PANDAA:

Physical Arrangement Detection of Networked Devices through Ambient-Sound Awareness

Zheng Sun (CMU)
Kaifei Chen (USTC)
Trevor Pering (independent)

Aveek Purohit (CMU)
Shijia Pan (USTC)
Pei Zhang (CMU)

Ubicomp full paper, Sept $2{ }^{\text {st }} 201$ I(Best Demo Award, too)

The Problem

"Smart Offices"

Meetings - Intuitive Content Sharing

Requirements

- Must be accurate (sub-meter).
- Work on off-the-shelf devices, minimal requirement of specialized hardware.
- Non-intrusive, automated operation and maintenance.

Related Work (Indoor Localization)

	Desired Sub-meter Accuracy	Requirement of Specialized Hardware	Non-intrusive
WiFi signal strength range/ fingerprint		Low	
Ultrasound-RF		High	
Audible chirp ranging		Low	
Ambient sound ranging (PANDAA)		Low	

Problem Related work Proposed approach Evaluation Discussion

PANDAA

A microphone

Wireless connection
(t)

PANDAA

PANDAA

PANDAA

Indoor ambient sounds:

- a door closing
- a barking dog
- human talk
- coughs
- hand claps
- a ringing phone
- finger snaps

PANDAA

Ambient Sound Processing Pipeline

Get Pairwise Distances Using TDoA

Time difference of sound arrivals (TDoA) can be expressed as

Estimate Distances Between Devices

unknown value
estimated value
Given one source S, we have one lower bound of $d_{A B}$

$$
\frac{\left|d_{S B}-d_{S A}\right| \leq d_{A B}}{\hat{\jmath}}
$$

a lower bound of $d_{A B}$

Successive Estimation of $d_{A B}$

Given multiple sources, we have overlapped bounds of $d_{A B}$

Successive Estimation of $d_{A B}$

Given multiple sources, we have overlapped bounds of $d_{A B}$

(\rightarrow Electrical \& Computer

Successive Estimation of $d_{A B}$

Given multiple sources, we have overlapped bounds of $d_{A B}$

Successive Estimation of $d_{A B}$

Given multiple sources, we have overlapped bounds of $d_{A B}$

(\rightarrow Electrical \& Computer

Successive Estimation of $d_{A B}$

Given multiple sources, we have overlapped bounds of $d_{A B}$

The maximal lower bound will get closer and closer to the actual $d_{A B}$. (\rightarrow Electrical \& Computer

A Problem!

Different Sound Source Locations

Compensate for Pairwise Errors

Only two devices A, B
S is not good for estimating the distance between
A and B

- As \#devices increases, estimation accuracy can be improved
- A sound source may be bad for one particular device pair, but good for others.

Compensate for Pairwise Errors

Only two devices A, B
S is not good for estimating the distance between A and B

If we have 2 more devices in the network
S is not good for estimating the distance between A -
B, but is good for $A-C, B-C$, and C-D

- As \#devices increases, estimation accuracy can be improved
- A sound source may be bad for one particular device pair, but good for others.

Problem Related work Proposed approach Evaluation Discussion

Meeting-room Experiments

photo

sensor nodes

- $8 \times 6 \mathrm{~m}^{2}$ meeting room
- Eight nodes (orange dots on the floor plan)
- IOO locations to generate ambient sound (grid intersections)
(\rightarrow Electrical \& Computer

Ambient Sound Used In Experiments

95 -second audio at each source location (the "grid") using loudspeaker

Types	Durations (s)	Notes
Cough	32	12 coughs from 6 individuals (2 males and 4 females)
Conversation	21	Between a male and a female
Music \#1	21	"Billie Jean"
Music \#2	21	"The Sound of Silence"

Impulsive Sound Event Detection

- Averagely I event/cough; for other types, I event/sec.
- Effective to extract impulsive sound from all four sound types.
- Detection rate is high to generate sufficient events for arrangement detection.

Estimated Locations vs. Ground-truths

\#Source: 1 Error:1.1789m

x: Sound sources $\boldsymbol{+}$: Ground truths \diamond : Estimated locations

Estimated Locations vs. Ground-truths

\#Source: 2 Error: 1.041 m

x: Sound sources + : Ground truths \diamond : Estimated locations

Estimated Locations vs. Ground-truths

Location Errors vs. \#Sound Sources

Conclusions

- Novel approach - prove that using ambient sound in physical arrangement detection is possible.
- PANDAA achieves 0.17 m accuracy in the meetingroom experiments given uniformly distributed sound sources.

