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ABSTRACT
Ubiquitous computing applications commonly use digital compass
sensors to obtain orientation of a device relative to the magnetic
north of the earth. However, these compass readings are always
prone to significant errors in indoor environments due to presence
of metallic objects in close proximity. Such errors can adversely
affect the performance and quality of user experience of theappli-
cations utilizing digital compass sensors.

In this paper, we propose Polaris, a novel approach to provide re-
liable orientation information for mobile devices in indoor environ-
ments. Polaris achieves this by aggregating pictures of theceiling
of an indoor environment and applies computer vision based pat-
tern matching techniques to utilize them as orientation references
for correcting digital compass readings. To show the feasibility of
the Polaris system, we implemented the Polaris system on mobile
devices, and field tested the system in multiple office buildings.
Our results show that Polaris achieves 4.5◦ average orientation ac-
curacy, which is about 3.5 times better than what can be achieved
through sole use of raw digital compass readings.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Signal pro-
cessing systems

General Terms
Algorithms, Design, Experimentation

Keywords
Orientation, digital compass, ceiling pictures

1. INTRODUCTION
Digital compass equipped mobile devices have become fairly

common now and are playing increasingly important roles in ubiq-
uitous computing application domains, such as localization [1], ac-
tivity recognition [4], photographing [12], and gaming [11].

A digital compass sensor provides the orientation of the device
relative to the magnetic north of the earth. However, when used
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within indoor environments they suffer from significant errors, due
to the existence of metallic objects in close proximity.

To compensate for compass errors, previous work has explored
different approaches, such as filtering [1], averaging [14], or in-
tegrating compass readings with gyroscopes using Kalman Filters
[8]. However, these approaches usually assume that the magnetic
interference is low, and that a ‘correct’ initial compass reading
can be obtained, otherwise compass errors will accumulate quickly
over time. Hence, these approaches perform poorly in conditions
where there is high magnetic interference.

In this paper, we propose Polaris, a system that provides reli-
able orientation information for mobile devices within indoor en-
vironments. Our approach is based on an observation that indoor
environments, such as classrooms, offices, and supermarkets, are
highly likely to have regular rectangular or square peripheries vis-
ible on their ceilings. These objects include ceiling beams, panels,
tube lamps, gas pipes, electricity wires, and ventilation fans. The
edges of these objects are usually straight, and are parallel or per-
pendicular to the orientation of the buildings. Figure 1 shows some
examples of such patterns. Polaris uses these straight lines as ori-
entation references for mobile devices to correct errors inmagnetic
compass measurements. Therefore, in indoor environments having
such ceiling patterns, when a user wants to orient her mobilede-
vice, she only needs to take a picture of the ceiling, and the orien-
tation can then be inferred by incorporating both the visualpatterns
on the ceiling and the raw magnetic compass measurements.

As a preliminary effort, we implemented the Polaris system us-
ing iPhones and HTC phones, and tested the system in multipleof-
fice buildings. Our experimental results show that Polaris achieves
4.5◦ average orientation accuracy, which is about 3.5 times better
than what can be achieved using raw compass readings.

The key contributions of this paper are as follows:

1. We propose the novel idea of using ceiling features such
as parallel and perpendicular straight line edges of ceiling-
mounted objects, to correct magnetic compass measurements
for mobile devices.

2. We implemented the Polaris system using commercial off-
the-shelf mobile phones, and show that Polaris achieves sig-
nificantly better accuracy as compared to raw compass read-
ings.

The rest of this paper is organized as follows. Section 2 moti-
vates our work and Section 3 gives a system overview of Polaris.
We describe the algorithms in Section 4 and provide evaluation re-
sults in Section 5. Related work is shown in Section 6. Finally,
Section 7 describes future work and Section 8 concludes the pa-
per.
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Figure 1: Examples of objects with parallel and perpendicular
lines on ceilings in indoor environments that can be leveraged
by Polaris. Their peripheries are emphasized using bold black
lines.

2. COMPASS ERRORS IN INDOOR ENVI-
RONMENTS

Even though digital compasses are commonly used in ubiquitous
computing applications, the limitations imposed on their accuracy
due to the existence of localized magnetic interference leads to poor
quality of performance and user experience. Previous work has
pointed out that digital compass errors up to23◦ can be observed
in indoor environments even given a correctly calibrated compass,
especially in situations where the compass sensor is placedin close
proximity to electromagnetic sources such as computers, metal cu-
bicles, and high-voltage power lines [10]. Gusenbauer et al. [6]
have pointed out that the primary source of error accumulation in
their self-contained indoor positioning system was the heading er-
ror, which was caused by the exclusive use of an electronic mag-
netic compass for heading determination. Similarly, Youssef et al.
[14] also talked about their experiences where noisy compass read-
ings led to rapid accumulation of errors in experimental results over
time.

In order to quantitatively investigate the effect of magnetic in-
terference to digital compasses indoors, we collected raw compass
readings in two different types of indoor locations namely,class-
rooms and computer labs. We also collected readings in two differ-
ent types of outdoor locations namely, basketball courts and tennis
courts. In each case, we placed an HTC G7 Desire smart phone at
four different locations, each oriented to four directionsthat were
perpendicular to each other. For each location and each direction,
50 samples were collected, resulting in a total of 200 samples per
location. To measure ground truths for the two indoor cases,we
collected compass readings outside of the building, facingtowards
the same directions as we did inside the building.

Figure 2 shows the cumulative distribution of the compass er-
rors. The median error in the two outdoor cases was 1.6◦ for the
basketball courts and 1.2◦ for tennis courts, whereas median er-
ror in the two indoor cases was 16.8◦ for the classrooms and 7.5◦

for the computer labs. These results indicate that the compass er-
rors in indoor environments are 5∼15 times higher than outdoors.
We also noticed that, the desks on which the phone was placed in
classrooms had iron supports and legs, and the air conditioners in
the rooms were a powerful source of magnetic fields. Hence, the
classroom compass readings generated much higher errors inmea-
surement of orientation. Furthermore, the maximal error observed
in the classroom case was 42.9◦.

These results indicate that digital compasses are significantly af-
fected by magnetic fields indoors and are unable to unilaterally pro-
vide reliable orientation information.
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Figure 2: The cumulative distribution of compass errors under
the four cases. The errors in the two indoor cases (classroom
and computer lab) are much bigger than those in the two out-
door cases (basketball and tennis courts) due to indoor mag-
netic interferences.

3. SYSTEM OVERVIEW
To address the inaccuracy of compass measurements, Polaris

uses ceiling patterns, i.e. parallel and perpendicular straight lines
visible on the ceiling, as orientation references for mobile devices.
This is based on two fundamental assumptions. The first assump-
tion is that parallel and perpendicular straight lines commonly exist
on ceilings. This assumption is intuitively reasonable in that when
objects, such as grid panels ofdropped ceilings, tube lamps or elec-
tricity wires, are hung on the ceilings, they are usually oriented to
be parallel or perpendicular to the ceiling edges for aesthetic con-
siderations such as visual neatness and consistency.

The second assumption is that if such straight line patternsexist
on the ceiling, they should be parallel (or perpendicular) to each
other over the entire building, indicating that the buildings are rect-
angular in shape. This assumption may not be true for some par-
ticular buildings, such as the Pentagon. However, architects A. F.
Bemis and M. J. T. Kruger have carried out surveys of buildings and
found out the majority (83% and 98% in their respective surveys)
of modern buildings are predominantly rectangular [13].

Based on these two key assumptions, we design the Polaris sys-
tem as described below. The system architecture is shown in Figure
3. Polaris leverages crowdsourcing to collect ceiling images and
raw compass readings associated with the location and orientation
from which each ceiling image was captured. When people who
choose to participate in the crowdsourcing activity are in their in-
door environments, they will be prompted to contribute ceiling pic-
tures to Polaris. This is aided by our observation that unobstructed
pictures of the ceiling are easily obtainable using the front camera
on mobile phones during the user’s normal interaction with the de-
vice. These pictures, along with raw compass readings recorded
when the pictures are taken, are then paired, time stamped and sent
to a back-end server where they are aggregated.

The server collects suchceiling picture - compass reading pairs
from multiple mobile devices in the building over a period oftime,
and creates a mapping relation between general directions of ceil-
ing patterns (i.e. parallel or perpendicular straight lines) and the
magnetic north. Since the raw compass readings are taken through-
out the entire building at different time, the effect of any localized
magnetic interference is expected to be minimized.

After creating the general mapping relation for a building,a per-
son can orient her mobile phone by simply taking a picture of the
ceiling. The ceiling patterns contained in the picture willthen be
processed by incorporating the mapping relation, and finally the
phone orientation can be determined.



Mobile Phone
1. . . n

Phone 
Placement 
Detection

Digital 
Compass

Ceiling Picture 
(Camera)

Back-End Server

Ceiling Pattern 
Detection

Phone Orientation 
Detection

Ceiling Images (Input) Compass Readings (Input)
Accelerometer 

Readings (Input)

Orientation of mobile phone relative to the magnetic north (output)

Figure 3: The system architecture of the Polaris system.

The Polaris system has the following major components:
1. Aggregating ceiling pictures through crowdsourcing.Po-

laris aggregates data from different users in the same building at
different times. For enhanced usability, it is desirable that the ag-
gregation process be automatic with minimal user participation.
Moreover, the pose of the mobile phone in the user’s hand can dis-
tort the observed orientation of ceiling patterns. Polarisaddresses
this by automatically detecting the suitable stationary and horizon-
tal phone placement when the user wishes to contribute pictures.

2. Extracting effective ceiling patterns. Ceiling pictures usu-
ally contain complex and diverse objects, such as ceiling beams,
electricity wires, fans, or fluorescent lamps with different shapes.
Variation in distances to light sources can also result in brightness
changes in the captured pictures, which make ceiling pattern detec-
tions challenging. Polaris addresses these issues using histogram
equalization and multiple edge detection techniques to robustly de-
tect straight lines.

3. Accurate estimation of mobile device orientation.Due to
the existence ofboth parallel and perpendicular lines on the ceiling,
Polaris cannot differentiate ceiling patterns that are 90◦ rotational-
symmetric, thereby causing directional ambiguities. To get correct
directions, Polaris leverages the raw compass readings on the mo-
bile phones as references, and eliminates these ambiguities.

The following sections will describe these techniques in details.

4. ALGORITHM DESIGN
Polaris leverages ‘crowdsourcing’ to obtain information regard-

ing ceiling patterns and their corresponding directions. People work-
ing in the same office building are invited to contribute ceiling pic-
tures to the system.

4.1 Aggregating Ceiling Pictures
To minimize the involvement from users, ceiling pictures have

to be taken as automatically as possible, without sacrificing picture
quality. Toward this end, one important thing to ensure is that the
phones are held horizontally by the users, facing up to the ceiling,
such that the orientations of the straight lines would not beaffected
by possible perspective-distortions of pictures.

To detect horizontal and stationary placements, Polaris keeps
tracking 3D accelerationsaX , aY , andaZ using accelerometers
in the mobile phones to detect the horizontal phone placement.
Specifically, if
8

>

<

>

:

Abs(Mean(aX)) ≤ ǫmean, and Var(aX) ≤ ǫvar

Abs(Mean(aY )) ≤ ǫmean, and Var(aY ) ≤ ǫvar

Abs(Mean(aZ) − g) ≤ ǫmean, and Var(aZ) ≤ ǫvar

, (1)
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Figure 4: The processing pipeline of the extraction of ceiling
patterns.

Figure 5: Pattern extraction of a ceiling picture that contains a
fluorescent lamp. The Hough transform is capable of avoiding
the round edges of the lamp and correctly detecting straight
lines of the ceiling grid. After the Hough transform, the de-
tected straight lines are shown using bold bright lines on the
rightmost plot.

holds for 2 seconds, whereg represents the gravity of Earth, Po-
laris takes one picture of the ceiling, and transmits it backto the
server. Theǫmean andǫvar are parameters used to tolerate minor
arm vibrations of the user. In experiments, we empirically set them
to 0.03g and 0.01g, respectively.

We note that, image processing techniques could also be used
to transform a skewed ceiling view to a horizontal one given the
accelerometer readings of the phone. However, in the current im-
plementation, we focus on the placement detection approachonly.

4.2 Extracting Effective Ceiling Patterns
Ceiling pictures taken by the users usually contain complexand

diverse objects, such as ceiling beams, panels, lamps, and wires.
These objects can sometimes significantly change the brightness
and contrast of the pictures and make the detection of straight lines
challenging, especially when a fluorescent lamp is in the picture.

To address this issue, the server first converts the picturesto
grayscale images, and then equalizes the histograms of the im-
ages to reduce brightness and contrast variations [15]. Then, edges
are detected from the pictures using the ‘Canny’ and the ‘Sobel’
edge detection algorithms [3]. During our experiments, we found
that the ‘Canny’ algorithm worked well for detecting thinner lines,
whereas the ‘Sobel’ algorithm had much better robustness against
pictures that had low brightness. Finally, the standard Hough trans-
form detects straight lines in the pictures [2]. Occasionally, ceiling
pictures can contain objects with round or irregular edges,such as
lamps. However, we found that the Hough transform was robust
enough to avoid such outliers, as illustrated in Figure 5. The pro-
cessing pipeline of extracting the ceiling patterns is shown in Figure
4.

4.3 Accurate Estimation of Phone Orientations
Finding the Two Directional Axes of A Building. Along with

the ceiling pictures, the back-end server also receives rawcompass
readings from the phones. These compass readings indicate the



phone orientation relative to the magnetic north that the compass
measures when the picture is being taken by the user, which isde-
noted asαP . The Hough transform, as mentioned in Section 4.2,
detects straight lines in every ceiling picture, and also provides the
orientations of the lines relative to the phone. Assuming that most
ceiling lines are parallel or perpendicular, the server tests two hy-
potheses to find dominant line orientations: First, if more thana%
lines in one image have a dominant angle with±b tolerance, the
server considers the image to only have parallel lines, and refers
this angle as the ceiling pattern orientation relative to the phone,
which is denoted asαC(P ). Otherwise, the server considers the im-
age to have perpendicular lines and conducts a linear searchfor two
angles that are±90◦ apart and have the most lines reside on, and
consider one of the two angles asαC(P ). In the implementation,
we empirically seta andb as 90% and1◦, as discussed in Section
5.1.

Through the Cartesian coordinate transforms, a candidate orien-
tation of the building relative to the magnetic north can be derived
as

α̂C = Mod(αC(P ) + αP , 360◦), (2)

where Mod is the operation that computes the remainder of divi-
sion.

Through crowdsourcing, Polaris is able to aggregate compass
readings and ceiling pictures from all over the building. Finally,
Polaris combines all compass readings and determines candidate
orientations of the building as

αC = atan2
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(3)

whereK is the total number of ceiling pictures aggregated in the
same building.

Due to the existence of perpendicular lines on the ceiling, Polaris
cannot differentiate straight lines in a90◦-rotated ceiling picture.
Therefore, the actual orientation of the building could be eitherαC ,
αC±90◦, or αC±180◦, as shown in Figure 6.

Estimating Phone Orientations Using Polaris. To solve the
ambiguity among directional axes, when a user wants to determine
her phone’s orientation, Polaris uses the raw compass reading in the
phone as directional references. First, the user takes a picture of the
ceiling. Then, straight lines will be detected using edge detection
techniques and the Hough transform, as described in Section4.2,
along with the orientations of the lines relative to the phone, i.e.
αC(P ). Finally, the phone orientation is derived as

αP = Mod(αC − αC(P ), 360
◦), (4)

whereαC is the orientation of the building that is determined through
crowdsourcing in Equation 3. Again, the ambiguity problem will
arise. For example, when Polaris gives a value as30◦NE, the ac-
tual phone orientation could be either30◦NE, 120◦SE,210◦SW,
or 300◦NW.

To eliminate the ambiguities, Polaris refers to the raw compass
reading on the phone, and chooses the orientation value thatis the
closest to the raw compass reading as the final phone orientation
estimate. As in the example above, if the digital compass gave
47◦NE, Polaris would choose30◦NE as the final orientation esti-
mate. We would like to note that the readings given by the digital
compass may be prone to errors caused by magnetic interferences.
However, as long as the errors of the compass is less than±45◦,

α
C
 + 90∘

N
α

C 

straight lines 
on ceilings

1 2

3 4

α
P 

Figure 6: Left: Relations between the orientation of the ceil-
ing patterns αC and that of the phoneαP , both relative to the
magnetic north. Right: The four ambiguous phone orientations
that arise due to the existence of perpendicular lines on theceil-
ing and the phone’s incapability of differentiating pictures with
90◦ rotations.

Polaris is able to choose the correct orientation and solvesthe am-
biguity problem.

5. EVALUATION RESULTS
As a proof of concept, we implemented the Polaris system us-

ing iPhones (iOS 4.3.5) and HTC G7 Desires (Android 2.3.2, with
built-in AK8973 3-axis electronic compasses), and performed real
experiments in several office buildings. The server-end processing
was implemented using the Image Processing Toolboxes in MAT-
LAB. The compass readings collected on the iPhones were from
iPhone’s built-in compass app, and those on the HTC phones were
from the Android API, with tilt-compensations by default. In both
cases, the compass readings were raw data, without any filtering or
adjustments from gyroscopes. The ceiling pictures were taken us-
ing the default camera program on the phones, and were transferred
to the server through WiFi connections.

5.1 Performance of Straight Lines Detection
To get accurate orientation information, Polaris leverages ceiling

patterns, i.e. straight lines on ceilings, as orientation references. We
conducted experiments in three different buildings to evaluate the
performance of straight line detection on ceilings and the accurate
calculation of the angles between the lines relative to the phone.

The ceiling pictures was taken using an iPhone in the Main Build-
ing and Building 19 of CMU Silicon Valley campus in Mountain
View, California, and using an HTC G7 Desire phone in the Com-
puter Lab Building in the University of Science and Technology of
China in Hefei, China. In the Computer Lab Building and Building
19, we did the experiment in 10 different rooms, each having pic-
tures taken at three and five different locations, respectively. In the
Main Building, since the building features a huge public cubicle
area, we took pictures at 16 different locations in the cubicle area.

We examined the detected straight lines vs. real patterns marked
using human eyes in each ceiling picture. Furthermore, if straight
lines are detected, the difference between the detected orientation
of these lines and the ground truth is manually computed using a
protractor. If a detected orientation is within±1◦ of the manual
measurement, we consider it as a successful detection, and fur-
ther quantize its orientation difference. Table 1 shows theresults.
We found that in average the Polaris system could correctly detect
straight lines in most pictures, with a 88.5% successful detection
rate. When the brightness was moderate and the contrast was high,
the detection rate could achieve 100%.



Table 1: Experiment results of detecting straight lines on ceil-
ings and orientation estimations relative to the phones.
Locations Straight Line Detection Rates Averaged Errors

Computer Lab Building 25/30 (83.3%) 0.5◦

Main Building 16/16 (100.0%) 0.4◦

Building 19 44/50 (88%) 0.2◦

N

S

EW

Figure 7: The satellite view of Building 19, the building in
which our experiment was conducted. The star shows Build-
ing 19, and the triangle shows the lawn outside the building on
which we took ground truth orientations for the experiment.

5.2 Performance of Orientation Determination
Based on the pattern detection techniques, we evaluated theper-

formance of orientation determination of Polaris. We used the 50
pictures taken in Building 19 to build the general mapping relation
between orientations of straight lines and the magnetic north. Since
the pictures were taken at different rooms facing differentdirec-
tions, we used them to simulate the process of picture aggregations
through crowdsourcing.

To generate ground truths, we measured the actual orientation of
Building 19 (as shown in Figure 7) relative to the magnetic north
on a lawn outside of the building, to minimize effects from mag-
netic interference. Figure 8 shows the candidate directional axes
of Building 19 estimated using the 50 ceiling pictures. Since both
the positive and negative differences exist between the estimated
directions and the ground truths, the errors after averaging the can-
didates tend to diminish. The ultimate error between the estimated
directional axes and the ground truths was only3.5◦. This result
indicates that using ceiling pictures and compass readingsaggre-
gated at different places in a building to estimate the orientation of
the building is possible and accurate.

To evaluate the performance of orientation determination,a stu-
dent took an iPhone and walked inside Building 19, followinga
square-shaped route. Each edge of the route contained ten steps,
with about 0.7m intervals, toward the same direction. Aftertak-
ing each step, the student took a ceiling picture, and recorded the
compass readings using the iPhone. After the experiment, the ori-
entations of the 40 steps on the route were estimated using Po-
laris. Figure 9 shows the estimated orientations and the rawcom-
pass readings and Figure 10 shows the cumulative distributions of
the orientation errors. The median error of using the raw compass
readings was 15.5◦, whereas that of using Polaris was only 4.5◦,
about a 3.5X improvement. Furthermore, the standard deviations
and the 95th percentile errors were also reduced from 9.24◦ and
35.5◦ to 1.21◦, and 5.5◦, respectively, about 7.6X and 6.5X bet-
ter. These results indicate that Polaris significantly improves the
accuracy of orientation determination.

We would like to note that, of the 4.5◦ median error, 3.5◦ is a
static offset that is contributed from errors in detection of building
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Figure 8: The directional axes estimated using the collected
building orientations through crowdsourcing (shown in dotted
light blue lines) of Building 19. They are compared with the
ground truths. The angular error of the estimated directional
axes is about 3.5◦.

orientation. If the accuracy of determining building orientations
can be increased, the accuracy of Polaris is expected to improve, as
we will discuss in Section 7.

6. RELATED WORK
Digital compasses are predominantly used in ubiquitous comput-

ing research for determining device orientation. Their applications
range from localization [1, 10, 14], activity recognition [4], and
computer-human interaction [5].

Along with the widespread use, however, digital compasses have
been widely known to provide erroneous readings in indoor en-
vironments due to the existence of metallic objects and magnetic
fields [1, 7, 14]. There are multiple techniques that have been
proposed to compensate for compass errors. The first approach is
through the use of additional sensors, especially the techniques that
combine compasses with gyroscopes through the Kalman filtering
[10]. However, since the gyroscope does not measure the absolute
orientation, it rely on the initial value of digital compasses, which
may suffer from systematic offsets. Although some authors come
up with the idea to combine even more sensors, such as the GPS
or vision-based recognition software, to calibrate with known land-
marks, the overhead and redundancy is still concerning [10].

The second approach is through averaging of sensor readings.
For example, in GAC [14], the authors average multiple compass
readings to estimate device orientation over time. However, if the
location of the compass does not change over time, such as a user
holding her mobile phone while sitting in her cubicle, the magnetic
interference from the metallic cubicle cannot be eliminated by only
using averaging. Moreover, when magnetic anomaly is detected,
such as in the iPhone, existing methods often require frequent re-
calibration if the user is mobile.

By contrast, Polaris avoids these problems associated within-
door environments by using existing and invariant patternson the
celling. Since ceiling patterns are universal and unrelated to mag-
netic fields, Polaris can provide accurate orientations formobile
devices even under severe magnetic interferences.

7. DISCUSSIONS AND FUTURE WORK
Polaris leverages crowdsourcing to aggregate ceiling pictures as
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Figure 10: The cumulative distributions of the orientation er-
rors when using raw compass readings vs. Polaris. The me-
dian, the standard deviation, and the 95th percentile errors of
using Polaris are 3.5X, 7.6X, and 6.5X better than those of using
the raw compass readings, respectively, indicating a significant
performance improvement.

well as raw compass readings in the building. This means thatthe
system needs a sufficient amount of data before starting to provide
orientations to the users. In some certain circumstances, this pro-
cess may take days or a couple of weeks to accomplish.

As the widespread use of online map services, such as the Google
Maps and the Bing Maps, obtaining building orientations canbe au-
tomatically done using image processing techniques to the maps of
the buildings. Our preliminary experiments on determiningbuild-
ing orientations using extracted straight-line perimeters of build-
ings on Google Maps’map views achieved 0.1◦ accuracy in the
orientations of the detected lines. However, we found detecting
straight lines became much more difficult onsatellite views, pri-
marily due to the existence of cars, trees, and road marks on the
map. There are related work of robust techniques to detect building
perimeters from satellite views [9], but that is beyond the scope of
this work.

It should be noted that within Polaris’ current 4.5◦ orientation er-
ror, 3.5◦ was caused by the erroneous building orientation through

crowdsourcing, as evaluated in Section 5.2. In future work,we will
leverage online map services to eliminate the need of crowdsourc-
ing. As the accuracy through online maps is 0.1◦, we expect to
improve the accuracy of Polaris to be within 1◦.

Due to the use of image capturing and simple line detection tech-
niques in Polaris, there is a slight increase in power consumption
as compared to simply using raw compass readings from the mo-
bile device. We intend to do power profiling as part of our future
work to determine the impact Polaris has on power consumption
across different mobile devices. Moreover, as battery capabilities
and power management on these mobile devices improve, this con-
cern is expected to diminish in the future.

8. CONCLUSIONS
In this paper, we propose Polaris, a novel approach to provide

reliable orientation information for mobile devices in indoor envi-
ronments. By using computer vision techniques to robustly extract
orientation information from patterns visible on ceilings, our ap-
proach is not affected by magnetic interferences which are com-
monly present within indoor environments. As a preliminarywork,
we tested Polaris in multiple office buildings, and demonstrated that
Polaris achieved 4.5◦ average orientation accuracy, which is about
3.5 times better than what can be achieved by simply using raw
compass readings. As part of our ongoing work, we are working
on leveraging online map services in the process of determining
building orientations, and also incorporating Polaris in indoor lo-
calization and navigation systems.
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