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ABSTRACT
Recent developments in ubiquitous computing enable ap-
plications that leverage personal mobile devices, such as
smartphones, as a means to interact with other devices in
their close proximity. In this paper, we propose Spartacus,
a mobile system that enables spatially-aware neighboring
device interactions with zero prior configuration. Using
built-in microphones and speakers on commodity mobile
devices, Spartacus uses a novel acoustic technique based
on the Doppler effect to enable users to accurately initiate
an interaction with a neighboring device through a pointing
gesture. To enable truly spontaneous interactions on energy-
constrained mobile devices, Spartacus uses a continuous
audio-based lower-power listening mechanism to trigger the
gesture detection service. This eliminates the need for any
manual action by the user.

Experimental results show that Spartacus achieves an
average 90% device selection accuracy within 3m for most
interaction scenarios. Our energy consumption evaluations
show that, Spartacus achieves about 4X lower energy con-
sumption than WiFi Direct and 5.5X lower than the latest
Bluetooth 4.0 protocols.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Signal processing systems

Keywords
Interaction; audio sensing; device pairing; spatial interac-
tion; gesture; mobile system; context aware

1. INTRODUCTION
Recent developments in ubiquitous computing enable ap-

plications that leverage personal mobile devices, such as
smartphones, as a means to interact with other devices
in their close proximity. Numerous application scenarios
are either commonly observed or can be foreseen in the
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near future, ranging from Person-to-Person interactions –
For example, conference attendees exchanging contact infor-
mation, or friends playing multi-player pass-the-parcel mo-
bile games, to Person-to-Device interactions – For example,
a student printing out a document by interacting with a
nearby printer, remote control of projectors, accessing prod-
uct information in stores, controlling digital display screens,
or changing thermostat settings.

Establishing such an interaction requires that the device
initiating the interaction makes the target device aware of
its intent and sets up a connection, without any prior con-
figuration. While users themselves can intuitively know and
identify the nearby target device based on its relative loca-
tion, the existing methods require additional manual effort
or prior configuration to translate this spatial-awareness to
an identifier understandable by the device.

For example, device discovery features in Bluetooth or
Wi-Fi can be used to initiate the interaction, where the user
must scan for nearby devices and select the target from a
list. Similarly, other methods have been proposed where
users (the initiator and the target) must share information
a priori [3] or perform synchronized actions [6].

Recent work, Point & Connect [15], has proposed a novel
system that uses a pointing gesture to initiate interactions
between a mobile device and its target. However, the sys-
tem requires an initial channel of communication such as
a local Wi-Fi or Bluetooth network to exist beforehand to
enable a device to point-and-connect to the target device.
In addition, due to the energy-constrained nature of mobile
phones, the system service cannot be run continuously in
the background and requires users to manually trigger it, on
all nearby devices.

In this paper, we propose Spartacus, a mobile system
that enables spatially-aware neighboring device interactions
with zero prior configuration. First, Spartacus uses a novel
acoustic technique based on the Doppler effect to enable
users to accurately initiate an interaction with a partic-
ular target device in their proximity through a pointing
gesture. Second, Spartacus uses a continuous audio-based
low-power listening service that runs in the background and
automatically triggers the relatively power hungry gesture
detecting service. This enables Spartacus to run contin-
uously in the background and removes the need for any
manual user actions prior to the interaction. The system
can be implemented as a software application on commodity
mobile devices without any special hardware or software
requirement.

As a proof of concept, we implemented the Spartacus



system on the Android smartphones, and tested the sys-
tem using various device models under different interaction
scenarios. Our experimental results show that Spartacus
support spontaneous device interactions with an average of
90% device selection accuracy within 3m for most interaction
scenarios. Evaluation results of energy consumptions show
that, Spartacus consumes about 150mW power. As a ref-
erence, we also compare energy consumption of Spartacus
with the state-of-the-art peer-to-peer scanning techniques,
and show that Spartacus achieves about 4X lower energy
consumption than WiFi Direct and 5.5X lower than the
latest Bluetooth 4.0 protocols, respectively.

The key contributions of this paper are as follows:

1. We proposed a novel acoustic technique based on the
Doppler effect to enable spatially-aware interactions
between devices that provides high accuracy and sup-
ports numerous natural human gestures.

2. We developed a novel undersampling audio signal pro-
cessing pipeline that achieves better accuracy with-
out increasing computational complexity, allowing the
method to be used on commodity mobile devices.

3. We designed and implemented a low-power listening
protocol using periodic audio sensing to trigger ges-
ture detection that reduces energy consumption and
enables the system to run continuously in the back-
ground. This enables the interaction to be truly spon-
taneous without any manual actions on part of the
user.

4. We analyzed and experimentally validated the design
tradeoffs in achieving low latency and power consump-
tion given hardware and software limitations of com-
modity mobile devices.

The rest of the paper is organized as follows. Section 2
gives a system overview of Spartacus. We describe the
design of algorithms in Section 3 and discuss implementation
details in Section 4. Section 5 shows evaluation results.
Related work is shown in Section 6. Finally, Section 8
concludes the paper.

2. SYSTEM OVERVIEW
Spartacus supports spatially-aware device selections in

close proximity (i.e. within 5m), using intuitive pointing
gestures. As illustrated in Figure 1, when a user wants to
initiate an interaction with a nearby device, she makes a
pointing gesture towards the device using her mobile phone.
Then the interaction with the target device is automatically
initiated.

To select the target device, Spartacus emits a continuous
audio tone at a known frequency during the course of the
pointing gesture. Other devices that are close to the user’s
phone will be able to capture the tone via their microphones.
Due to the motion of the gesture, a Doppler frequency shift
is observed in the received audio deviating from the original
frequency, which is a monotonically increasing function of
the gesture velocity [4]. Therefore, since the gesture is made
in the direction of the target device, the target device can
be isolated by finding the peak frequency shift among nearby
devices.
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Figure 1: An interaction scenario of the Spartacus
interaction system. A user selects a nearby device
for interaction by quickly pointing her mobile phone
towards the targeting device.

To eliminate any configurations from users in the entire
interaction process, Spartacus needs to automatically trig-
ger the gesture detection service on nearby devices before
the gesture. Previous work adopts a continuous listening
approach [15]. Given the limited energy budget on mobile
devices, this approach becomes impractical to be active all
the time and users are required to manually turn on the
gesture detection service before the interaction. In con-
trast, Spartacus solves this problem by providing a zero-
configuration interaction trigger mechanism, whereby mo-
bile devices running Spartacus continuously perform a pe-
riodic low-power listening using their built-in microphones.
Before a user issues the gesture, an audio beacon with a
short duration (i.e. a couple of seconds) is emitted. Nearby
devices that successfully capture this beacon trigger their
gesture detection service and begin listening for the ges-
ture tone from the initiator. After the gesture is over, the
gesture detection service is turned off to conserve energy.
Our experimental results show that, the low-power listening
protocol is more energy-efficient than other state-of-the-art
peer-to-peer scanning techniques, such as WiFi Direct and
Bluetooth 4.0. (Detailed in Section 5.5)

We have implemented the Spartacus system on the An-
droid mobile platform (Detailed in Section 4). The entire
system is implemented in software, and runs as a mobile
phone app, without any change to the existing mobile oper-
ating system and APIs. Since Spartacus leverages existing
built-in microphones and speakers on commodity mobile
devices, such as smartphones, it does not require any extra
hardware.

2.1 Design Challenges of Spartacus
To support spatially-aware device selections and zero-

configuration interaction triggers, the Spartacus system ad-
dresses a number of major technical challenges:



1. High Resolution Doppler-Shift Detection – Spar-
tacus selects the target device through the analysis of
peak Doppler frequency shifts in the pointing gestures.
However, pointing gestures of average users are usually
transient (i.e. generally shorter than 0.5s), and the
gesture velocity is low, which leads to limited Doppler
frequency shifts. Thus, accurately detecting the tran-
sient peak velocities requires digital signal processing
techniques with a high frequency resolution, without
sacrificing the time resolution. Spartacus addresses
this challenge by utilizing an undersampling technique,
and increases the frequency-domain resolution by 5X
as compared to traditional FFT-based approaches.
This translates to a 2X increase in angular resolution.
(Detailed in Section 3.1)

2. High-Accuracy Device Selection – To successfully
select the target device, Spartacus needs to accurately
estimate the peak frequency shifts observed by each
nearby device, and to select the one with the maximum
peak shifts. To address this challenge, we design and
implement a bandpass audio signal processing pipeline
in Spartacus, which is robust against ambient and
intermittent high frequency acoustic noises. (Detailed
in Section 3.2)

3. Energy-efficient Interaction Trigger – To trigger
interactions on nearby devices without user configu-
rations, mobile devices need to be always ready to
capture the pointing gestures, while keeping the en-
ergy consumption low. Spartacus addresses this chal-
lenge by designing a low-power audio listening protocol
that periodically detects incoming interaction triggers.
(Detailed in Section 3.3)

3. SYSTEM DESCRIPTION
Using Spartacus, a user initializes a device interaction

process by pointing her mobile phone towards a target de-
vice, during which an audio tone with a known frequency
is emitted. Spartacus utilizes audio signal processing tech-
niques to detect the frequency shifts in the audio tone, such
that the target device can be selected by searching for the
maximum peak frequency shifts among multiple candidate
devices. This section provides detailed system description
of this process.

3.1 Detect Doppler Shift with High Resolu-
tion

To select the target device, Spartacus emits a continu-
ous audio tone at a known frequency f0 during the course
of the pointing gesture. According to the Doppler effect,
the frequency of the received tone can be calculated as
f = ( c+vR

c−vS
)f0, where c, vR, and vS are the speed of sound, of

the gesture receiver, and of the gesture sender, respectively
[4]. In our case, assuming the receiver is stationary during
the course of the gesture (i.e. vR = 0), and the speed
of sound c is constant, the observed frequency becomes a
monotonically increasing function of vS . Since the user
made the gesture directionally towards the target device,
the target device would be able to observe the maximum
Doppler shift. Thus, by comparing the peak frequency shift
among nearby devices, the target device can be selected.

D0
α DA

DB

D'0
β

Figure 2: Geometry of tone transmission between mo-
bile devices. When D0 is moved towards the target
device DA during the pointing gesture, the phone dis-
placement increases the directional difference from α to
β.

3.1.1 Deriving Angular Resolution
Spartacus selects the target device DA by measuring the

time-varying Doppler frequency shifts. This is accomplished
by running an audio signal analysis process over a series
of overlapped audio frames. Applying the FFT transform
on each audio frame, the quantity of the frequency shift
in this audio frame of DA can be calculated as ∆nA =
(fA − f0) · NF F T

Fs
, where fA is the observed tone frequency

of DA, f0 the frequency of the original tone, Fs the sam-
pling rate, NFFT the number of FFT points, and ∆nA the
calculated frequency shift expressed in terms of FFT points.
Assume the target device is stationary during the course of
the gesture, i.e. vR = 0, given the equation of the Doppler
effect, ∆nA can also be expressed as ∆nA = c

c−vS
· f0·NF F T

Fs
,

where c and vS are the speed of sound and the gesture
sender, respectively. As shown in Figure 2, suppose another
device DB is in close proximity to the target device DA. Let
the angle between the three devices be α, then the velocity
observed at DB will be vS ·cosα. Therefore, correctly select-
ing DA to be the target device requires ∆nA is at least one
FFT point larger than ∆nB through the FFT analysis, i.e.
∆nA−∆nB > 1. Given that c is constant and the maximum
velocity of a particular gesture is fixed, this requirement can
be expressed as ( 1

c−vS
− 1
c−vS ·cosα

) · c·f0·NF F T
Fs

> 1. Reorga-

nizing this inequality, the minimum differentiable αres, i.e.
the angular resolution, can be expressed as

cosαres <

 
c− 1

1
c−vS

− Q
c

!
/vS , (1)

where Q = Fs
f0·NF F T

. Using Equation 1, we can compute

the achievable angular resolution of Spartacus. For example,
suppose a user used audio tones at 20KHz, and pointed her
phone with an average 3.4m/s peak velocity. At the receiver
device, the audio signal was sampled at 44100Hz, utilizing a
2048-point FFT, then the angular resolution would be 26.7◦.
Suppose a target device is 5m away, this translates to 2.3m
spatial resolution, which is too large to conduct practical
interactions! We will evaluate the velocity variance of the
pointing gestures in Section 5.1.

3.1.2 Improving Resolution using Undersampling
To improve the angular resolution, Equation 1 indicates

that αres is a monotonically increasing function of Q, which
implies three options to reduce αres: 1) increasing the orig-
inal tone frequency f0, 2) increasing the number of FFT
points NFFT , or 3) decreasing the sampling rate Fs.

The first two options both have drawbacks. For the
first option, audio tones with higher frequencies experience
stronger energy degradation, which consequently reduces the



supported interaction range (We will evaluate the effect of
energy degradation of sound in Section 4.2). For the second
option, increasing the number of FFT points would involve
a higher computational burden. Our experimental results
indicate that, using 10ms audio frames and 2048-point FFT,
processing one second audio takes 7 seconds on modern
mobile devices, which is too slow for any interactions that
require high responsiveness, such as mobile gaming.

To avoid these drawbacks, Spartacus exploits the last
option, which is to decreasing the sampling rate Fs. This
option seems to be impractical because Nyquist sampling
theorem states that the sampling frequency has to be larger
than twice the maximum signal frequency, to perfectly re-
constructed the original signal, otherwise the sampled signal
would be aliased [14]. However, if the bandwidth of a band-
pass signal is significantly smaller than the central frequency
of the signal, it is still possible to sample the signal at a much
lower rate than the Nyquist sampling rate, without causing
the alias.

This technique is called undersampling, which has been
used in RF communication and image processing systems,
for analyzing bandpass signals [5, 20]. In Spartacus, since
the tones are transmitted at a very high frequency (i.e.
above 18KHz), whereas the frequency shifts of tones are
only a few hundred Herz, the entire received audio tone
can be seen as a bandpass signal. Therefore, using the un-
dersampling technique can significantly reduce the required
sampling rate. The effect of the undersampling technique to
the spectrums is shown in Figure 4.

Denote the lowest and the highest band limits of the
received frequency-shifted tone as fL and fH , respectively,
then the bandwidth of the signal is B = fH−fL. According
to the undersampling theorem, the condition for an accept-
able new sampling rate is that shifts of the bands from fL
to fH and from -fH to -fL must not overlap when shifted by
all integer multiples of the new sampling rate F ?s [5]. This
condition can be interpreted as the following constraint:

2 · fH
n
≤ F ?s ≤

2 · fL
n− 1

,∀n : 1 ≤ n ≤ bfH
B
c, (2)

where b·c is the flooring operation, B the signal bandwidth,
and n = Fs/F

?
s the undersampling factor. In our experi-

ments, we observe that average users can generate pointing
gestures with an average peak velocity of 3.4m/s, which
equals to 200Hz frequency shift. Considering the edge effect
of FFT transforms, we conservatively assume the bandwidth
of the received tone signal is 2KHz, which is sufficient to
avoid spectrum aliasing for human pointing gestures. Take
this value of the bandwidth into Equation 2, we get a list of
possible F ?s and n combinations, as shown in Table 1.

3.1.3 Determining Undersampling Parameters
These parameter combinations provide rich options for us

to design our system. However, when choosing undersam-
pling parameters, there are a number of design considera-
tions: 1) A higher n is generally favored, as it leads to a
lower new sampling rate, which results in a better angular
resolution. 2) Since the central frequency of the tones is
fL + B

2
, a higher fL increases the central frequency of the

tones. During our experiments, as will be shown in Section
4.2, higher tone frequencies generally cause greater energy
degradation of sound, which would significantly reduce the
interaction range and the accuracy of tone detection. In

practice, to support sufficient interaction range and achieve
optimal device selection accuracy, we empirically avoided
using fL higher than 19KHz (i.e. the entire bandwidth of the
audio tone resides between 19KHz and 21KHz). However,
we would note that, thought this general design considera-
tion holds, the frequency of the audio tones could also be var-
ied according to the specific frequency response performance
of the microphones and speakers. 3) Commodity mobile
devices support a limited choices of audio sampling rates,
which generally include 8KHz, 16KHz, 32KHz, 44.1KHz,
and 48KHz, etc. This means the original audio sampling
rate can not be arbitrarily set, which consequently limits
the choices of F ?s and n.

After examining all these design considerations, we found
that, only when n=5, 6, or 7 given Fs = 44.1KHz, or when n
= 4 given Fs = 48KHz, the parameter combinations satisfy
the central frequency requirement. Furthermore, among
these parameter combinations, most of the cases lead to a
low undersampling factor n, except the case where n = 7
given Fs = 44.1KHz. Thus, we finally choose this pair
of parameters in Spartacus, which yields a new sampling
rate F ?s = 44.1/7 = 6.3KHz. Given this lower sampling
rate, based on Equation 1, the theoretical angular resolution
is improved to 10◦. As compared to the original angular
resolution of 26.7◦ discussed in Section 3.1.1, this is more
than 2.5X better than the original resolution.

3.2 Select Target Device with High Accuracy

3.2.1 Bandpass Signal Processing Pipeline
Using the undersampling technique, we set the central

tone frequency at 20KHz and use a bandwidth of 2KHz,
which satisfies the fL requirement shown in Table 1. This
design choice also avoids stronger energy degradations. Us-
ing the undersampling process, the spectrum of the original
audio samples is essentially mapped from 19KHz-21KHz to a
much lower spectrum from 0.58KHz-2.58KHz with a central
frequency at 1.58KHz. However, since the new sampling
rate is much lower than the Nyquist rate, aliasing arises in
the original sampled audio signals. This makes the audio
tone buried under ambient noises and makes frequency shift
detection impossible.

Table 1: Candidate combinations of undersampling
parameters. “?” is finally chosen.

Fs (KHz) n F ?s = Fs/n (KHz) Supported fL (KHz)

44.1 5 8.8 (17.7, 20.0)
44.1 6 7.3 (18.4, 20.0)
44.1 7 6.3 (18.9, 20.0) ?
44.1 8 5.5 (19.3, 20.0)
48 4 12 (18.0, 22.0)
48 5 9.6 (19.2, 22.0)
48 6 8 (20.0, 22.0)
48 7 6.9 (20.6, 22.0)

To solve this problem, we designed and implemented an
audio signal processing pipeline, as shown in Figure 3, to re-
cover the frequency shifts. First, each mobile device receives
and samples audio data at the default 44.1KHz rate. As will
be discussed in Section 5.1, our experimental results show
that the peak velocities of pointing gestures only lasts tens
of milliseconds, we split consecutive audio samples into 10ms
analysis windows, with a 75% overlapping ratio, achieving a
high time-domain resolution. Then, a 10-order Butterworth
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Figure 3: Signal processing pipeline.
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Figure 4: Illustration of the effect of undersampling to
the spectrums. (a) The originally received audio tone
is located from fL to fH . (b) After undersampling the
audio samples, the tone is shifted to lower frequencies.

bandpass filter is used to attenuate out-of-band signals lower
than 19KHz or above 21KHz. Then, the filtered audio
samples go through the undersampling filter, which uses the
new sampling rate F ?s . With n = 7, this filter essentially
keeps every 7th sample and deletes other samples. Note that
although this process reduces the number of samples being
analyzed, it still preserves the necessary frequency-domain
information due to undersampling. The entire bandpass-
filtering and undersampling operations process audio sam-
ples as a streamline, with a total time complexity of only
O(N) time, which is efficient for responsive interactions.

To estimate frequency shifts, each undersampled audio
frame is processed using a 2048-point FFT transform, and
FFT transforms of multiple consecutive audio frames are
processed altogether to find the frequency shift. Specifi-
cally, an energy-based tone detector first compares energy
of the spectrum of each frame from 1.08KHz to 2.08KHz
(i.e. corresponds to 19.5KHz to 20.5KHz of the original
spectrum before undersampling) to that of the entire 0Hz
to 3.15KHz (i.e. F ∗s /2) spectrum. If the former energy is
M times greater than the latter energy, this audio frame is
set to “1”, otherwise “0”. Second, a tone positioning oper-
ator determines the frequency bin with the highest energy
for each frame that have been set to “1”, and links these
frequency bins through a moving-average smoothing opera-
tion. This operation eliminates intermittent high frequency
spikes caused by acoustic noises, such as clangs of metals.
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Figure 5: Effect of the undersampling analysis. (a)
Spectrogram of the original audio. (b) Frequency shift
detection using the traditional FFT approach. (c) Fre-
quency shift detection using the proposed undersam-
pling technique. The detected peak frequency shift is
marked as “�”.

Finally, the peak frequency shift is determined by finding
the maximum frequency shift among all the frequency bins.
During our experiments, we found that M = 1.5 led to
robust performance in various indoor environments. The
effect of this process is shown on Figure 5. Note that, by
using the undersampling technique, the amount of frequency
shifts has been significantly increased as compared to the
traditional FFT approach.

After each device detects the Doppler frequency shifts, all
the devices that detect a positive shift value report their
frequency shift to the sender device, along with the device’s
ID information. The sender device then compares all the
received Doppler shifts and determines the target device.

We would like to note that, when Spartacus is used in a
crowded indoor scenarios, such as an airport, where numer-
ous devices might be interacting with each other, contentions
may occur. However, due to the intrinsic rapid energy degra-
dation of audio signals, as will also be shown in Section 4.2,
different interaction sessions can be automatically separated
if they are spatially far away from each other (i.e. more than
5m). If many interactions take place in close proximity, a
coordination mechanism could be used to create a contention
window that conditionally accepts the reports of the Doppler
shifts, so that different interaction sessions can be separated
in the time domain. Previous research provides various
contention-control schemes, however, this is out the scope
of the current work.

3.2.2 Angular Gain through Pointing Gestures
Spartacus uses the bandpass signal processing pipeline

to estimate frequency shifts in audio tones. However, due
to geometric constrains, the condition of whether a nearby
device would be selected as the target device is determined
by the angular resolution αres of the system. As indicated
in Section 3.1, when the number of FFT points is 2048,
the smallest angular resolution is 10◦ when the undersam-
pling factor n is equal to 7. However, during our tests in
practice, we found that when candidate devices are close to
the user (i.e. within 3m), the device selection accuracy is
better than the analysis. This improvement is caused by
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the increased directional difference, as illustrated in Figure
2. During a pointing gesture, since the user stretches her
arm toward the target device DA, the phone displacement
makes the effective directional difference α increase. This
angular change is significant when the candidate devices DA
and DB are close to D0. As shown in Figure 6, when DA
and DB are 0.75m away and α = 10◦, the two devices are
supposed to be barely differentiable. However, assuming
the user’s arm is 60cm, the effective angular difference β is
increased to 55◦, which makes the two devices much easier
to be differentiated. Clearly, this angular gain diminishes
when the distance between D0 to the two devices increases,
as well as when the user does not fully stretch her arm during
the pointing gestures.

3.3 Energy-efficient Interaction Triggering
Spartacus seeks to enable spatially-aware interaction be-

tween an initiating device and receiving devices in its neigh-
borhood. This requires that the receiving devices are lis-
tening to gesture broadcasted by the initiator. However,
such continuous listening for gestures consumes a significant
amount of energy and is a challenge to realize on energy-
limited mobile devices. Therefore, in Spartacus we leverage
a low-power audio listening protocol to save energy. This
section describes the design details of this protocol.

3.3.1 Low-Power Audio Listening
The audio based low-power listening protocol has the fol-

lowing advantages:
1. Ubiquitous Hardware Support – Microphones

and speakers are ubiquitous on most devices such as mobile
phones, laptops, smart-TV sets, etc. No extra hardware
modifications are need to implement this protocol. In addi-
tion, the cost of commodity audio hardware is very low.

2. Limited Range – The objective of this protocol is to
initiate interaction strictly with devices in close proximity to
the sender, typically line of sight and single space scenarios.
Audio has a limited range and attenuates considerable when
passing through walls. This makes the medium better suited
for detecting neighboring devices within the same space, un-
like radio based discovery such as WiFi and Bluetooth. This
advantage also helps the Spartacus system to automatically

separate concurrent interaction sessions that are spatially
apart.

3. Energy Efficient – The continuous periodic listening
and beaconing protocol using audio is orders of magnitude
more energy efficient than discovery schemes using WiFi or
Bluetooth, partly because these communication protocols
are not designed for continuous discovery. Moreover, fine
grained control or modification of WiFi and Bluetooth de-
vice discovery schemes is not possible on consumer hardware
devices.

The audio based protocol has two major modes:
1. Periodic Listening – All devices periodically wake up

(every Trx) and record sound for a duration drx. The time
drx is the amount of audio required to detect if a specific
beacon tone frequency is being broadcasted by an initiating
node.

2. Beaconing – Whenever a sender node wishes to
broadcast a gesture, it first emits a beacon tone for a du-
ration dtx. This guarantees that all the receiving devices
in range will receive the beacon and switch to continuous
listening mode to record the gesture.

The theory of low-power listening states that, to guarantee
every beacon will be successfully detected by nearby devices,
the beacon duration dtx must be at least as large as Trx [16].
This relationship indicates that, the shorter the duration of
the beacons, i.e. Trx, the shorter the user needs to wait
before starting the gesture, thus the more natural the gesture
can be accomplished. However, a short beacon duration re-
quires increasing the duty cycles of the interaction listening
on the receivers, which consequently consumes more energy.
We will evaluate the tradeoff between energy consumption
vs. duty cycles in Section 5.5.

To identify the sender, Spartacus encodes the device ID
using the Reed-Solomon coding, and sends the ID in a trans-
mission immediately succeeding the beacon transmission. In
the current implementation of Spartacus, the device ID is
modulated using a 16 Frequency Shift-Keying (FSK) scheme
with a central frequency at 19KHz. Keys are separated in
the frequency domain using a 50Hz guard band. Note that,
since the central frequency of the tone emitted during the
pointing gesture is 20KHz, the transmission of the device ID
is at least 200Hz lower than the gesture tone, thus will not
cause ambiguities.

3.3.2 Dealing with Wakeup Jitter
The low-power listening protocol relies on the assumption

that the duration of the beacon (dtx) transmitted by the
gesture transmitter is greater than the maximum interval
(Trx) between adjacent listening events on the receiving
devices. However, since mobile platforms, such as Android,
are not real-time operating systems, wakeup jitters can be
observed between when an API starts recording sound and
when the system actually begins recording. We empirically
measure the latency of an API call on Galaxy Nexus Android
phones. As shown in Figure 7, the average jitter in the
wakeup timer is about 70ms, with a standard deviation of
15ms. This result indicates that, using the original beacon
duration will cause the receiving devices to miss interaction
triggers, which leads to a failure of capturing the upcoming
gesture tone. To solve this problem, as shown in Figure 8,
we include an additional guard band in the beacon length
based on empirical measurements to account for the wakeup
jitters.
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Figure 8: The graph shows the relationship between the
wakeup period Trx and the wakeup duration drx of the
gesture receivers, and the beacon duration dtx of the
gesture transmitter. Note that, due to the existence of
the wakeup jitter τrx, an additional guard band σtx is
used in the beacons.

4. IMPLEMENTATION
To evaluate the interaction system, we implemented the

Spartacus system on the Android platform, and tested it
on various phones, including Galaxy Tab, Nexus 7, Galaxy
Nexus, and HTC One S. This section discuss the implemen-
tation details of Spartacus.

4.1 Software Implementation
To evaluate the interaction system, we implemented the

Spartacus system on the Android platform, and tested it
on various phones, including Galaxy Tab, Nexus 7, Galaxy
Nexus, and HTC One S. The current Spartacus has a client
end and a server end. The client end runs as an Android
app, which has 4 components: GestureSensing, LowPow-

erListening, AudioModem, and the GUI. The design of
Spartacus strictly follows the Object-Oriented programming
paradigm, such that each component is standalone, and can
be easily incorporated into any existing apps as an add-
on interaction support. For example, if an app needs to
conduct the low-power audio listening, it simply calls the
LPL.start() to start the listening thread, and a message
handler is used to receive notifications in case an interaction
request is detected. Similarly, for issuing gestures, an app
could simply call GestureSensing.makeGesture(), then an
audio tone at a predefined frequency will be generated dur-
ing the gesture; on the receiver’s end, a counterpart Ges-

tureSensing.analyzeGesture() will trigger a background
thread that runs the signal processing pipeline described
in Section 3.2 to compute the frequency shifts. The entire

Spartacus project contains a total of 3500+ lines of Java
code, including both the server and the client.

4.2 Hardware Limitations on Mobile Devices
To generate and receive audio tones emitted during

the course of the gestures, Spartacus leverages the built-
in speakers and microphones on mobile devices, and use
software-implemented digital signal processing algorithms to
detect the gestures. In our implementation process, we con-
ducted experiments to understand the limitations of modern
mobile devices in emitting high frequency audio tones.

Previous research has found that microphones on com-
modity mobile phones supports sampling rates up to 48KHz,
which enables the use of tone frequencies as high as 24KHz
[4, 7, 8]. In Spartacus, we use tone frequencies higher than
20KHz, which is inaudible [8]. However, a downside of
using high frequency tones is the potential stronger energy
degradation of sound. To investigate this effect on mobile
devices, we model the transmission of audio tones as three
consecutive processes, as shown in Figure 9. Similar to a
RF communication system, the degradation of signal energy
occurs inside of the speakers and the microphones, as well
as during the transmission in the acoustic channel. We
investigate each of these processes.

First, to quantize the energy degradation of sound, we
benchmarked the frequency responses of speakers and mi-
crophones on various mobile devices. A Sennheiser MKE
2P microphone and a Yamaha NX-U10 speaker are used as
references. As shown in Figure 10(a) and 10(b), we observe
that, due to the characteristics of the hardware, a signifi-
cant energy degradation exists for audio tones higher than
15KHz. This phenomenon is not surprising considering that
the hardware of mobile phones are designed intentionally
for human conversations and music, which feature dominant
energies generally lower than 15KHz. We also found that,
as tone frequencies go up, the degradation becomes even
larger. To be specific, as the tone frequency increases every
1KHz, the degradation of sound energies increases 5dB on
speakers, and 3.3dB on microphones, respectively. Second,
we investigate the degradation of sound energy caused by
the transmission through acoustic channels. As shown in
Figure 10(c), we observe that there is an average 3.2dB/m
energy decrease of sound from 1m to 6m, irrespective of the
tone frequency.

In summary, we found that the energy degradation of
sound is collaboratively caused by the frequency responses of
the speakers, the microphones, and the transmission through
acoustic channels. For interactions in close proximity, the
degradation largely comes from the frequency responses of
the hardware. These results indicate that, to reduce energy
degradation and increase interaction range, audio tones with
lower frequencies should be leveraged.

5. EVALUATION
In this section, we evaluate the performance of Spartacus

given different interaction scenarios. Spartacus leverages the
pointing gestures of users to accurately select the target de-
vice, without user configuration. To understand the bound-
ary of system performance, we first conduct experiments to
investigate trajectory and velocity variances of the pointing
gestures of average users. Then we provide performance
analysis of Spartacus, by discussing the device selection
accuracy and the interaction range. Finally we discuss the
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Figure 9: Audio tone transmission between mobile devices.
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Figure 10: A graph showing frequency responses of various mobile devices (1/16 octave band-filtered from 15KHz). (a)
Frequency responses of speakers as a function of the tone frequency. (b) Frequency responses of microphones as a function
of the tone frequency. (c) Attenuation of sound energy vs. distance.

interaction latency, and present the power consumption of
Spartacus as compared to other state-of-the-art techniques.

5.1 Evaluation of Pointing Gestures
To accurately select the target device, Spartacus makes

an assumption that when a user points her phone towards
the target device, the target device will always observe the
largest Doppler frequency shift. However, in practice, user
gestures can be significantly diverse in terms of directional
precision, velocity, and trajectory. Such diversities make
accurately estimating the peak frequency shift significantly
challenging.

In order to investigate what factors may affect the per-
formance of Spartacus, we conducted experiments to fully
understand the characteristics of pointing gestures of aver-
age users. Some fundamental questions that we would want
to investigate include:

1. How diversely do users point their phones, and how
fast can a user point?

2. If the user points fast enough, how often does the tar-
get device observe the highest frequency shift, thus the
highest velocity, of the gesture?

3. If we want to estimate the frequency shifts, how much
frequency- and time-domain resolution do we need to
successfully capture the peak frequency shift inside of a
gesture?

To answer these questions, we conducted experiments with
12 participants (6 females) and investigated their pointing
gestures. To capture the gesture trajectories, we attached
a video recorder on the ceiling right above the participants,
and videotaped the entire experiment. The video we took
recorded complete 2D trajectories of the gestures. Before

doing the experiment, we briefed the participants on the
idea of Spartacus, and let them to freely choose any natural
gestures they wanted. During the experiment, each par-
ticipant performed 10 gestures towards a target device 2m
away from them, using a Galaxy Nexus phone. A red marker
was attached to the participants’ hands for motion-tracking.
After the experiment, we detected hand trajectories of the
participants using image processing techniques. Then, we
estimated the velocities of the gestures given the frame rate
of the video. We summarize our findings as below:

Finding 1: As shown in Table 2, three types of gesture
trajectories were seen during the experiments. Among the
three gesture types, a majority of the participants (10 out of
12) predominantly utilized a vertically downward pointing
movement. To further analyze the Doppler frequency shifts,
we plotted the spectrogram of each gesture and correlated
the spectrogram with the recorded video. As shown in
Figure 11(a) and 11(b), we found that the arm trajectory
variance of the participants who performed this gesture was
limited – in most cases, the velocity of users’ arms increased
during the process of stretching out the users’ arms (i.e.
Frame #30), and the peak velocities predominantly occurred
close to the end of this process (i.e. Frame #31). Then
the arm reached a full stretch, and the velocity diminished
quickly. We found most of the participants fully stretched
out their arms in the experiments, which translates to a
55cm to 75cm phone displacement and angular gains, as
discussed in Section 3.2.2. We will show how this factor
affects the performance of Spartacus in Section 5.3.1. Since
gesture trajectories can be easily differentiated using built-in
inertial sensors of the mobile devices, as a proof of concept,
we focus on evaluating this vertically downward gesture
trajectory in the current design of Spartacus.

Finding 2: To investigate how often the target device
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Figure 11: The graphs show (a) a vertically downward
pointing gesture performed by one student and (b) the
corresponding Doppler frequency shifts of each frame.
The yellow line indicates the direction of the target
devices.

Table 2: Trajectory variations of gestures

Gesture Type Total Count (Male/Female)

Vertically downward 10 (6/4)
Vertically upward 1 (0/1)
Horizontally outward 1 (0/1)

could successfully observe the maximum velocity of the ges-
tures, we computed directions of the highest 70% velocities
of the gestures, and calculated the angular deviation from
the direction towards the target device. As shown in Figure
12(b), we found that in most cases, the highest velocities
were predominantly facing towards the target device, with
an average ±7.5◦ angular bias. When interacting with a
device 3 meters away, this bias translates to 0.38m. This
result indicates that participants are able to precisely point
the phones towards the target device, and selecting the
target device using the maximum velocity is appropriate.

Finding 3: The peak velocity of the gestures of all par-
ticipants was 3.4m/s on average, as shown in Figure 12(a).
This is similar to results reported in related work [4]. Using
an audio tone at 20KHz and assuming the speed of sound
is 343m/s, this translates to a maximum Doppler frequency
shift of 200Hz. Moreover, we found that the peak velocity
is transient. As shown in Figure 12(c), most of the gestures
lasted less than one second, and the peak velocities appeared
and diminished within 25ms. These findings indicate that
to accurately estimate the peak velocity, Spartacus needs a
high time-domain resolution to position the peak frequency
shifts, as well as a high frequency-domain resolution to esti-
mate the quantity of the shift.

After understanding the variances of the pointing ges-
tures, we evaluate the performance of Spartacus under dif-
ferent indoor scenarios.

5.2 Experimental Setup
The first set of experiments was done in a student lounge

in our university, in which multiple ambient noise conditions
were tested. The other two sets of experiments were done
in a student cubicle area and along a hallway. During each
experiment, a target device was placed in front of a student
with distance d; another device was placed at α◦ apart from
the direction of the target device, with the same distance.
For each test, a student pointed a Galaxy Nexus phone 25
times towards the target device, with a peak velocity of
about 3m/s. To guarantee each individual gesture was not
made too fast or too slow, after the experiments, we manu-
ally investigated the duration of each gesture, and selected
20 from the 25 gestures that achieved the closest peak veloc-
ity for analysis. To compute the frequency shift, audio tones
were captured at the two candidate devices at 44.1KHz,
undersampled 7 times to 6.3KHz, and then processed using
the signal processing pipeline discussed in Section 3.2. A
2048-point FFT was applied for each 10ms analysis window,
with a 75% overlapping ratio. These parameters were used
throughout the entire evaluation process.

5.3 Device Selection Accuracy

5.3.1 Performance with Distances and Angles
Spartacus selects the target device by comparing the de-

tected peak velocity of user gestures among nearby devices.
As shown in Figure 15, as the distances between devices
increase, the device selection accuracy drops gradually. This
is consistent with our analysis of sound energy degrada-
tion. As described in Section 3.2, Since Spartacus lever-
ages an energy comparison method for tone detections, the
energy difference between tones and other frequency bands
decreases as the distances increase. Moreover, due to the
performance gain caused by the stretch of arms, for all tested
device directions, Spartacus achieved 90% accuracy within
4 meters, and 80% within 5 meters.

To evaluate how directional changes affect the perfor-
mance, we keep the devices at fixed distances, and change
α. As shown in Figure 14, as α decreases, the accuracy of
device selection drops. For interactions within 3 meters, the
device selection accuracies are above 90% when devices are
at least 30◦ apart. When the devices are at least 45◦ apart,
the accuracies are above 90% within 5 meters.

It is worthing noting that, although the theoretical an-
gular resolution of Spartacus is 10◦, we still achieved high
device selection accuracy (i.e. above 90%) when the direc-
tional difference between devices are lower than 20◦ and
the interaction range is within 1 meters. This is because
when the interaction range is short, the angular gain due
to the stretch of arms is significant. These evaluation
results show that the performance of Spartacus is robust
against directional and distance changes for interactions in
close proximity. However, as distances keep increasing (i.e.
above 5 meters), the performance drops gradually due to
the decrease of sound energy and the resultant difficulty
in detecting the audio tones. This observation justifies the
close-range interaction scenarios of Spartacus, where various
ubiquitous applications take place.
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Figure 12: Characteristics of pointing gestures. (a) Speed distribution. (b) Directional precision. (c) Duration variance.
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Figure 13: The three different indoor scenarios where we conducted experiments.
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Figure 14: Performance of device selection when device
directions change.

5.3.2 Performance Under Noisy Conditions
To evaluate the performance of Spartacus against different

noise backgrounds, we conducted experiments in the student
lounge at different times. The first experiment was done
when a couple of students were having a group discussion
in the lounge, resulting human conversations in the back-
ground. Previous research has shown that the sound of
clanging metals would generate high frequency noise [8].
To evaluate this effect, we purposely played a piece of rock
music (i.e. “Burn It Down” of Linkin Park) in the back-
ground, which features rich clangs of metal instruments.
In both experiments, we changed the distance from 1m to
2m. The experimental results of the lounge are used as
a comparison. As shown in Figure 17, the experimental
results show that under 1m distance, the performance for
all three cases for all tested directions are constant, with
higher than 95% accuracy. When the distance is increased to
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Figure 15: Performance of device selection when device
distances change.

2m, except the 30◦ case under human conversations, all the
three cases achieved above 90% accuracy. Audio spectrum
indicates that, as shown in Figure 16, metal clangs can
hardly reach frequencies above 18KHz, which has limited
effect to Spartacus. These experimental results indicate
that the performance of Spartacus is robust against common
indoor noises.

5.3.3 Performance with Different Scenario
To evaluate the performance under different indoor sce-

narios, we conducted experiments in cubicle areas and a
hallway, as shown in Figure 13. Due to limited space in
these scenarios, we only tested performance up to 1.5m with
30◦. Figure 18 shows the results. For the distance of 0.5m,
all three cases had 100% device selection accuracies. As the
distance increases, the performance of the cubicle area and
the hallway is seen to have slight decreases. This is primarily
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Figure 16: Spectrums of the three noise cases measured
at 1m. Note that, in all cases, the audio tone at 20KHz
(i.e. the spikes on the spectrums) for the pointing
gestures is easily detectable.

due to the stronger multi-path effects in the two scenarios
as compared to the student lounge. However, in all three
cases, Spartacus has achieved higher than 85% accuracy.

5.4 Interaction Latency
Using the undersampling technique, Spartacus reduces the

number of audio samples that need to process, without de-
creasing the time-domain resolution. As discussed in Section
3.1, if undersampling technique was not used, Spartacus
would have to increase the number of FFT points to achieve
the equivalent angular resolution, which as a consequence,
involves longer processing time. To evaluate this perfor-
mance, we tested the processing latency of Spartacus using
different FFT points. As shown in Figure 19, Spartacus
leverages a 2014-point FFT processing, which takes 1.5s to
process a 1-second gesture audio. To achieve the same an-
gular resolution, a traditional FFT approach would have to
use at least an 8192-point FFT processing, which takes 8.7s!
Such a processing latency is impractical for any responsive
interactions, such as mobile gaming. These results justify
the use of undersampling in Spartacus.

5.5 Power Consumption
Spartacus leverages a low-power audio listening technique

to automatically sense the potential interaction requests
from nearby devices, so as to eliminate any user involvement.
In this section, we evaluate the performance of Spartacus
in terms of power consumption in low-power listening. To
compare the performance under different duty cycles, we
fixed the duration of each listening session to 200ms, and
changed the periods. To eliminate hardware variations, all
the experiments were done on the Galaxy Nexus mobile
phones. In the experiment, the screens and the CPUs of
the mobile phones were completed shut off, and the power
consumption was measured using an oscilloscope. For each
test, we measured the power consumption by running Spar-
tacus’s low-power listening task for 5min, and we compute
the mean and the standard deviation of the collected data.

The experimental results are shown in Figure 20. As a
baseline, we first measure the power consumption of the
devices being idle, i.e. turning off the screen and shutting
down all the application processes. This yields the base-
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Figure 17: Performance of device selection with various
background noise conditions.

line power consumption at 75mW. Then we evaluate the
performance of Spartacus. When the duty cycle is 5% (i.e.
the period equals 4s), Spartacus consumes 120mW power.
As the duty cycle increases, the power consumption goes
up gradually. At the maximum 25% duty cycle, Spartacus
consumes 250mW. As a comparison, we tested the state-
of-the-art peer-to-peer scanning techniques, and found that
WiFi Direct consumes 460mW of power, and Bluetooth 4.0
consumes 670mW. These results indicate that on average,
Spartacus achieves about 4X lower energy consumption than
WiFi Direct and 5.5X lower than the latest Bluetooth 4.0
protocols, respectively.

6. RELATED WORK
Spartacus leverage built-in microphones and speakers on

commodity mobile devices for both active device interaction
and passive listening for potential interaction requests. In
this section, we compare Spartacus with previous work that
leverage audio signals in two main categories: mobile sensing
and device interaction.

6.1 Audio Processing in Mobile Sensing
Microphones have been widely used in mobile sensing

applications to capture audio data. For example, Miluzzo
et al. has used human conversation snippets for analyzing
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recording using different number of FFT points.

social activities [12]. SurroundSense also utilized audio data,
combined with data from other sensing modalities, such
as accelerometers, cameras, and magnetometers to detect
locations of users for social context inferences [1]. Similarly,
Lu et al. has provided a tailored signal processing pipeline
for audio sensing and learning, such that unknown social
events can be automatically identified and easily labeled [9].
These early projects have largely focused on the knowledge
discovery tasks of using audio data, while assuming a fixed
or default audio sensing mechanism.

For energy-efficient continuous audio sensing, some more
recent work has been published. JigSaw and Darwin Phones
focused on enabling energy-efficient continuous sensing and
collaborative learning techniques [10, 11]. MoVi presented
an approach of using collaboratively sensed audio data
from multiple participants to create integrated social event
records [2]. SwordFight provide a continuous and accurate
distance ranging technique using time difference of sound
arrivals [22].

All the previous work mentioned above leveraged micro-
phones in a continuous manner. Spartacus differs from
them by proposing a low-power audio listening technique for
passive interaction sensing. Since interaction requests from
nearby devices can happen spontaneously, it requires Sparta-
cus to coordinate the tradeoff between detection latency and
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Figure 20: Power consumption of Spartacus under dif-
ferent duty cycle settings. As references, power con-
sumptions of scanning of Bluetooth 4.0 and WiFi Direct
are also shown.

energy efficiency. Other papers have also presented systems
using audio tones [7] for indoor counting or localization
[8]. Differing from them, Spartacus leverages tones at high
frequency to generate Doppler effect for device interaction.

6.2 Spatially-Aware Device Interactions
Interactions through mobile devices generally require two

pieces of functionalities, i.e. device selection and interaction
detection. For selecting devices, previous work has shown
that touching, scanning, and pointing are the most common
interactions when performing user-mediated object selection
and indirect remote controls [17]. Point & Connect (P&C)
proposed an interaction technique based on time difference
of sound arrivals. Both Spartacus and P&C can be used
for device interactions in close proximity. However, the two
systems differ significantly in several aspects. First, P&C
requires users to manually set up a dedicated broadcast
WiFi channel or start discoverable mode of their Bluetooth.
Enabling P&C may prevent the users from using their de-
fault WiFi networks. In contrast, Spartacus runs in the
mobile devices as a system service, and the periodic inter-
action detection mechanism automatically detects potential
interactions. Second, P&C was focused on providing the
device selection solution, while making an assumption that
the surrounding devices have already launched the related
service and continuously waiting for interaction requests. In
practice, this continuous audio listening would consume sig-
nificant energy. Therefore, Spartacus uses the duty-cycled
audio listening mechanism, and our evaluation results have
shown this mechanism is energy-efficient, as compared to the
traditional peer-to-peer communication techniques, such as
WiFi Direct and Bluetooth 4.0.

SoundWave leverages the Doppler effect to sense user ges-
tures for close-range (i.e. within 1m) single-device interac-
tions [4]. As the Doppler effect is made by moving user arms
in front of a laptop, and the laptop is both the transmitter
and the receiver, the generated frequency shift is doubled.
This significantly increases the detection accuracy of the
frequency shifts and makes detection easier. In contrast,
Spartacus selects the target device by comparing the peak
frequency shifts between multiple devices, which requires
higher frequency- and time-domain resolution. We solve



these problems by proposing a bandpass signal processing
pipeline to increase Doppler shift estimation accuracy.

To detect nearby devices and interaction requests, various
techniques can be used. However, existing techniques either
required extra infrastructure (i.e. laser tags and pointers
[13]), or did not provide spatial accuracy sufficient for sup-
porting device interactions (i.e. WiFi-based indoor localiza-
tion [21]). Other work involved extra effort from users to ini-
tiate interactions (e.g. the simultaneous shaking required by
the Bump app), or is not energy efficient (e.g. WiFi or Blue-
tooth techniques). PANDAA provided an automatic device
locationing service using ambient sound generated in indoor
environments, without requirements of extra infrastructures
or extra manual effort, and has achieved centimeter-level
locationing accuracy [18]. However, PANDAA only sup-
ports devices in stationary placements, thus if moving users
are involved in interactions, other mechanisms would have
to be used. More recent work in Polaris provided an in-
door orientation determination technique that could support
spatially-aware indoor device interactions [19]. However,
since Polaris dealt with only absolute directional relation-
ships of devices (i.e. relative to the earth’s magnetic field),
nearby devices can hardly be differentiated if their relative
orientations change, such as in the interaction scenarios that
involve moving users. In this paper, we describe the low-
power audio listening technique used in Spartacus to detect
nearby interaction requests, which periodically wakes up
the CPU and microphones on mobile devices, and detects
audio beacons emitted by nearby devices. We also present
experimental results that show the low-power audio listening
technique is much more energy-efficient than other state-of-
the-art techniques, such as WiFi Direct or Bluetooth 4.0.

7. DISCUSSION
In the current stage, the Spartacus system focuses mainly

on the signal processing techniques and prove the novel
interaction concept through the use of the Doppler effect.
This section addresses a number of related system issues
and discusses their possible solutions.

7.1 Energy-Efficient Interaction Triggers
To support automatic interaction triggers without user

involvement, Spartacus leverages energy-efficient audio sens-
ing to automatically detect interaction intents from nearby
devices. This makes the system more appropriate to be
used on mobile devices with limited energy budgets. While
the current system adopts the continuous low-power audio
listening technique, we would note that, if the energy con-
straint is not a major concern in particular applications,
the system could also be enabled on demand. Moreover,
in addition to the proposed energy-efficient audio sensing
technique, the system could also be triggered by other tra-
ditional communication schemes, such as Bluetooth or WiFi
Direct.

When choosing between different interaction triggering
mechanisms, there are a few design tradeoffs. On one hand,
as we have pointed out in Section 5.5, the proposed low-
power audio listening technique is more energy-efficient than
the Bluetooth 4.0 and the WiFi Direct techniques. On the
other hand, due to the intrinsic slow data rate of audio
signals, the user has to wait for a couple of seconds for a
“warmup beacon”before doing the gesture. As a comparison,
this issue can be solved, given that the relatively faster

wireless communication schemes could be used, such as the
Bluetooth and the WiFi techniques.

7.2 Security Issues
Spartacus leverages the Doppler effect to support spatially-

aware device interactions. This interaction may be vulnera-
ble to security attacks. For example, when a user generates a
pointing gesture, a malicious device standing close by could
pretend to have detected higher Doppler shifts than other
devices, so that it deceives the sender into thinking it was
the receiver; similarly, the same trick could also be used
to prevent other receivers from being connected with the
sender. To avoid these issues, a secured connection mecha-
nism could be used, so that only trusted and authenticated
devices are allowed to report their Doppler shifts. Alterna-
tively, knowledge from the users could also be used to reduce
the possibility of malicious recipients. For example, after
the user’s device determines the potential receiver who has
reported the maximal Doppler shifts, the name and identity
of receiver’s owner would be shown on the user’s device.
Then the user would be able to determine the correctness of
the interaction recipient.

7.3 Contentions Among Interaction Sessions
When the Spartacus system is used in a crowded scenario,

e.g. an airport, where many users would use the system
concurrently, contentions could be an issue for device pairing
techniques. However, since Spartacus leverages an audio
sensing mechanism for close-range interactions, concurrent
interactions can be automatically separated if they are far
away from each other (i.e. beyond 5m), due to the fast
degradation of sound energy. If the interactions do occur
with close proximity, a contention coordination mechanism
(e.g. a contention window that receives the Doppler shift
measures) could also be leveraged to solve the problem.

8. CONCLUSION
This paper presents Spartacus, a spatially-aware inter-

action system that allows users of mobile devices to es-
tablish spontaneous interactions with high accuracy, low
latency, and low energy consumption. Spartacus does not
require extra hardware. Leveraging sensors ubiquitous in
most commodity smartphones, Spartacus enables users to
use intuitive pointing gestures to select target devices with
zero prior configuration. We provide a comprehensive eval-
uation of the Spartacus system in various use conditions.
Our experimental evaluations show that Spartacus performs
significantly better than existing device interaction systems
in terms of intuitiveness, accuracy, latency, and energy con-
sumption. This new paradigm of mobile interactions will
enable natural, fast, and seamless interactions in numerous
emerging applications.
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