (13) (seen
in Figure 3). The search space of all partitioned formulas is
obtained by enumerating all possible choices of parameter-
izations whenever (1) is applied.

Next we explain how a partitioned formula like (13) is
mapped to hardware and software.

4.3 Software and Hardware Generation

Mapping a partitioned formula like (13) to an FPGA-
accelerated program for the PowerPC requires three steps:
1) generating software for the untagged parts, 2) generating
the required hardware designs, and 3) interfacing with the
accelerators from within the generated software.

Software. We use the standard fixed-point code genera-
tion process of Spiral [4,14] to generate software implemen-
tations for the untagged parts of a formula. The hardware
portions of the formula are dispatched to the DFT cores in
the FPGA fabric via a specialized hardware function-call
interface.

Hardware. We use Spiral’s DFT IP core generator
[12,13] to generate hardware cores implementing a stream-
ing version ofIm ⊗ DFTn for a two-powern. For a DFT
core of a given size, it is possible to compute the DFT of a
smaller two-power size by interleaving the smaller vector’s
elements with zero elements (i.e., up-sampling in time); the
results are in the leading elements of the output vector (i.e.,
periodic in frequency). In other words, each instantiated
DFTn core actually provides a set ofvirtual coresfor the
smaller DFTs of sizesn/2, n/4, etc. The disadvantage of
using the virtual cores is that they have the same latency as
computing the larger native-sized DFTs. Fortunately, our
primary performance concern is in the throughput of re-
peated DFT computations. By overlapping multiple DFT

DFTmnr
︸ ︷︷ ︸

partition

→
(
DFTr ⊗Imn

)
Dr,mn

{[
Ir ⊗

(
Lmn

m (In ⊗ DFTm
︸ ︷︷ ︸

HW

)Lmn
n

)]
Dm,n(Im ⊗ DFTn

︸ ︷︷ ︸

HW

)Lmn
m

}
Lmnr

r (13)

Figure 3. DFTmnr partitioned for streaming hardware cores Ik ⊗ DFTm and Ik ⊗ DFTn. m and n are
two-powers and r is a small prime.

calculations in flight, we can hide the effect of the extra la-
tency completely and see no throughput penalty when using
aDFTn core to compute problem sizes down ton/4.

Interface. Figure 4 shows the architecture of two hard-
ware cores accelerating the PowerPC. The PowerPC is in
control, processing data residing in the main memory. It
communicates with the hardware cores via the DSOCM
bus, which is used to send and receive data, as well as con-
trol information. To initiate a DFT calculation, the Pow-

control

DFT
core 1

DFT
core 2

...
interface

BRAM BRAM

PPC 405

OCM bus

BRAM
interface

BRAM
interface

...

Figure 4. Architecture of the generated hard-
ware DFT IP cores.

erPC writes the DFT input data into BRAM and sets a bit
in the control registry to select the desired core size (virtual
or real) and initiate processing. The selected DFT core be-
gins streaming the data from the input BRAM, through the
streaming DFT pipeline and returns the processed data into
the output BRAM. Once all data is processed, the DFT core
sets a ready status bit in the control registry polled by the
PowerPC. The PowerPC begins retrieving the data from the
return BRAM buffer.

In order to obtain full streaming utilization, the PowerPC
loads data into the next buffer and retrieves the previous re-
sult while the hardware core is processing the current data
set. The BRAM interface implements a ring buffer for 4
sets of data, allowing 4 DFT calculations to be in flight con-
currently to hide latency.

5 Optimizing an Entire Library

So far, we have shown, in a forward design problem,
how to generate a partitioned implementation for a given
DFT and a given set of hardware cores. Next we discuss
the inverse design problem of determining the optimal set of
hardware cores based on a performance metric and resource
constraints. The overall optimized design generation prob-
lem is solved by first solving the inverse design problem and
then the resulting forward design problem.

The straightforward approach to an inverse design prob-
lem is to solve many forward design problems and search
for the best solution. This approach has been used in Spi-
ral to generate optimized software-only implementations.It
is possible since software code generation and evaluation
are fast enough to enable a feedback-driven optimization
loop. However, it is impractical to let Spiral generate and
try out all sets of hardware cores admissible under a speci-
fied area/power budget since synthesis takes on the order of
hours for each trial.

Fortunately, the timing behavior of DFT cores is ex-
tremely predictable, resembling a delay buffer of a precisely
known delay (a function of the size of the DFT). For perfor-
mance evaluation in Spiral’s search-based feedback loop, a
special version of the DFT software is used on the Pow-
erPC processor. The timing software faithfully performs all
software instructions including loads and stores to mem-
ory (through caches) and the BRAM-based hardware in-
terface. However, the expected computation delay of the
DFT core invocations is emulated in software using cycle
counters. This enables us to explore the performance space
of different DFT core sizes without actually synthesizing
or downloading any actual hardware cores. Using this ap-
proximation, we can fully explore the available hardware
core choices in typically a few hours (up to 30 minutes per
hardware-core configuration).

We have empirically verified that this modeling approach
is sufficiently accurate to support meaningful design space
exploration (e.g., Figure 5). The model predicts execution
very well especially for in-cache DFT sizes less than 512.
For the larger, out-of-cache sizes, we have seen a maximum
error of 15%, but the model accurately estimates the perfor-
mance/energy trends.

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1024 2048 4096 8192

problem size

DFT Performance
[Mop/s]

Modeled Performance

Measured Performance

DFT Energy Efficiency
[Mop/J]

0

50

100

150

200

250

300

350

400

problem size

4 8 16 32 64 128 256 512 1024 2048 4096 8192

Modeled Efficiency

Measured Efficiency

Figure 5. Quality of our performance and energy efficiency mo del. The closer the lines the better.

5.1 Pruning The Search Space

For a given transform size, there are exponentially many
formulas. In addition, allowing any combination of hard-
ware cores leads to a combinatorial explosion. To make our
approach feasible we need to prune this search space in ad-
dition to speeding up evaluation. We employ two pruning
ideas.

Choice of cores. Due to the overlap in functionality, la-
tency, and energy consumption arising from virtual cores,
some combinations of DFT kernel sizes are not beneficial
for joint mapping onto an FPGA. Specifically, the possibil-
ity of using the virtual cores associated with each real DFT
core dramatically reduces the number of sensible hardware
configurations. This claim is made specific in Section 6.2,
where a performance analysis of virtual cores is given.

Dynamic programming. We reduce the algorithm
search space by taking advantage of the recursive nature
of transform algorithms. Experiments show thatdynamic
programming(DP) is a viable method to optimize these al-
gorithms. The DP methodology is based on the assumption
that the performance of a subproblem does not depend on
its context. For instance, this means that the performance of
DFTn is assumed the same in the context ofIm ⊗ DFTn

or DFTn ⊗Im.

To find the best solution for a given problem (say,
DFTn), DP tries all applicable breakdown rules (in this
paper, Cooley-Tukey FFT (4) only). For each applicable
rule, DP first recursively finds the best solutions for its sub-
problems and all rule parameterization (in our example, all
DFTk andDFTm with km = n). It then finds the best
solution for the original problem (DFTn) by evaluating all
parameterizations of the breakdown rule and plugging in
the best subproblem solutions that it has already found. All
problems are cached after they are evaluated, accelerating
the search for any future overlapping problems.

6 Experimental Results

In this section, we evaluate our approach on the Xilinx
Virtex-II Pro FPGA with embedded PowerPC processor by
generating FPGA-accelerated DFT libraries optimized for
both performance and energy efficiency. After specifying
the experimental setup, we first briefly consider the neces-
sary library components: Spiral generated DFT software li-
braries, Spiral generated hardware cores, and virtual cores.
Then, we evaluate a specific example of FPGA-accelerated
DFT libraries and discuss the tradeoffs between using one
core versus two cores. Finally, we evaluate in detail DFT
libraries accelerated with two hardware cores; we discuss
the tradeoffs of the hardware core choice in the perfor-
mance/area/power space. Again we stress that in all accel-
erated libraries both the software components and the hard-
ware cores are Spiral-generated (“push-button”).

In this work, we presentDFT implementations in fixed-
point precision (16 bits with 14 bits fractions). We imple-
ment scaledDFTs to avoid overflow. We do not address
the minimization of the error by using different algorithms
in finite precision; however, in Section 6.4, we will experi-
mentally address the issues of finite precision errors arising
from different algorithms and partitioning.

Performance metrics. We assume an operation count
of 5n log

2
n for the 1D DFTn and 5mn log

2
mn for

the 2D DFTm×n. We measureruntime performancein
pseudo Mop/s (mega-operations per second), computed
as operations [op]/runtime [µs], and energy efficiencyin
pseudo Mop/J (mega-operations per Joule), computed as
operations [op]/energy [µJ]. These metrics are scaled in-
verses of runtime and energy, respectively, and thus pre-
serve runtime and energy relations. In Pareto plots we
usenormalized runtime[ns/op] (inverse of runtime perfor-
mance) vs. power [W] andarea[slices].

Physical measurements. To obtain the required mea-
surement resolution, we perform the same computation

Table 2. Performance [Mop/s], for problems of
size 16—1024 on hardware cores of size 32—
1024.

problem size
Core size 1024 512 256 128 64 32 16

32 460 313
64 603 460 296

128 739 603 439 230
256 866 739 585 313 135
512 980 866 726 396 178 74

1024 1092 980 858 476 220 96

multiple times. We measure runtime using the PowerPC’s
cycle counter, and the power supplied to the board is de-
termined by measuring the supply current (at 5V) using an
Agilent 34401A digital multi meter. Both measurements are
acquired automatically and fed back to the Spiral search en-
gine, closing the performance tuning loop (see Fig. 1). We
compute the energy as the product of measured runtime and
power.

6.1 Performance Evaluation of Software
and Hardware

Software. Spiral-generated floating-point and fixed-
point software code is competitive with the best available
DFT software implementations across many platforms [2,
14]. The 300 MHz PowerPC typically achieve on average
100 pseudo Mop/s on in-cache DFT calculations.1

Hardware cores. We have shown Spiral-generated DFT
cores are competitive in performance and size with the Xil-
inx LogiCore DFT library for DFT sizes up to 1024 [12,13].
Table 2 reports the throughput performance (Mops/s) of the
streaming pipelined DFT cores, including when the cores
are applied to smaller problem sizes in the virtual mode.
We observe that in each case forn/2 andn/4 there is vir-
tually no performance penalty compared to the real core of
that size. The reason is that in these cases the performance
bottleneck is the data copy bandwidth of the DSOCM bus.
The extra latency incurred by virtual cores is fully hidden.
As a consequence, any two DFT hardware cores of sizen
andm (n > m) used for acceleration in larger problems
(i.e., when used in throughput mode) should be chosen to
satisfyn/m > 4.

1Note that the operation count does not comprise loads/stores, index
computations, loop bound computations and scaling. Thus, we use an
under-estimation of the number of operations actually issued.

6.2 Accelerating Software with Hardware
Cores

We now consider the first example of an FPGA-
accelerated DFT library generated by Spiral. We choose
two hardware cores:DFT64 andDFT512. Figure 6 shows
the performance impact of using one or both hardware cores
compared to a generated software DFT library.

0

100

200

300

400

500

600

700

16 32 64 128 256 512 1024 2048 4096 8192

DFT Performance
[Mop/s]

problem size

SW + DFT64

SW + DFT512

SW + DFT64 + DFT512

SW-only

Figure 6. Performance of Spiral-generated 1D
DFT software accelerated by one or two hard-
ware cores DFT64 and DFT512. Higher is bet-
ter.

Single core. Accelerating the software implementation
with a single core shows the same characteristic trend for
each of the choices. For very small sizes, employing the
hardware core does not speed up computation due to over-
head and, there, the software-only library is faster. This is
the case forn = 16 for theDFT64 core and forn ≤ 64 for
theDFT512 core.

When the problem size is between this “break-even”
point and the size of the hardware core, we observe a ramp-
up in which the highest performance is reached at the core’s
native size, for a speed-up of 2.6 times forn = 64 and 5.6
times forn = 512. In this region all computations are done
in hardware (via real or virtual cores), and software is only
used to route data in and out of the cores.

We observe a drop in performance for the first problem
size larger than the core size (n = 128 for DFT64, and
n = 1024 for DFT512) to about two times the software
performance. For this size and larger sizes a significant
amount of the computation is done in software. Neverthe-
less, the hardware acceleration provides a speed-up of at
least two times for large in-cache problem sizes. Once data
does not fit into cache atn = 8192, memory bandwidth be-
comes the main bottleneck and practically reduces all pos-
sible speedups.

Two cores. Both single core configurations have weak
spots: theDFT64 core speeds up small sizes but provides

only moderate speed-up for large sizes, and theDFT512

core provides high speed-up for medium and large sizes
but cannot speed up small sizes. By employing a system
with bothhardware cores, we leverage the positive aspects
of both cores. Figure 6 shows that a system with two cores
achieves the maximum performance of both single core sys-
tems for each problem size.

6.3 Optimizing an Entire DFT Library

Due to the nature of the 1D and 2D DFT algorithms (1)
and (4), we can speed up an entire library of two-power
and non-two-power sizes using two (or any other number
of) hardware cores. However, there are multiple possible
choices for the sizes of the hardware cores, which give dif-
ferent performance characteristics and thus tradeoffs forthe
entire DFT library.

We investigate these tradeoffs with respect to both per-
formance and energy efficiency. To compare the different
libraries (i.e., different choices of cores) across all sizes, we
useaverage normalized runtime[ns/op] andaverage power
as metrics. This choice weighs all problem sizes equally.

Choice of hardware cores: Details. Figure 7 displays
the performance and energy efficiency behavior of a two-
power 1D and 2D DFT library for different choices of two
hardware cores.

Figure 7 (a) and (b) show that for 1D DFT, there is
clearly a best configuration for each fixed problem size.
However, across all problem sizes, each configuration is the
best at least twice. Choosing the best choice across a library
is not straightforward and depends on the targeted applica-
tion context.

The shape of the energy efficiency plot is similar to the
performance plot, with the notable difference that for small
problem sizes software is the most energy-efficient choice.

Figure 7 (c) and (d) show the same evaluation for 2D
DFTs. The 2DDFTm×n has the same memory footprint as
a 1DDFTmn. All sizes larger than or equal to64× 128 do
not fit into cache, which leads to a performance degradation
for all choices of cores. As in the 1D case, smaller problem
sizes are accelerated by hardware, but software-only is more
energy efficient. The latter effect is more pronounced than
in the 1D case. Thus, the possible speed-up through FPGA
acceleration is smaller and the variance across different core
choices is less pronounced than in the 1D case.

Using two-power hardware cores we can also accelerate
libraries of non-two-power sizes by computing two-power
factors in hardware and the remainder in software. Fig-
ure 8 displays the performance for non-two-power problems
DFTn with n = 3 · 2k andn = 5 · 2k. In this situation, a
significant amount of computation—the radix-3 and radix-
5 kernels—is done in software. Nevertheless, using two
hardware cores we obtain up to 2.5 times speed-up over a

software-only implementation.

0

50

100

150

200

250

6

1
0

1
2

2
0

2
4

4
0

4
8

8
0

9
6

1
6

0

1
9

2

3
2

0

3
8

4

6
4

0

7
6

8

1
2

8
0

1
5

3
6

2
5

6
0

3
0

7
2

5
1

2
0

6
1

4
4

1
0

2
4

0

problem size

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

DFT Performance
[Mop/s]

Figure 8. Performance of Spiral-generated 1D
DFTn with n = 3 · 2k and n = 5 · 2k accelerated
by different two-core configurations. Higher
is better.

Trade-offs and Pareto analysis. Choosing different
hardware core pairs allows an exploration of trade-offs be-
tween performance and power or FPGA area across a whole
DFT library. For instance, one can choose the set of hard-
ware cores that yields the fastest DFT library (averaged over
all sizes) for a given slice or power budget.

Figure 9 shows that there is indeed room to trade run-
time for area or power. We assume a 1D DFT library for
two-power sizesn = 64, . . . , 2048. Each point represents
the average performance/power/area values for the whole
library for different pairs of hardware cores. The software-
only configuration is marked with a different symbol. Note
that in the power data we subtracted the XUP2VP develop-
ment board’s idle power consumption (3.8W).

Figure 9 (a) shows that there is a 4 times variation in both
area consumption and normalized runtime across all possi-
ble configurations. Figure 9 (b) shows that there is also a 3
times variation in the power consumed by the DFT calcula-
tions. In other words, by allowing up to 3 times more power
(or 4 times more area) to be consumed, one can speed up a
whole library up to 4 times (averaged across the library). As
there are many points between these extremes, we provide a
fine-grain choice for adapting the performance and resource
usage of a whole DFT library to application-specific needs.

6.4 Error Analysis

Finally, we show experiments detailing the error behav-
ior of our generated hardware–software libraries. We follow
the error models for fixed-point DFTs [10, 18], specialized
to our case of 16-bit precision with 14 fraction bits. We
compare the software-only library to the hardware-software

0

100

200

300

400

500

600

700

800

16 32 64 128 256 512 1024 2048 4096 8192

problem size

(a) 1D DFT Performance
[Mop/s]

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512 1024 2048 4096 8192

problem size

(b) 1D DFT Energy Efficiency
[Mop/J]

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

problem size

(c) 2D DFT Performance
[Mop/s]

0

50

100

150

200

250

300

350

400

4
 x

 4

4
 x

 8

4
 x

 1
6

8
 x

 8

8
 x

 1
6

8
 x

 3
2

1
6

 x
 1

6

1
6

 x
 3

2

1
6

 x
 6

4

3
2

 x
 3

2

3
2

 x
 6

4

3
2

 x
 1

2
8

6
4

 x
 6

4

6
4

 x
 1

2
8

6
4

 x
 2

5
6

1
2

8
 x

 1
2

8

1
2

8
 x

 2
5

6

1
2

8
 x

 5
1

2

2
5

6
 x

 2
5

6

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

problem size

(d) 2D DFT Energy Efficiency
[Mop/J]

0

50

100

150

200

250

300

350

4
 x

 4

4
 x

 8

4
 x

 1
6

8
 x

 8

8
 x

 1
6

8
 x

 3
2

1
6

 x
 1

6

1
6

 x
 3

2

1
6

 x
 6

4

3
2

 x
 3

2

3
2

 x
 6

4

3
2

 x
 1

2
8

6
4

 x
 6

4

6
4

 x
 1

2
8

6
4

 x
 2

5
6

1
2

8
 x

 1
2

8

1
2

8
 x

 2
5

6

1
2

8
 x

 5
1

2

2
5

6
 x

 2
5

6

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

Figure 7. Performance and energy efficiency of 1D and 2D DFT so ftware accelerated by different
two-core configurations. Higher is better in all plots.

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

area [slices]

(a) Area / performance Pareto

average normalized runtime [ns / op]

SW-only HW-SW

power [W]

(b) Power / performance Pareto

average normalized runtime [ns / op]

SW-only

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5

HW-SW

Figure 9. 1D DFT Area/performance and power/performance tr ade-offs (one point is a normalized
performance for a whole DFT library and a specific set of hardw are cores). Points closer to the
origin are better in both plots.

libraries considered in the performance evaluation in Fig-
ure 7.

problem size

DFT SNR
[dB]

0

20

40

60

80

100

4 8 16 32 64 128 256 512 1024 2048 4096 8192

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

Figure 10. Signal-to-noise ratio (SNR) of
Spiral-generated scaled fixed-point DFT im-
plementations.

In Figure 10, we evaluate the signal-to-noise ratio
(SNR). We see that the software library and hardware–
software libraries have very similar SNR and hardware ac-
celeration does not introduce further error.

Figure 11 shows the maximum absolute error and the av-
erage absolute error. Figure 11 (a) shows that all considered
libraries behave similarly and stay well below the theoreti-
cal upper bound for the maximum absolute error of a fixed-
point DFT, given in [18]. We see up to 20% variation in
the error. This could be exploited to obtain low-error imple-
mentations by using error as search metric in Spiral’s feed-
back loop. Figure 11 (b) shows that the average absolute
error saturates at about2−15≈3 · 10−5, which is the system
precision.

7 Conclusion

Architectures with tightly integrated FPGAs and general
purpose processors are starting to play an important role in
both embedded and high performance computing settings.
The tight integration makes it possible to offload fine and
coarse grain functionalities from processors to the FPGA
fabric, combining the strengths of both components.

In this paper we introduce an extension to the program
and hardware design generation system Spiral, that auto-
matically partitions DFT kernels across software and hard-
ware, and generates both components. In addition, our ex-
tension finds—under user-supplied resource constraints and
performance metrics—a partition choice that optimizes an
entire library, not a single problem instance.

In our experiments on a Xilinx Virtex-II Pro, the auto-
matically partitioned and generated FPGA-accelerated li-
brary has between 2 and 7.5 times higher performance and

up to 2.5 times better energy efficiency than the software-
only version.

Acknowledgment

This work was supported by DARPA through the Depart-
ment of Interior grant NBCH1050009 and by NSF through
awards 0234293 and 0325687.

References

[1] P. Arat́o, Z. Mann, and A. Orb́an. Algorithmic aspects of
hardware/software partitioning.ACM Trans. Des. Autom.
Electron. Syst., 10(1):136–156, 2005.

[2] P. D’Alberto, F. Franchetti, and M. P̈uschel. Perfor-
mance/energy optimization of DSP transforms on the XS-
cale processor. InProceeding of the 2007 International Con-
ference on High Performance Embedded Architectures and
Compilers, Lecture Notes in Computer Science, Ghent, Bel-
gium, Jan 2007. Springer.

[3] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robin-
son and A. Voronkov, editors,Handbook of Automated Rea-
soning, volume 1, chapter 9, pages 535–610. Elsevier, 2001.

[4] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop
merging for signal transforms. InProc. of Programming
Language Design and Implementation, Chicago, Jun. 2005.

[5] D. Gajski, F. Vahid, and S. Narayan. SpecSyn: an envi-
ronment supporting the specify-explore-refineparadigm for
hardware/software system design.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 6(1):84–100,
Mar 1998.

[6] D. Gajski, F. Vahid, S. Narayan, and J. Gong. SpecSyn: an
environment supporting the specify-explore-refine paradigm
for hardware/software system design. pages 108–124, 2002.

[7] J. R. Hauser and J. Wawrzynek. Garp: a MIPS proces-
sor with a reconfigurable coprocessor. InFCCM ’97: Pro-
ceedings of the 5th IEEE Symposium on FPGA-Based Cus-
tom Computing Machines, page 12, Washington, DC, USA,
1997. IEEE Computer Society.

[8] A. Kalavade and E. Lee. A global criticality/local phase
driven algorithm for the constrained hardware/software par-
titioning problem. InCODES ’94: Proceedings of the 3rd
international workshop on Hardware/software co-design,
pages 42–48, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press.

[9] B. Knerr, M. Holzer, and M. Rupp. Improvements of the
GCLP algorithm for SW/HW partitioning of task graphs. In
Prooceedings of the Fourth IASTED International Confer-
ence on Circuits, Signals, and Systems, pages 107–113, San
Francisco, CA, USA, Nov. 2006.

[10] W. Knight and R. Kaiser. A simple fixed-point error bound
for the fast fourier transform.IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 27(6):615–620, Dec
1979.

[11] P. A. Milder, M. Ahmad, J. C. Hoe, and M. Püschel. Fast
and accurate resource estimation of automatically generated
custom DFT IP cores. InProc. FPGA, 2006.

problem size

(a) DFT Maximum Error
[absolute error]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

4 8 16 32 64 128 256 512 1024 2048 4096 8192

theoretical upper bound
SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

£10
-4

problem size

(b) DFT Average Error
[absolute error]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 8 16 32 64 128 256 512 1024 2048 4096 8192

SW + DFT32 + DFT256

SW + DFT64 + DFT512

SW + DFT128 + DFT1024

SW-only

£10
-5

Figure 11. Error behavior of Spiral-generated scaled fixed- point DFT implementations.

[12] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel. Dis-
crete Fourier transform compiler: From mathematical rep-
resentation to efficient hardware. Technical Report CSSI
07-01, Center for Silicon System Implementation, Carnegie
Mellon University, 2007.

[13] G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel. Au-
tomatic generation of customized discrete Fourier transform
IPs. InProc. of the 42nd Annual Conference on Design Au-
tomation, 2005.

[14] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko,
K. Chen, R. Johnson, and N. Rizzolo. SPIRAL: Code gen-
eration for DSP transforms.Proc. of the IEEE, special issue
on ”Program Generation, Optimization, and Adaptation”,
93(2), 2005.

[15] C. van Loan.Computational Framework of the Fast Fourier
Transform. SIAM, 1992.

[16] C. Vicente-Chicote, A. Toledo, and P. Snchez-Palma. Im-
age processing application development: From rapid proto-

typing to sw/hw co-simulation and automated code gener-
ation. InPattern Recognition and Image Analysis, volume
3522 ofLecture Notes in Computer Science, pages 659–666.
Springer Berlin / Heidelberg, 2005.

[17] K. Weiß, T. Steckstor, G. Koch, and W. Rosenstiel. Exploit-
ing FPGA-features during the emulation of a fast reactive
embedded system. InFPGA ’99: Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field pro-
grammable gate arrays, pages 235–242, New York, NY,
USA, 1999. ACM Press.

[18] P. Welch. A fixed-point fast fourier transform error anal-
ysis. IEEE Transactions on Audio and Electroacoustics,
17(2):151–157, Jun 1969.

[19] C. Zhang, Y. Long, and F. Kurdahi. A scalable embed-
ded JPEG2000 architecture. InEmbedded Computer Sys-
tems: Architectures, Modeling, and Simulation, volume
3553 ofLecture Notes in Computer Science, pages 334–343.
Springer Berlin / Heidelberg, 2005.

