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ABSTRACT
Future ubiquitous home environments can contain 10s or
100s of devices. Ubiquitous services running on these de-
vices (i.e. localizing users, routing, security algorithms) will
commonly require an accurate location of each device. In
order to obtain these locations, existing techniques require
either a manual survey, active sound sources, or estimation
using wireless radios. These techniques, however, need ad-
ditional hardware capabilities and are intrusive to the user.
Non-intrusive, automatic localization of ubiquitous comput-
ing devices in the home has the potential to greatly facilitate
device deployments.

This paper presents the PANDAA system, a zero-configura-
tion spatial localization system for networked devices based
on ambient sound sensing. After initial placement of the de-
vices, ambient sounds, such as human speech, music, foot-
steps, finger snaps, hand claps, or coughs and sneezes, are
used to autonomously resolve the spatial relative arrange-
ment of devices using trigonometric bounds and successive
approximation. Using only time difference of arrival mea-
surements as a bound for successive estimations, PANDAA
is able to achieve an average of 0.17 meter accuracy for de-
vice location in the meeting room deployment.

ACM Classification Keywords
C.3 Special-purpose and application-based systems: Signal
processing systems.

General Terms
Algorithms, Design, Experimentation.

Author Keywords
Arrangement detection, networked devices, localization.

INTRODUCTION
PANDAA (Physical Arrangement Detection of Networked
Devices through Ambient-Sound Awareness) is a spatial lo-
calization technique that uses ambient sounds. By forming
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a collective understanding across a set of nodes of the time-
of-arrival for ambient audio events, PANDAA can automat-
ically determine the physical arrangement of nodes without
prior calibration of their locations. After initial deployment,
ambient sounds, such as human speech, music, footsteps,
finger snaps, hand claps, or coughs and sneezes, are used to
autonomously resolve the spatial relative arrangement of the
devices using trigonometric bounds and successive approxi-
mation.

Automatic localization of ubiquitous computing devices has
the potential to greatly facilitate the introduction of tech-
nology into consumer or other “non administrated” environ-
ments. For example, consider the simple case of a consumer
purchasing a new smart television for their home. Manual
configuration would entail the user specifying which room
the device is in, information that should be easily discernible
by the system itself. Consider, then, the difficulty in config-
uring a ubiquitous computing environment that contains 10s
or 100s of devices. As the number of devices increases, so
does the need for very-low overhead configuration mecha-
nisms. Fortunately, an increase in the number of devices also
increases the potential for collaborative techniques to handle
configuration.

Once devices are accurately positioned, the system can also
be used to localize the source of audio events themselves.
This can enable the automatic deployment of a variety of
context-aware applications, such as audio surveillance [11],
speaker localization [10], activity detection [5], and patient
and elderly monitoring [25]. In these applications, loca-
tions of audio events being monitored are of great impor-
tance causing a pronounced “chicken-and-egg”problemwhere
sensing can be used to determine the location of ambient
acoustic events, but only after the location of the sensors is
known.

The PANDAA system leverages microphones that already
exist in various consumer devices, such as laptops, tablets,
mobile phones, home theaters, smart TVs, etc. One single
microphone per device is used to detect usable segments of
ambient sound generated in a room. Next, the time differ-
ence of sound arrival (TDoA) between devices is calculated
and used to iteratively estimate inter-device distances. These
distances are then used to determine the overall arrangement
of devices. Finally multiple TDoA measurements are com-
bined to improve arrangement detection accuracy over time.

The implementation and evaluation of the PANDAA system



MicrophoneNetworked 
Devices

Ambient Sound 
(Input)

Back-End 
Server

Framing

Ambient Sound Event 
Detection

Compensate for 
Pairwise TDoA Errors

Estimated Physical Arrangment of Devices
(Output)

Audio WAV 1. Pre-processing

2. Pair-wise TDoA
DeterminationTwo-Tier TDoA 

Aggregation

3. Arrangement 
Detection

TDoA Estimation

Arrangement Detection 
for All Devices

Figure 1. The system architecture of PANDAA.

shows that calibration-free device localization is possible.
To cover broad ranges of ambient sounds, we tested the sys-
tem under different distribution of ambient sound locations
with cough, speech, and two types of music that commonly
exist in office and home environments. To deal with time-
varying indoor noises and compensate for reflections from
walls and obstacles, we tested how sound event detection,
aggregation and noise modeling techniques can be applied
to improve system performance. We show that PANDAA
can achieve 0.17m arrangement detection accuracy in real
indoor environments. And with such accuracy, the system
is able to localize sound sources to within 0.5m 80% of the
time, yielding an error level that is comparable to previous
work that used manual surveys [10, 25].

The key contributions of this paper are as follows:

1. We provide a proof of concept for a zero-configuration
spatial localization of nodes based on ambient sound sens-
ing.

2. We design a set of algorithms that leverages multi-node
collaboration to compensate for indoor ambient sound ef-
fects, such as echos and ambient noise.

3. We design an algorithm that iteratively determines and
improves the relative arrangement of the sensing nodes
over time.

The following sections provide a detailed description of the
PANDAA system, along with experimental evaluations to
show its efficacy. Then we highlight the difference between
related work and PANDAA. Finally, we conclude our work
and summarize our contributions.

THE PANDAA SYSTEM
The system architecture of PANDAA is shown in Figure 1.
Each sensor node is assumed to have a microphone that cap-
tures ambient sound, a microprocessor for basic signal pro-
cessing, and a radio for communicating results back to a cen-
tral server. In this paper, we assume all devices in the room
are placed in a 2-D plane. However, the algorithms presented
can be easily extended to cover 3-D cases. No further as-

sumptions are made about the 2-D physical location of the
devices and ambient sound sources. The devices themselves
are assumed to be wirelessly connected to the central server.
Additionally, it is assumed that the devices themselves do
not move. Time synchronization is achieved over the local
wireless network.

The PANDAA system addresses the major challenges of am-
bient sound-based arrangement detection as follows.

1. Choosing Usable Ambient Sound Segments. Ambient
sounds, such as music played on a radio, human speech,
noise from a working vacuum cleaner or a barking dog,
may vary significantly in signal-to-noise ratio (SNR). In
addition, varying proximity to the sound source can lead
to significant difference in SNR. PANDAA addresses this
challenge using an algorithm that can automatically de-
tect impulsive sounds. Impulsive sounds are short dura-
tion sounds with relatively higher amplitude, such as hu-
man cough, finger snaps, or beats in a song.

2. Correcting Inaccurate TDoA Measurements. In in-
door environments, TDoA measurements can be affected
by environmental factors, such as reflections, non-line-
of-sight (LoS) path, or ambient noise. These effects are
location-dependent and time-variant. Consider a resident
walking in the room. His/her changing location may tem-
porarily cause a few devices to lose LoS, which can cause
erroneousTDoAmeasurements. To compensate for TDoA
errors, PANDAA uses a novel two-tier TDoA aggrega-
tion algorithm that identifies sounds originating from the
same sound source and averages TDoA measurements
over them.

3. Localizing Devices FromTDoAMeasurements. TDoA
measurements from one single sound event are insuffi-
cient for estimating distance between two devices. PAN-
DAA addresses this challenge by considering TDoAmea-
surements frommultiple ambient sound sources over time,
to estimate inter-device distances and iteratively improve
accuracy.

The following sections describe in detail the algorithm de-
sign of the PANDAA system.

Choosing Usable Ambient Sound Segments
PANDAA uses a frame-based impulse detection approach to
automatically detect impulsive sounds that are distinct and
have high signal-to-noise ratios (SNR). This approach con-
sists of two steps.

First, compensating for hardware variation among devices
by eliminating eachmicrophone’s circuit noise. This is achieved
by recording a period of ambient sound under quiet condi-
tions, which is described in step two below.

Second, since circuit noise can be assumed independent to
environmental sound levels, we calculate the rootmean square
(RMS) of framed audio signals as an indicator of current
local loudness from the microphone. The minimum RMS
κc

i of the recorded audio under quiet conditions is used to
quantify circuit noise on deviceDi. For each device pairDi

andDj , the circuit noise levels κc
i(j) are subtracted from the

RMS values κi(j) of each incoming frame on the two devices
to obtain ambient sound levels. The results are then com-



Algorithm 1 Ambient Sound Event Detection
1: for each device pairDi andDj do
2: Compute κi(j) for the current frame onDi andDj

3: κi(j) ← κi(j) − κc
i(j)

4: if InEvent = NO then
5: if for either Di or Dj , or both, κi(j) ≥ κaver

i(j) · ακ

then
6: InEvent← YES // A sound event starts
7: Save the current frame onDi andDj into buffer
8: else
9: κaver

i(j) ←
κaver

i(j) +κi(j)

2

10: end if
11: else
12: if for eitherDi orDj , κi(j) ≥ κaver

i(j) · ακ then
13: Save the current frame onDi andDj into buffer
14: else
15: InEvent← NO // A sound event ends
16: end if
17: end if
18: end for

pared with iteratively updated admission thresholds κaver
i(j) .

If
κi(j) − κc

i(j) ≥ κaver
i(j) · ακ (1)

holds for eitherDi orDj , or both, an impulsive sound is de-
tected, indicating a sound event starts; otherwise, the frame
is discard as ambient noise. A sound event ends when Eq.
(1) does not hold for incoming frames on either deviceDi or
Dj .

The value κaver
i(j) tracks the average level of ambient noise at

each device, and is updated as a moving average of the cur-
rent κaver

i(j) and the RMS value of the latest discarded frame.
ακ is an RMS ratio between impulsive sounds and ambient
noises.

Using this impulsive sound detection approach, PANDAA
can automatically extract high SNR sound events from a va-
riety of ambient sound types. We observe that a smaller ακ

reduces probability of missing usable sound events, but in-
creases computational cost. During the experiments, we em-
pirically set ακ to 1.80 to reduce probability of missing dis-
tant impulsive sounds. However, an adaptive threshold could
also be applied to further reduce computation. Algorithm 1
outlines the ambient sound event detection process.

Time Difference of Arrival Estimation
After detecting a sound event, each pair of devices use audio
frames in the detected event to compute time difference of
sound arrivals (TDoA).

We denote the distance between a sound source and the two
devices as dsi and dsj , then the TDoA of device Di and Dj

is computed as

τij =
dsi − dsj

v
(2)

where v is the speed of sound. TDoA can be estimated
by maximizing the cross-correlation of received audio sig-

nals on the two devices. Due to its effectiveness for non-
stationary signals in the presence of noise and echos, we
choose the generalized cross-correlation (GCC) algorithm,
which estimates TDoA by solving

τij = arg max
τ∈R

1
K

K−1∑
k=0

Ψij [k]Cij [k]ejk 2π
k τ , (3)

whereΨij [k] is a weighting function, andCij [k] = Xi[k]X ′
j [k]

is the cross-spectrum of audio frames on deviceDi andDj ,
respectively [7, 8]. K is the number of audio samples in one
frame.

The solution to Eq. (3) can be found by using linear-search.
One variant of GCC algorithm defines the weighting func-
tion using a phase transform (GCC-PHAT) [23], and per-
forms considerably better than its counterpart version un-
der an echo-rich indoor environment. The GCC-PHAT algo-
rithm defines the weighting function as Ψphat

ij [k] = 1
|Cij[k]| .

To reduce effects from ambient noise, such as low and steady
hum from air conditioning in the room, we apply a bandpass
filter to suppress the energy components with frequencies
lower than 300Hz or higher than 6KHz. The filter is defined
as

Ψbandpass
ij [k] =

{
1 300 ≤ k

K · fs ≤ 6000
0 otherwise , (4)

where fs is the sampling rate of each microphone on the
devices. Finally the entire weighting function is defined as
Ψij [k] = Ψphat

ij [k]×Ψbandpass
ij [k].

Correcting Inaccurate TDoA Measurements
To compensate for TDoA errors caused by reflections and
ambient noises, PANDAA uses a two-tier TDoA aggregation
algorithm.

Lower Tier: Since sound events are typically tens of mil-
liseconds in length, the locations of sound sources can be
assumed to be stationary within a single sound event [8].
Based on this assumption, the lower tier aggregates cross-
spectrums Cij [k] over successive frames in the same sound
event to suppress any frame-to-frame effects that are uncor-
related. First, each device pairDi andDj uses all frames in
the current sound event to compute aggregated cross-spectrum

Cij [k] =
1
N

N−1∑
n=0

Xi,n[k]X ′
j,n[k], (5)

whereN is the number of frames in the current event. Then,
each pair uses Eq.(3) to compute TDoA for the current sound
event.

Upper Tier: While the lower-tier aggregation is sufficient
for reducing uncorrelated frame-level noise, longer lasting
ambient effects, such as a moving person blocking acoustic
LoS of several nodes, can also significantly alter the TDoA
measurements. To handle such effects, that are uncorrelated
between consecutive events, we design an upper-tier aggre-
gation that averages TDoA estimates over multiple consecu-
tive sound events belonging to the same sound source.
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Figure 2. As locations of sound sources can be physically apart, TDoA
measurements of consecutive sound events from the same source tend
to be similar (such as the ones of Event 15 and 16), whereas those from
different sources are dissimilar (such as the ones of Event 16 and 17).
This information can be used to aggregate TDoA measurements from
the same sound source and separate those from different sources.

The major challenge of the upper-tier aggregation is in sepa-
rating sound events originating from different sound sources.
Solitary devices cannot differentiate between multiple sound
sources. However, as networked systems usually have mul-
tiple devices in a room, a group of networked devices can
generate multiple TDoA measurements. For example, in
Figure 2, TDoA measurements from the same sound source
tend to be similar whereas those from different sources are
more dissimilar. Considering TDoA measurements of mul-
tiple device pairs as a high-dimensional space, sound events
from different sources can thus be separated by computing
distances between TDoA measurements.

We note that there are two types of TDoA distances that
should be considered. First, for the same sound source, dif-
ferent device pairs may experience different SNR measure-
ments. According to the ambient sound detection algorithm,
some of the device pairs may be able to detect the impulsive
sounds whereas others may not. We consider this issue as
the hearability difference between device pairs.

Second, if one device pair is able to make multiple TDoA
measurements from the current sound source, it tends to get
similar measurements with relatively small variation. We
consider this as the TDoA similarity. Sound events from the
same sound sources should be consistent in hearability and
generate TDoA values with high similarity.

Based on this intuition, we define a hearability-vector to
quantize the hearability difference between consecutive sound
events, i.e.

−→
β = {β1,2, β1,3, ...β2,3, β2,4, ...}i,j , (6)

where βi,j equals 1 if a devise pair Di, Dj is able to com-
pute TDoA from the current sound event; otherwise 0. We
also define a TDoA-vector to contain all the pairwise TDoA
values for the current sound event, i.e.

−→τ = {τ1,2, τ1,3, ...τ2,3, τ2,4, ...}i,j , (7)

where τi,j is the TDoA value for the device pairDi,Dj com-
puted through the lower-tier aggregation. Both the hearability-
vector and the TDoA-vector have ND(ND−1)

2 dimensions,
whereND is the total number of devices deployed in a room.

Then, the Hamming distance between the hearability-vectors
of the current sound event,

−−→
βcur, and that of the previous

sound event,
−−−→
βprev, is computed to quantize consistency in

Algorithm 2 Two-Tier TDoA Aggregation
1: Lower-tier aggregation:
2: for each device pairDi andDj do
3: Aggregate cross-spectrums within the current sound

event according to Eq. (5).
4: Compute TDoA values for the current sound event us-

ing Eq.(3).
5: end for
6:
7: Upper-tier aggregation:
8: for each sound event do
9: Create the hearability-vector

−−→
βcur for the current

sound event according to Eq.(6); compute the Ham-
ming distance dH between

−−→
βcur and

−−−→
βprev according

to Eq.(8).
10: Create the TDoA-vector −−→τcur using TDoA values of

the current event according to Eq.(7).
11: In the TDoA-vector, determine common elements in

which both the current and previous events have valid
TDoA values, and compute the per-dimensional Eu-
clidean distance dE between−−→τcur and−−→τprev according
to Eq.(9).

12: Compute hybrid distance dALL = dH · dE
13: if dALL ≤ dthr then
14: τij =

τij+τ ′
ij

2 , where τ ′
ij is the TDoA value of de-

vice pairDi,Dj for the previous sound events
15: end if
16: end for

hearability, i.e.

dH =
#(
−−→
βcur �= −−−→βprev)

# of device pairs
. (8)

Meanwhile, the Euclidean distance between the TDoA-vectors
of the current and previous sound events is computed to quan-
tize the similarity in TDoA values.

Since difference in hearability may result in missing ele-
ments in the two TDoA-vectors, the common elements that
both TDoA-vectors possess and which are valid, are first de-
termined. Then, the Euclidean distance is computed only
based on these common elements and finally normalized, i.e.

dE =
‖−−→τcur −−−→τprev‖

# of common elements
. (9)

Finally, the per-dimensional hybrid distance is computed as
the product of the two distances

dALL = dH · dE, (10)
which is compared with a threshold dthr to determine if the
two consecutive sound events are considered as from the
same source. If so, the TDoA values of the two events are
averaged to suppress effect from ambient noise. Otherwise,
the sound events are separated and treated as if they are from
different sources. Algorithm 2 shows the two-tier TDoA ag-
gregation process.

Localizing Devices From TDoA Measurements
To determine the physical arrangement of networked devices,
PANDAA utilizes a two step approach. 1) obtain the pair-



wise TDoA values as an estimate of the lower bound of the
inter-device distances, and 2) use the distribution of TDoA
collected over time to estimate the true inter-device distances,
from which device arrangement is derived.

Determine Pairwise Distance Using TDoA Noise Model
Consider two devices Di and Dj in a room, as shown on
Figure 2. When a sound source S1 generates a sound, TDoA
measurements of the device pair Di and Dj can be found
using Eq.(2). Denote τij · v in Eq.(2) as d̂ij,1, which is the
difference in distances from S1 to Di and Dj . According to
the triangle inequality, d̂ij,1 sets a lower bound of the real
inter-device distance dij such that dij ≥ |d̂ij,1|. As the sys-
tem detects more sounds from multiple sound sources, mul-
tiple distance differences establish a tighter lower bound of
dij such that

dij ≥ max
∀m∈M

(|d̂ij,m|), (11)

where d̂ij,m is the difference in distances from themth sound
source to Di and Dj , and M is the total number of sound
sources that have generated ambient sounds.

As the number of sound sources increases, the maximum
absolute value of all distance differences, i.e. max(|d̂ij,m|),
will increase. Given an infinite number of uniformly dis-
tributed sound sources,max(|d̂ij,m|)will finally equal to the
true inter-device distance dij if TDoA measurements have
no errors. Thus max(|d̂ij,m|) can be regarded as a good es-
timate of dij . However, in a real indoor environment, TDoA
measurements are corrupted by effects from reflections, ob-
stacles and other ambient noises, and sound sources may not
be uniformly distributed in the room. These factors make the
value max(|d̂ij,m|) deviate significantly from the true value
of dij .

To examine these effects during the estimation of inter-device
distances dij , we build a geometry model in which sound
sources are assumed uniformly distributed in the 2-D plane.

Two devices are located at (− dij

2 , 0) and (dij

2 , 0). We find
that the probability density function (pdf ) of the values of
d̂ij has three properties: 1) The pdf concentrates at values
close to dij and −dij ; 2) At values between (−dij , dij), the
pdf resembles a uniform distribution; 3) At values outside
[−dij , dij ], the pdf is 0.

To approximate this distribution, we define an empirical dis-
tribution such that: 1) In (−dij , dij), the values of d̂ij are
uniformly distributed; 2) At ±dij , the probability equals ε
times of that inside (−dij , dij); 3) Elsewhere, the probabil-
ity is 0. Since the integration of the entire probability density
function should be 1, we derive the probability distribution
of d̂ij as follows.

fX(x) =

⎧⎪⎨
⎪⎩

ε
2dij+2ε x = ±dij

1
2dij+2ε −dij < x < dij

0 otherwise
. (12)

For high SNR, TDoA values estimated by the GCC-PHAT
algorithm are shown to be normally distributed with zero

mean [15]. Therefore, we assume an additive Gaussian noise
model fY (y) ∼ N0,σ for d̂ij to take ambient noise into ac-
count. Together, the probability distribution of the noise-
corrupted d̂ij is the convolution of fX(x) and fY (y), which
is derived as

fZ(z) =
∫ +∞

−∞
fX(z − y)fY (y)dy

=
ε

2dij + 2ε
· (N0,σ(z − dij) +N0,σ(z + dij))

+
1
2

[
erf

(
z − dij√

2

)
− erf

(
z + dij√

2

)]
,

(13)

where erf(.) denotes the error function.

Arrangement Detection for All Devices
Eq.(13) provides a parametric noise model of the distribu-
tion of d̂ij . It is determined by three parameters: 1) the
actual inter-device distance dij , 2) the value of ε, and 3)
the standard deviation of the Gaussian noise distribution σ.
Therefore, we cannot simply take the maximumTDoA value
as the true inter-device distance. However, given multiple
TDoA measurements and thus multiple distance differences
{d̂ij,1, d̂ij,2,...,d̂ij,m}, dij can be estimated using a maxi-
mum likelihood estimator (MLE) that optimizes the follow-
ing nonlinear optimization problem

{dij , ε, σ}MLE = argmax
dij ,ε,σ∈R

M∏
m=1

fZ(d̂ij,m|dij , ε, σ). (14)

Maximization of Eq.(14) can be solved using various nonlin-
ear optimization techniques, such as the Levenberg-Marquardt
algorithm [4]. The process of solving Eq.(14) is out of the
scope of this work. Interested readers are referred to [4, 18].

One common problemwith most nonlinear optimization tech-
niques is that the optimization does not guarantee finding
the global optimum unless given good initial starting points.
Therefore, we create a heuristic algorithm that finds a close
approximation of the real dij value. To begin with, each de-
vice pair Di and Dj makes a histogram of all the historical
d̂ij values computed from all sound sources that have gen-
erated sound events. The algorithm consists of the follow-
ing four steps, which are illustrated on Figure 3. First, each
pair selects a% bins with the highest d̂ij values to determine
the location of the uniformly-distributed region. Second, the
value of the largest absolute x-coordinate of all the selected
bins is determined, which is denoted as p. The value of p
can approximate the area where the Gaussian noise affects.
Third, the value of the largest absolute x-coordinate of all
the historical d̂ij values is determined, which is denoted as
q. The difference between p and q can approximate the stan-
dard deviation of the Gaussian noise. Finally, each pair uses
p+q
2 as a starting point for the MLE process.

This heuristic algorithm cannot generate the actual value of
dij , but since it’s lightweight and provides a good estimate of
dij , we use it to generate a starting point in the MLE process.
Algorithm 3 outlines the process of generating the starting
point.
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Figure 3. The four steps of the heuristic algorithm to determine the
starting point for theMLE. Note that the histogram of the historical d̂ij
values shown is simulated based on the pair-wise TDoA noise model. In
this example, the real inter-device distance dij is 2.

Algorithm 3 Starting Point Determination Algorithm
1: for each device pairDi andDj do
2: Make histogram of all historical d̂ij values
3: Select a% bins that have the highest d̂ij value (Step

1)
4: Let the value of the largest absolute x-coordinate of

all the selected bins be p (Step 2)
5: Let the value of the largest absolute x-coordinate of

all historical d̂ij values of the pair be q (Step 3)
6: Determine the starting point as p+q

2 (Step 4)
7: end for

After the MLE process computes inter-device distances for
all pairs, we compute the physical arrangement of all devices
in the network using the multidimensional scaling (MDS)
techniques [21]. Originally applied in the psychologicalfield,
the MDS is a set of statistical techniques for exploring sim-
ilarities and dissimilarities in data. It takes a distance ma-
trix that quantizes inter-point dissimilarity. In our case, the
dissimilarity between points is given by the inter-device dis-
tances dij , which is estimated by d̂ij . The MDS creates a
configuration of relative coordinates for the points, between
which the Euclidean distances can approximately represent
the original distance matrix. We use these output relative co-
ordinates as the final estimates of the physical arrangement
of the devices in the room.

SYSTEM IMPLEMENTATION AND EVALUATION
To evaluate the arrangement detection techniques, we present
real experiments with a few sound source locations (fixed
speakers to localize), and many locations (ambient sound
localization). We implemented the PANDAA system using
acoustic sensing nodes and deployed them in indoor environ-
ments. Each node is built upon an LPC-P2148 prototyping
board, featuring an ARM7 60MHz CPU and 48KBmemory,
with an inexpensive microphone (Knowles MD9745APZ-
F [1]) and a Bluetooth radio for diagnosis. Figure 4 (left)
shows a PANDAA sensor node.

Experimental Traces and Setup
We conducted experiments in a 7.80× 5.96× 2.84m3 meet-
ing room in our building. The meeting room is a generic
rectangular shape as well as it contains furniture including
tables, chairs, a HDTV, a blackboard, and an electrical con-
trol desk. A picture of the room is shown on Figure 4 (right)
and a floor plan of the room is shown on Figure 5. Eight
PANDAA nodes were placed on a table at approximately

microphone

SD card

LPC-P2148
Bluetooth 
modem

Figure 4. Left: A PANDAA acoustic sensing node placed next to a
credit card. The microphone is fixed on a plastic ruler. Right: The
meeting room where our controlled and full-scale experiments were
done.
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Figure 5. A floor plan of the meeting room. A total of 100 locations
were marked as a grid (shown by dotted lines) in the meeting room and
used as ground-truth locations of sound sources.

0.8m height as shown by the numbers in Figure 5. In order
to make the system evaluation repeatable, a total of 100 loca-
tions were marked in the room, the intersection of the grid in
Figure 5 shows the location of where ambient sounds were
located.

To evaluate the system’s ability of operating with different
types of ambient sound, we selected cough, speech, and two
genres of music as representative sound types common in
indoor environments. All the sound was captured at 16KHz
using a 10bit A/D converter on each of the eight PANDAA
nodes. At the beginning of the experiments, a loud acoustic
impulse was generated using a loudspeaker to synchronize
all the nodes. During the experiments, one student was wan-
dering inside the meeting room as well as a few chairs had
been moved purposefully, generating time-varying ambient
effects including noises and acoustic non-LoS.

Controlled Experiment
In order to test the capability of the system with a few fixed
but repeatable sound locations (i.e. a few fixed speakers), we
first performed a controlled experiment in the meeting room
with six locations, as shown on Figure 5. At each location
160 human coughs were played using a loudspeaker. The
pairwise TDoA values computed from the coughs were then
used to analyze the TDoA errors. Figure 6 shows the dis-
tributions of errors, which approximately follow Gaussian
distributions with zero mean. The standard deviations (std)
for different device pairs changed slightly, with average std
value of 1.27ms. Given the speed of sound, assumed to be
343m/s in the experiments, this std value translates to about
0.44m errors in inter-device distance estimation when sound
sources are fixed but repeatable.



Figure 6. Distribution of pairwise TDoA errors for each sound source
location with Gaussian fitting curves. Note that the number of devices is
8, so each histogram represents 8×(8−1)

2
= 28 pairwise TDoA errors.

The errors approximately follow Gaussian distributions.

Full-Scale Deployment
To evaluate performance of arrangement detection using un-
predictable ambient sounds, we then tested in full-scale de-
ployments using the 100 locations in the grid.

Performance of Sound Event Detection
To leverage a variety of ambient sounds, PANDAA detects
impulsive sound events from different ambient sound signals
recorded on each device. We selected coughs, speech and
two different genres of music. The first genre was rock mu-
sic (i.e. we chose Michael Jackson’s “Billie Jean”), which
features numerous clear rhythmic pulses that intuitively serve
well to generate sufficient impulsive sounds; in contrast, the
second genre was slower pop music (i.e. we chose Paul Si-
mon and Garfunkel’s “The Sound of Silence”), which was
relatively smooth and melodic. In total, we tested all the
four sound clips at each of the 100 locations in the full-scale
experiments, which are summarized in Table 1.

Experimental results show that, the sound event detection
algorithm is generalizable enough to handle the four differ-
ent sound clips. Figure 7 shows the detection of impulsive
sounds from one of the eight sensor nodes and Table 2 sum-
marizes the frequency of detections and the durations of the
detected events from all the nodes. Generally, every cough
was considered by the nodes as a single sound event because
of its distinct impulsive waveform. In addition, the “Billie
Jean” song generated a large amount of sound events. This is
explainable by considering its strong bass line. As a contrast,
the “The Sound of Silence” song and human speeches gener-
ated considerably less sound events, but still achieved about
one event per two seconds. On average, cough sounds gener-
ated 1 event/cough, and the other three sound clips generated
1 event/s. This frequency is sufficiently high to guarantee the
system to acquire a large number of sound events quickly
for arrangement detection. Using the detected sound events
from each of the sound types, we computed TDoA values.
Given the same sound source and device locations, the stan-
dard deviations of the TDoA measurements among different
sound types were similar to those observed in the controlled
experiments. Therefore, the following evaluations are based
on the combination of different sound types.

Performance of TDoA Aggregation and Separation
As shown in the controlled experiment, raw TDoA values
from the sound events contain considerable measurement

Figure 7. Sound events detected from the four sound clips. Blue: orig-
inal sound clips. Red: detected sound events. While different sound
types differ in time and spectrum properties, the event detection algo-
rithm managed to detect and extract useful sound events from all the
four tested sound clips.

Table 1. Ambient sounds used in the experiment
Type Duration (s) Note

Cough 32 12 coughs recorded by 6 individu-
als, including 2 males and 4 females

Human speech 21 A conversation between a male and
a female

Music #1 21 “Billie Jean”
Music #2 21 “The Sound of Silence”

Table 2. Frequency and duration of detected sound events
Type Freq. (events) Avg. Duration (s)

Cough 1.10/cough 0.58
Human speech 0.67/s 0.24
Music #1 (”Billie Jean”) 1.80/s 0.08
Music #2 (”The Sound of Silence”) 0.55/s 0.17

errors due to indoor echoes and ambient noises. In PAN-
DAA, the two-tier TDoA aggregation algorithm is aimed to
suppress the time-domain uncorrelated noisy effects. In the
upper-tier aggregation, accurately separating two consecu-
tive sound events that come from different sound sources is
important in improving TDoA performance. During the full-
scale experiment, we randomly selected two locations from
the grid to generate ambient sounds, forming a sound-pair.
The ambient sounds were selected among the four sound
clips. Then, multiple sound-pairs were considered by the
system for aggregation or separation. Figure 8 shows the
aggregation and separation results after the system consid-
ered 1000 randomly generated sound-pairs. The top graph
indicates that there is a high positive correlation between the
per-dimensional hybrid distances dALL of sound events and
the real physical distances between the sound sources that
have generated the events. The bottom graph shows that
as the percentage of accurately aggregated sound events in-
creases, the accuracy of sound events separation drops. This
allows us to determine a value of the threshold dthr such that
the number of accurate aggregation can be maximized while
maintaining a low false separation rate. During the exper-
iment, we empirically set dthr to 1.80. This led to 92.5%
aggregation accuracy and 93.9% separation accuracy. After
aggregating consecutive sound events, the standard deviation
of TDoA errors are reduced by about 36%. Table 3 summa-



Figure 8. Upper-tier TDoA aggregation. Top: Per-dimensional hy-
brid distances between consecutive sound events vs. the physical dis-
tances between sound sources that generate the events. Note that if
the two sound sources are identical, their physical distance (i.e. the
y-coordinate) is 0. Bottom: Value of dthr affects the accuracy of aggre-
gating TDoAs from identical sources as well as separating TDoAs from
different sources.

rizes the results comparing the standard deviation of TDoA
errors between using and without using the TDoA aggrega-
tions.

Table 3. Comparison of pairwise TDoA estimation performance be-
tween using and without using the two-tier aggregation

Std. of TDoA errors (ms) No Aggregation With Aggregation

Cough 1.86 1.16
Human speech 2.14 1.02
Music #1 1.95 1.40
Music #2 2.18 1.64

Pairwise TDoA Error Rejection Performance
During the experiment, sound sources were randomly lo-
cated at the 100 grid points shown in the room. After a
sound source was selected, its ambient sound type was cho-
sen from the four sound clips and a sound duration was set as
a random value between 0s to the maximum clip durations
shown in Table 1. The two-tier aggregation was enabled to
improve accuracy of TDoA measurements. Figure 9 shows
the performance of arrangement detection. Four approaches
to compensating TDoA errors were compared:

1. Max: using the maximum historical pairwise TDoAmea-
surements as estimates of inter-device distances dij . This
approach was used as a baseline.

2. Heuristic: using the starting points computed in Algo-
rithm 3 as estimates of dij .

3. MLE: using the starting points to initialize the MLE and
use the MLE to estimate dij .

4. MLE (ε = 0): assuming d̂ij is uniformly distributed.

The figure shows that, as the number of sound sources in-
creases, the errors of coordinate estimations drop quickly.
For approaches except the Max baseline, the estimation per-
formance becomes stable after about 10 sound sources hav-
ing generated ambient sounds. After the estimation becomes
stable, the baseline approach achieves the highest estimation
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Figure 9. Performance of arrangement detection when using different
methods to determine the inter-device distance.

error. Since pairwise TDoA errors are compensated in the
second and third approaches, both of these two approaches
reduce errors by at least 35%.

During the experiments we observed that the performance of
MLE varied considerably between different evaluation runs.
This was due to the fact that theMLEmethod tended to over-
fit the multiple TDoA measurements given that the number
of sound sources was small, which caused the value of dij

to oscillate significantly. Many techniques can be applied to
mitigate over-fitting in the MLE, such as the penalty-based
approaches or reducing the number of parameters [6]. After
testing different approaches, we chose an efficient approach
that reduced the number of parameters in MLE by setting ε

to 0. This change actually makes the values of d̂ij to be uni-
formly distributed between [−dij , dij ]. As shown on Figure
9, the fourth approach “MLE (ε = 0)” leads to the highest
accuracy of coordinate estimations, which is 0.17m. This
performance is about 2.5X better than the baseline Max ap-
proach.

Performance with Different Numbers of Sensor Nodes
We evaluate the performance limit of PANDAA when the
number of nodes is limited. Since at least three nodes are
needed to uniquely define a 2-D plane, we start to evaluate
the system by using 4, 6, and 8 nodes. Figure 10 shows the
accuracy improvement as the system evolves under different
node numbers. In the 4-node case, the convergence of coor-
dinate estimation accuracy is slower than those under 6- and
8-node cases, which requires about 20 sound sources. This
is because under fewer node numbers, the system requires
more sound sources to make accurate estimation of inter-
device distances. In contrast, we do not observe significant
difference in the ultimate accuracy among the three cases.
This is because as the number of sound sources increases,
eventually the system will always have high probability of
accurately estimating inter-device distances for every device
pair. This result shows that the performance of PANDAA
is robust against changes in the number of devices and is
mostly determined by estimation accuracy of inter-device
distances.

Performance Under Skewed Source Distributions
In real scenarios, different furniture layouts, room shapes
and resident life patterns may cause sound sources to not be
uniformly distributed (i.e. people might only walk in one
part of the room). We would like to evaluate how the per-
formance of arrangement detection changes given skewed
distributions of source locations.
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Figure 10. Performance comparison when using different numbers of
sensor nodes.
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Figure 11. The location grid is divided into nine blocks to evaluate
effects from skewed source distributions.

Therefore, we first divide the grid into nine blocks, as shown
on Figure 11, and group them into symmetrical groups. We
define four Side regions (for example, block A, B, and C
form the Up-Side region), four Corner regions (for example,
block A, B, D, and E form the Up-Left Corner region), and
Center regions (containing block B, D, E, F, and H). Then,
we select sound source locations only from within one of
these regions to evaluate the system. Table 4 summarizes
the performance under different cases.

To consider the convergence process and wait for the per-
formance of arrangement detection to become stable, the
estimation accuracy is determined after 20 sound sources
have generated sounds. For all cases, skewed distribution
of sound sources had higher errors than that of the uniformly
distribution case described earlier. In particular, sound sources
that are limited to only one side of the room (Side regions)
have higher errors due to most limited diversity of sound
source locations. However, we observe that PANDAA still
achieved better than 0.4m estimation accuracy.

Table 4. Accuracy of arrangement detection under skewed source dis-
tributions (Accuracy is determined after 20 sound sources as the per-
formance tends to be stable)

Cases Avg. Error (m) Std. Error (m)

Side Regions 0.39 0.17
Corner Regions 0.21 0.08
Center Regions 0.27 0.06

Using PANDAA to Determine Source Locations
As shown in previous evaluation, under uniformly distributed
sound sources, PANDAA achieves up to 0.17m in accuracy.
We would like to investigate how the performance of ar-
rangement detection affects that of sound source localiza-
tion. Figure 12 shows that, as the number of sensor nodes
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Figure 12. Sound source localization performance when using the PAN-
DAA system.

increases in the system, the accuracy of source localization
improves significantly. Using full sound source distribu-
tions, with 8 sensor nodes, PANDAA can localize a sound
source to within 0.5m 80% of the time, and within 0.9m
95% of the time. This performance is comparable to pre-
vious work that localizes sound sources based on manually
surveyed sensor node locations [10, 25]. Meanwhile, we
compare PANDAA’s performance with that of manually sur-
veyed device locations. Under the 8-node case, the perfor-
mance of manually surveyed locations is only about 10.5%
better than PANDAA.

RELATED WORK AND DISCUSSION
There are many techniques that have been previously ex-
plored for indoor localization. The Global Positioning Sys-
tem (GPS) [3] is only available outdoors and provides lim-
ited accuracy. In indoor settings, researchers have devel-
oped RF radio-based positioning techniques like Radio Sig-
nal Strength (RSS) ranging, RSS fingerprinting, Angle-of-
Arrival, RF Time Difference of Arrivals (TDoA), and Time
of Flight (ToF) [16]. However, localization is not good enough
for sub-meter accuracy required in many applications. Some
work using ultrasonic sensing provides higher accuracy [12,
19], but is limited due to the use of specialized sensors,
which are not ubiquitously available on electronic devices,
and often require specialized configuration or setup to pro-
duce results.

Other work has shown audible sound can be a good resource
for localizing devices. However, most of the previous work
uses on-device loudspeakers to actively emit known finite-
length repeatable signals, such as chirps or peaks [9, 17, 20].
This approach can be intrusive and sometimes annoying if
the systems require frequent location updates of their de-
vices.

Ambient sounds have also been used in outdoor environ-
ments to passively determine locations of devices [14]. While
they report 0.58m average microphone localization error in
open outdoor scenarios, their simulations show that the sys-
tem generates large errors (>2m) when sound sources are
close to the microphones indoors. In contrast, PANDAA
deals with indoor ambient effects by selectively using im-
pulsive sounds to compute TDoA, and leveragingmulti-node
collaboration to improve measurement accuracy. Scott and
Dragovic also describe an audio location sensing technique
that uses impulsive sounds [22], however it is not clear how
the system deals with indoor acoustic effects, such as echoes
and non-LoS.



TDoA is a common technique to self-localize devices in mi-
crophone arrays [2]. Prior work has discussed this technique
using both close-formed [13] or iterative methods [26] the-
oretically. For distributed sensor networks, Raykar et al.
present an approximate solution combined with nonlinear
optimization [20]. However, they make an additional as-
sumption that some loudspeakers are co-located with micro-
phones. In contrast, PANDAA assumes no a priori knowl-
edge of ambient sound types or locations of sound sources,
and we present generalizable impulsive sound event detec-
tion and TDoA aggregation algorithms to leverage ambient
sound in arrangement detection. Other TDoA approaches
for sound source localization have also been explored. Guo
and Hazas make comprehensive comparisons between TDoA
estimation techniques in terms of sound type, accuracy, power
and bandwidth requirements [10], but assume fixed micro-
phones with known locations.

This paper focuses on the design and evaluation of PAN-
DAA, thus implementation details are not fully addressed
due to the page limit and are presented elsewhere [24].

CONCLUSION
In this paper, we presented PANDAA, a novel autonomous
physical arrangement detection technique that determines de-
vice locations using ambient sounds generated in indoor en-
vironments. Using ambient sounds commonly existing in the
office and home environments (i.e. coughs, human speech,
and music), the system is able to accurately measure device
location. To show the performance of PANDAA in real de-
ployments, we deployed our system in a meeting room envi-
ronment under different source distributions, and with differ-
ent sound types. Using only TDoA as a bound for its succes-
sive measurements, PANDAA was able to achieve an aver-
age of 0.17m device location accuracy. In addition, based on
this estimation, PANDAA is able to localize sound sources
to within 0.5m 80% of the time, well within comparable er-
ror level to previous work that is based on manual surveys.

By autonomously resolving the spatial relative arrangement
using trigonometric bounds and successive approximation,
PANDAA is less intrusive and more accurate than existing
techniques. We propose our system can be used to solve the
device localization problem for many emerging indoor ubiq-
uitous computing applications. Furthermore, our automatic
localization of ubiquitous computing devices has the poten-
tial to greatly facilitate device deployments in future smart
home environments.
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