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ABSTRACT

Pervasive medical monitoring has become an ideal alter-
native to nursing care for elderly people and patients in
hospitals. Existing systems using single body-worn sensors
are often intrusive and less reliable. By contrast, ubiqui-
tous acoustic sensing techniques can support non-intrusive
and robust medical monitoring. In this paper, we describe
CoughLoc, a ubiquitous acoustic sensing system for con-
tinuous cough detection using a wireless sensor network.
We show how knowledge of sound source locations can be
leveraged to improve the detection accuracy of sound events
caused by mobile users. Experiments in indoor environ-
ments show our system achieves over 90% cough detection
performance under quiet backgrounds, and 1.6 times higher
performance compared to a baseline approach with no loca-
tion information.

1. INTRODUCTION

With recent developments in ubiquitous system technolo-
gies, automatic medical monitoring of patients via multi-
modal sensors is now a feasible alternative to supervision by
healthcare professionals [1]. One such approach is acoustic
monitoring, which enables the most critical patient condi-
tion information to be available to caregivers in real time.
This includes the frequency and intensity of coughs, sneezes,
nose blowing, throat clearing and other medical symptoms,
in addition to the monitoring of specific conditions, such as
sleep apnea [2]. Ambient acoustic monitoring can be per-
formed remotely without a significant invasion of privacy
and rapid medical response can be provided when needed.

Cough is the most common symptom for respiratory dis-
orders, including chronic lung disease, pneumonia, tubercu-
losis and influenza [3]. Continuous monitoring of objective
cough frequency and severity can greatly assist physicians
in early diagnosis of patient illnesses and the assessment of
treatment efficiency [2].

Currently, the assessment of cough mainly relies on cough
severity scores, through which patients subjectively describe
their perceived symptom. However, these scores are loosely
related to objective cough counts, and often affected by
mood, vigilance and patient expectations [2]. The state-
of-the-art automatic cough monitoring systems are ambula-
tory cough monitors [3, 4]. These systems use microphones
placed either on patients’ clothing or directly against their
body to monitor mobile users. Recordings are made over
a period of time (e.g. a day), after which analysis is per-
formed using statistical machine learning techniques. The
main drawback of these systems is their intrinsic intrusive-
ness and limited reliability. The use of body-worn devices
are usually not comfortable for some patients. Furthermore,

if the devices were damaged or not worn by the patients, the
systems would not function.

Given these issues in the automatic cough monitoring, this
paper presents CoughLoc, a distributed acoustic sensing sys-
tem for non-intrusive cough monitoring. Compared to pre-
vious work [3, 4], CoughLoc employs distant microphones
to preserve non-intrusiveness and to provide convenience to
patients. Using multiple distributed sensor nodes and micro-
phones in wards or rooms, CoughLoc also achieves robust-
ness against single node failure and is capable of monitoring
coughing patients that move inside a building.

In the design of such a system, however, several research
challenges remain: 1) Existence of various indoor noises
and echos, such as human speech, barking animals, and TV
sounds, degrades audio quality. Ambient monitoring dras-
tically increases the influence of the noises and echos com-
pared to head-mounted microphones. 2) Resource-constrained
hardware limits processing capability and bandwidth. 3)
Non-stop, high-frequency audio acquisition commonly gen-
erates large amount of raw audio data per second. Given
the bandwidth and CPU limitations, balancing tradeoffs be-
tween transmitting and processing the data is non-trivial.

To overcome inherent noises in ambient monitoring sys-
tems, we design a collaborative sensing system that uses
sound source location information to improve detection per-
formance of sound events. In addition, we address the lim-
ited resource problem by using an inter-node task partition-
ing strategy. This strategy uses the location information
to dynamically assign computationally intensive tasks to a
subset of sensor nodes, thus reduces computation and data
transmission on other nodes.

We implemented the system and evaluated it in indoor set-
tings. Experimental results show that our system achieves
over 90% accuracy under quiet environments, which are com-
petitive with previous work using body-worn sensors. Under
noisy environments, the system achieves over 80% average
accuracy under various noise backgrounds, which is 1.6 times
higher than a baseline approach with no location informa-
tion.

The contributions of this paper are as follows:

1. The design and implementation of a collaborative acous-
tic sensing system that monitors mobile coughing pa-
tients. The system leverages information of source lo-
cations to improve sound event detection performance
and is robust against ambient noisy environments.

2. An efficient task partitioning strategy that dynami-
cally balances complex acoustic processing loads on
distributed sensors based on different sound source lo-
cations over time.
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Figure 1: The difé’elence between the (vv)aveforms and
spectrums of three coughs (indicated by the rectan-
gles on the graph) recorded when (a) close to the
cough source and (b) close to a running vacuum
cleaner.
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Figure 2: When patients cough, different sensors
would be selected to compute audio features based
on their proximity to the cough locations.

3. The evaluation of the CoughLoc system for cough mon-
itoring through indoor experiments.

The rest of the paper is organized as follows. Section 2
discusses the benefits of sound source location information
for indoor acoustic sensing, and how CoughLoc leverages
this information to improve detection accuracy. Section 3
describes the location-based task partitioning strategy. Sec-
tion 4 presents evaluation results. Section 5 relates our work
to other projects. Finally, Section 6 concludes the work and
summarizes our contributions.

2. LOCATION-AWARE SOUND EVENT DE-
TECTION

Indoor acoustic sensing faces challenges in overcoming low
audio quality, especially when sound sources are far away
from microphones. In a ward, for example, when a patient
moves and coughs at different locations, sensor nodes will ex-
perience significantly different signal-to-noise ratios (SNRs)
due to their different distances to the coughing patient and
to ambient noise sources.

To show this effect, Figure 1 compares waveforms and
spectrums of three coughs recorded with different distances
from the same cough source. In this example, a vacuum
cleaner is also placed bm away from the cough source. In
Figure 1(a), the microphone is 1m from the cough source and
4m from the vacuum cleaner, while in Figure 1(b) the micro-
phone is 4m from the cough source and 1m from the vacuum
cleaner. Due to higher SNR values, the waveforms and spec-
trums in Figure 1(a) are easy to distinguish, whereas those
in Figure 1(b) have been highly contaminated by noise from
the vacuum cleaner.

Unlike radio signals, however, estimation of local SNR
values for audio signals is computationally demanding, since
both the interesting sounds (such as cough, sneeze, or human
speech) and non-interesting sounds (such as background am-
bient noise) are unknown. Thus, SNR estimation usually
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Figure 3: Tasks of the COlllghLOC system. Brown:
tasks on the CoughLoc Server. Green: tasks on
CoughLoc sensor nodes.

requires sensor nodes to either conduct local sound classi-
fication or to send audio samples back to a central server
for a network-level data fusion [5, 6]. These approaches are
highly demanding for the resource-limited systems.

However, since collaborative acoustic sensing systems can
leverage multiple distributed sensors, these systems can fol-
low the physical locations of sound events and apply a location-
aware data filtering, such that only audio likely to have high
SNR will be used for classification. Since SNR of the au-
dio signal generally degrades as the distance to the sound
source increases, this filtering can be achieved by dynami-
cally choosing sensor nodes with the shortest distance to the
sound source to extract audio features. Consequently, com-
pared to traditional SNR estimation, sensor selection can be
done with small computational overhead.

Figure 2 illustrates such a process. When a patient coughs
at location A, the system will require Sensor 2 and 6 to
extract audio features, due to their close proximity to the
patient; likewise, when a patient moves and coughs at lo-
cation B, Sensor 3 and 4 will be selected. Because of the
mobility of coughing patients, different spatially distributed
nodes can be selected separately, resulting in reduced overall
computation time and bandwidth requirements.

3. SYSTEM DESCRIPTION

CoughLoc consists of a set of distributed acoustic sensor
nodes and a server. Each sensor node has a microproces-
sor, a radio for communication, and a pair of miniature mi-
crophones that continuously capture ambient sound. The
sensor nodes are mounted on walls to reduce disturbance
to patients and obtain good line-of-sight. The server is an
off-the-shelf desktop computer. When a sound event occurs,
the system first uses directional information from multiple
nodes to localize the sound source, then selects a subset of
the nodes to extract audio features, which are transmitted
to and gathered at the server for sound classification.

3.1 Task Partitioning Strategy

In order to perform computationally-intensive sensing and
classification tasks on the resource-limited CoughLoc nodes,
we designed a task partitioning strategy to dynamically as-
sign tasks to different sensor nodes. Figure 3 shows the flow
of the partitioned tasks:

e Sound Event Detection and Angle-of-Arrival (AoA) Es-
timation. Each node detects a sound event from ambient
noise, and estimates the direction of the incoming acoustic
signal by computing angles of signal arrivals.

e Localization and Location-Aware Node Selection. The
server gathers AoA values from sensor nodes, and uses tri-
angulation to localize the sound source. Later, a subset of
sensor nodes is selected to request audio features.

e Audio Feature FExtraction. In this task, audio features
are extracted by the selected nodes from the sound event.



o Multi-Node Cough Detection. The server collects audio
features from the selected nodes, and uses Gaussian mixture
models [7] to classify the sound event into cough or non-
cough.

The tasks are modularized into three task sets, as shown
in Figure 3, and separated by dotted lines. The Server Tasks
contain centralized operations on the CoughLoc server. The
Primary Sensor Tasks contain operations on every sensor
node. The Additional Sensor Tasks contain operations only
on the selected sensor nodes.

Introducing task sets into the system design has three ad-
vantages:

1. Programming the Primary Sensor Tasks and the Addi-
tional Sensor Tasks together on each node enables dynamic
task switch based on changing environmental noise condi-
tions over time.

2. Eliminate the need of additional dedicated hardware (e.g.
DSPs), and simplify programming.

3. The server assigns the Additional Sensor Tasks to only a
subset of nodes, reducing computations and data transmis-
sions on others.

Table 1 summarizes average processing time and band-

width requirements for processing one audio frame (i.e. 16ms).

The calculation is based on extracting the 13-dimension Mel
Frequency Cepstral Coefficients (MFCC) features [5] from
each audio frame. After task partitioning, sensor nodes not
selected by the server has 33% less processing time and 98%
less bandwidth requirement.

Table 1: Processing time and bandwidth require-
ment for processing one 16ms audio frame (*selected
nodes only)

Processing Time Bandwidth

Sound Event Detection 1.1ms 0 bit
AoA Estimation 9.3ms <10 bits
Feature Extraction® 5.2ms 416 bits

3.2 Sound Event Detection

We use a frame-based admission control approach [8] to
detect possible sound events. Each sensor node first seg-
ments continuous audio samples into audio frames, then
the root mean square value (RMS) of each frame is com-
puted. To handle hardware variation, we estimate each mi-
crophone’s circuit noise by recording ambient sound under
quiet conditions. The minimum RMS value RM Scircuit of
the recorded ambient sound is used to quantify circuit noise,
and the average RMS value RM Sqaverage is used to represent
general ambient sound level. Then for each incoming frame,
if its RMS value RM S satisfies

RMS—RM S ircuir < thd-(RM Saverage—RM Seireuit), (1)

where thd is a threshold indicating ambient sound level rel-
ative to the quiet conditions, the frame is considered as am-
bient noise and discarded; otherwise, a sound event is de-
tected, and the node saves the current frame into buffer.
The node repeats this process for the next frame, until ei-
ther an incoming frame satisfies (1) and thus is discarded, or
the buffer becomes full. During the experiments we conser-
vatively set thd to 1.10 based on empirical measurements to
reduce probability of missing distant sounds. However, an
adaptive threshold could also be applied to further reduce
computation.

After detecting sound events, each sensor node aggregates
consecutive events to reduce computation. Here we use a

temporal proximity measure At to quantify the adjacency
of the events, such that all sound events detected within At
are considered to have come from the same sound source.
We note that the determination of the value of At depends
highly on types of the sound sources. For example, with
stationary sound sources generating continuous sound, such
as a microwave or a TV, a larger At value could be applied to
reduce localization computation times; however, if the sound
source generates abrupt but short sounds, such as a coughing
patient, a smaller At value must be used to avoid missing
events. Since cough sounds generally have a duration less
than 1 second, we conservatively set At to 48ms (i.e. three
audio frames).

3.3 Localization of Sound Sources

To improve the audio SNR, the CoughLoc server requests
audio features from sensor nodes that are physically close
to the sound source. We use sensor proximity to the sound
source to avoid computationally expensive SNR, estimation.
This requires robust localization of the sound source, which
consists of two steps: 1) Angle of acoustic signal arrival
(AoA) estimation, and 2) AoA-based triangulation.

AoA Estimation. After detecting one sound event, each
sensor node calculates the angle from which the signals ar-
rive by estimating the time difference of signal arrival (TDoA)
between the two microphones on each node.

AoA-based Triangulation. After estimating AoA val-
ues, the CoughLoc server gathers the estimates from sensor
nodes and uses every two estimates to triangulate a location
candidate of the sound source. Considering the skewness
of the distribution of localization errors, the server deter-
mines the source location as the median value of all location
candidates.

3.4 Location-Aware Node Selection

Given locations of sensor nodes and estimated locations of
sound sources, the server selects sensor nodes by comparing
their distances to the sound source. Because of variation of
microphone sensitivity and effects from indoor echoes and
noises, being physically close to the sound source suggests
but not guarantees a higher detection performance. In order
to take these varying factors into account, the CoughLoc
server select a sensor node if it is within d meters to the
sound source. If none of the nodes meets this criterion, the
closest node is selected implicitly.

The value of d is determined by both localization accu-
racy and degradation speed of the detection performance.
For example, if the estimated sound source location were
[ meters away from the actual sound source, the maximal
distance from the selected sensor nodes to the actual sound
source would be [ + d meters. Through evaluations in in-
door settings, we found CoughLoc could localize the sound
source to within 1m at 50th percentile. Therefore, in the
experiments we set d as 2m such that the average distance
from the selected nodes to the actual sound source would
be within 3m, which can still maintain 70% detection ac-
curacy under all tested noise conditions. We would like to
note, however, that this d value is fairly conservative given
the current localization accuracy, which can be further im-
proved by using more accurate localization algorithms, such
as the Approximate Maximum Likelihood algorithm used in

[9].

3.5 FeatureExtraction and Multi-Node Cough
Detection
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Figure 4: A CoughLoc sensor node with a credit
card placed aside. The two microphones are fixed
on a ruler to maintain constant inter-microphone
distance.

We formulate the cough detection problem as a binary
sound classification problem. The goal is to determine if
each audio frame has come from a cough sound or a non-
cough sound. To this end, we need an audio feature that is
discriminative enough to represent the uniqueness of cough
sounds. Although cough sounds can also be used for patient
identification, in this work, we restrict our focus on general
cough detection as a proof of concept. Interested readers
can be referred to [3], [4], and [10]. Generally, coughs fea-
ture broad and flat power spectrum ranging from O0Hz to
15Hz, with varying duration from 0.1s to 1s. To keep our
detection algorithm comparable with related work on cough
detection, we choose to use a relatively complex but dis-
criminative audio feature, the Mel Frequency Cepstral Coef-
ficients (MFCC) [5], which is widely used in cough detection
and other audio processing research [3, 4, 8].

Each selected node first calculates the 13-dimension MFCC
features as well as their 1st- and 2nd-order derivatives, then
transmits all the features and the derivatives to the server.
Two Gaussian mixture models (GMM) [7], each having 4
Gaussian distributions, are trained on the server to repre-
sent cough and non-cough events, respectively. After re-
ceiving MFCC features, the CoughLoc server first classifies
sound events based on audio features from each node, and
then makes a final classification using a weighted majority
vote as shown below.

K
a;
S=K- Wi —r—, (2)
; Zfil wi

where K is the number of the selected sensor nodes, a; the
per-node GMM classification result (1 for cough, 0 for non-
cough), and w; the corresponding likelihood for the ith node.

If S > K/2, a cough, otherwise a non-cough, is reported by
the server.

4. SYSTEM IMPLEMENTATION AND EVAL-

UATION

In order to evaluate the system, we built the sensor nodes
and deployed them in indoor environments for testing. Each
node features an ARM7-based 60MHz CPU, 48KB mem-
ory, and a Bluetooth modem. Each node also has two mi-
crophones that are placed 15cm apart. Figure 4 shows a
CoughLoc sensor node. Since the nodes are deployed in-
doors, we assume that the nodes are connected to a power
source. The extraction of MFCC features and the training
of GMMs are implemented using the HTK toolkit [11].

4.1 Experimental Tracesand Setup

To ensure repeatability of the experiments, we first recorded
12 minutes of clear human coughs using commercial head-
sets. To fully reproduce the coughs, the recording was per-
formed in a sound isolated room. This cough audio was then
played back using a loudspeaker during the experiments.

The experiments were done in an 8 X 6 m? room, where
ambient sound was captured concurrently by 8 CoughLoc
nodes distributed throughout the room. We placed the loud-
speaker at eight uniformly distributed locations in the room
and replayed the recorded coughs. We tested three repre-
sentative types of noises to model various indoor noises: 1)
human speech-like sound (television); 2) continuous low and
steady hum (microwave oven); 3) continuous loud and grat-
ing sound (vacuum cleaner). All the noises were generated
using corresponding devices. In the TV case, an ABC World
News program was played using a Sony HDTV, containing
human speech and music. For each sensor node, audio was
captured using the two microphones at 10bit, 16KHz and
saved on a local SD card.

Throughout the experiments, 16 microphones on the 8
sensor nodes collected a total of 40 hours of training data
(~35,400 coughs) and 5 hours of test data (~4,700 coughs).

4.2 Performance of Localizing Sound Sources

Sound source localization is a crucial task of CoughLoc.
Its accuracy affects the correct selection of sensor nodes that
tend to have better audio quality. This section presents
the evaluation of the localization performance, and discusses
possible sources of localization errors.

4.2.1 Performance of Localizing Sound Sources

As the omni-directional microphones on each CoughLoc
node features a limited acquisition range [5], we expect the
localization error to be small to provide robust and correct
node selection. Given limited inter-microphone distance,
supported sampling rates, and errors existing in AoA es-
timation, localization performance is highly limited.

In this section, we first evaluate the performance of source
localization relating to the sampling rate to explore the limit
of hardware capability. We then compare different approaches
to deal with AoA estimation errors by computing mean and
median of pair-wise source location candidates. Figure 5
shows the cumulative distribution functions of errors (CDF),
which indicate the probability of a measurement occurring
below a certain error. We tested the localization perfor-
mance under 16KHz, 8KHz, and 4KHz sampling rates by
downsampling the raw audio signals. As shown in the fig-
ure, the accuracy drops gradually as the sampling rate de-
creases. Specifically, under 8KHz, the average localization
error is 1m higher than that under 16KHz. Under 4KHz,
the errors become as large as 3.7m and 4.5m when taking
mean and median of the candidate estimates, respectively.

With 16KHz sampling rate, the localization algorithm
achieves 1m localization error at 50th percentile. As men-
tioned earlier in Section 3.4, we set node selection range d
to 2m such that the average distance from the farthest se-
lected node to the sound source will be 3m. In the following
evaluations, we keep the sampling rate at 16KHz.

4.2.2 Factors Affecting Localization Accuracy

Based on the experimental results shown in Figure 5, in
this section, we discuss two possible factors that may affect
the localization performance.

Indoor echoes. After a sound is emitted, one or many
echo sounds are bounced back and forth against walls and
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Figure 5: Cumulative distribution of errors in lo-
calizing the cough source when changing sampling
rates from 16KHz to 4KHz.

other obstacles, overlapping the original sound. The shape
and amplitude of the resulting mixed sound differ from the
original in both time and frequency domains. This makes it
difficult to distinguish time difference of sound arrivals be-
tween the two microphones on each node, leading to degra-
dation in the estimation of AoA.

Intrinsic AoA estimation errors. The estimation of
AoA values involves quantizing continuous time differences
of signal arrivals as discrete audio sample delays. The range
of this delays is constrained by the speed of sound, the sam-
pling rate applied, and the inter-microphone distance. Be-
cause of these restrictions, the range of possible sample de-
lays is highly limited, resulting in intrinsic AoA errors.

One way to improve AoA estimation accuracy is to em-
ploy algorithms that support intra-sample cross-correlation
resolution, resulting in continuous sample delays. In addi-
tion, increasing the sampling rate or the inter-microphone
distance will reduce the errors caused by AoA estimation
as well. Such improvements remain the focus of our future
work.

4.3 Performance of Cough Detection

By leveraging the information of sound source locations,
CoughLoc applies a location-aware acoustic sensing and event
detection approach to reduce effects stemming from ambient
indoor noises and long distance from the sound sources.

4.3.1 Sngle-Node Baseline Approach

We first describe performance of a baseline approach that
does not consider the location information. In this approach,
we use a basic node selection strategy that randomly selects
one sensor node in the network to extract audio features af-
ter a sound event is detected. The detection performance is
expressed as precision and recall values [3], which are defined
as

Fcorrectly classified_coughs

®3)

precision = #total_classi fied_coughs

and

#correctly_classified_coughs

recall = (4)

Further, we use a unified metric F} score [3, 7] for each
case to simplify the comparison. The F score is a widely
used classification performance metric that takes both pre-
cision and recall values into account equally. The Fi score
is defined as

F#total_real_coughs

= 2 - precision - recall

. 5
precision + recall (%)

With range from 0 to 1, the higher the Fi score, the bet-
ter the classification performance. Figure 6 shows the re-
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Figure 6: Detection performance vs. distance from
the sound source to a randomly selected sensor
node. As the distance increases from 1m to 7m,

the F) score decreases significantly.

lation between the Fi score and the distance between the
selected sensor node and the loudspeaker. When the ran-
domly selected node is within 2m from the cough source,
the Fi scores are about 90% on average, indicating a good
detection performance. However, as the distance increases
from 1m to 7m, the Fi score decreases significantly. The
maximum decrease is 75% under microwave oven case, and
for all noise types the average decrease is about 60%. These
results indicate the single-node detection approach is greatly
affected by the increased distance and thus less applicable
for distant cough monitoring. Therefore, in the CoughLoc
system, we incorporate the information of sound source lo-
cation, and use this information to select sensors close to the
sound source to improve cough detection performance.

4.3.2 Collaborative Detection Performance

This section presents classification performance of CoughLoc

using collaborative multi-node classification. The single-
node approach mentioned in the previous section is used as
the baseline. In the baseline approach, every audio frame is
processed using one randomly chosen sensor node, regard-
less of its distance to the sound source. In the collabora-
tive approach, the location-aware sensor node selection and
multi-node cough detection algorithms described in Section
3 are used. Figure 7 shows the precision and recall values
for both the approaches.

As shown in Figure 7(a), the CoughLoc system achieves
92.6%, 86.3%, 89.3%, and 75.1% precisions under the four
noise conditions, respectively. In contrast, due to the large
difference of the distances between microphones and the
cough source, the single-node baseline approach has much
lower precision, especially under the TV noise. This is ex-
plainable by seeing the similar spectrum energy distribution
between cough sounds and other human-voice like sounds.

Figure 7(b) shows that the CoughLoc system achieves
97.5%, 85.7%, 91.7%, and 80.5% recalls under the four noise
conditions, respectively. Combining three noisy cases to-
gether, CoughLoc achieves 0.95 and 0.84 F; scores under
quiet and noisy environments, which are 1.3 times and 1.6
times higher than those of the baseline approach. We note
that CoughLoc achieves even higher performance gain un-
der noisy environments than under quiet environments. This
observation justifies the use of multi-node collaborative de-
tection to counteract indoor noise and echoes, and thus sig-
nificantly improves the acceptability of ambient sound mon-
itoring.

5. RELATED WORK

The CoughLoc system is designed as a distributed acoustic
sensing network for indoor cough detection. As the emerging



Precision (%)
Recall (%)

20t fillsingle node|
[l cCoughLoc

O oughonly TV

[Wsingle node|
WcoughLoc
7 m—

o
vacuum _ microwave coughonly TV vacuum _ microwave

(a) Comparison of precisions (b) Comparison of recalls

Figure 7: Detection performance comparing the
single-node baseline approach and the multi-node
collaborative approach in the CoughLoc system.

development of sensor networks, acoustic sensing has gener-
ated considerable research interest. A number of acoustic
sensing systems have been developed [12, 13]. However,
these systems’ goals and constraints differ from ours. For
example, some of previous work usually demand high ac-
curacy of sound source localization. As a result, their lo-
calization modules either require computationally-intensive
algorithms (such as the one used in ENSBox [12]), or are
highly optimized for specific applications (such as the one in
the CounterSniper system [13]). In contrast, CoughLoc uses
a basic AoA-based localization algorithm that requires less
computation but achieves sufficient accuracy for the cough
detection application.

In the field of pervasive medical monitoring, body-worn
sensors are extensively used in previous work. For exam-
ple, Doukas et al. [14] present a patient monitoring system
for activity recognition and emergency treatment using ac-
celerometers and microphones attached on user bodies. Mer-
cury [15] is a system designed for motion analysis of neuro-
motor disorders that needs patients to wear up to eight sen-
sor nodes for monitoring movement and physiological con-
ditions. A drawback of this type of systems is the patients
often forget to wear or take off the sensors due to discom-
fort. In contrast, a non-intrusive monitoring system like the
CoughLoc system can greatly improve the convenience of
health monitoring and have greater acceptance among pa-
tients.

Prior work with the most similarities to the CoughLoc sys-
tem has been in the field of ambulatory cough monitoring
[3, 4, 10]. Matos et al. [3, 10] present a system that achieves
94.7% precision and 85.7% recall rate under quiet environ-
ments, which are very similar to CoughLoc. However, the
authors do not mention how their system works in noisy
environments. Other automatic cough detection systems,
such as [16], adopt acoustic sensing devices that need to be
held by caretakers in short range of a patient. The intrin-
sic inconvenience of such devices makes them difficult to be
accepted and used. In contrast, CoughLoc uses distributed
acoustic sensing nodes to avoid intrusiveness. By leveraging
the information of sound source locations in multi-node col-
laborative detection, CoughLoc also achieves high detection
performance.

6. SUMMARY

In this paper, we present CoughLoc, a non-intrusive cough
detection system, which leverages location information to
improve classification performance. In addition, we present
a location-aware task partitioning strategy that dynamically
assigns sensing tasks to different nodes, reducing overall
computations and bandwidth requirement. Experimental
results show that the system achieves over 90% accuracy
under quiet environments. Under noisy environments, the

system achieves 1.6 times higher accuracy than a baseline
approach without considering location information. Com-
pared to the state-of-the-art ambulatory cough monitors,
CoughLoc achieves high cough detection performance for
non-intrusive monitoring.
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