
AUTOMATIC GENERATION AND ADAPTATION OF NUMERICAL KERNELS

Yevgen Voronenko

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, U.S.A.

ABSTRACT

Designing software that achieves peak performance on mod-
ern architectures is a difficult, expensive and often highly
platform specific task. In this paper we discuss recent auto-
matic adaptive optimization approaches to high-performance
programming: ATLAS, FFTW, and SPIRAL. They are de-
signed to eliminate hand-coding and hand-tuning for vari-
ous numerical kernels. Further, we describe our own work
on the redesign of the SPIRAL system, which aims to gener-
alize its code generation framework to support more general
and more complicated kernels.

1. INTRODUCTION

The runtime of many scientific computations is dominated
by a few compute intensive numerical kernels. Examples
of such kernels are linear algebra computations, dense and
sparse matrix-matrix and matrix-vector multiplication, and
variants of the discrete Fourier transform.

Historically, the scientific community has relied on hard-
ware vendors, who provided manually optimized kernel li-
braries for the given platform. However, as the processor
microarchitecture and memory system evolve, the creation
of high performance libraries is becoming an increasingly
difficult and time-consuming process. Most importantly the
optimization goal is shifting. While most of the earlier work
on numerical algorithms concentrated on reducing the num-
ber of arithmetic operations, today the most important issue
is memory locality. For example, a level 2 cache miss on a
Pentium 4 may take more than 300 cycles, while a floating
point multiplication can be executed every 2 cycles.

In this paper we first describe three systems that attack
the problem of creating fast numerical kernels through au-
tomatic code generation and platform adaptation: 1) AT-
LAS [1], code generator for basic linear algebra routines;
2) FFTW [2, 3], an adaptive library for computing the dis-
crete Fourier transform (DFT); and 3) SPIRAL [4], a code
generator for linear signal transforms, including, but going
beyond the DFT. Then we describe our own work on the
redesign of SPIRAL to generalize its code generation and
optimization capabilities. An example would be DFTs of
large prime (or multiples of large primes) sizes, which are

typically not efficiently implemented due to their algorith-
mic complexity [5].

The paper is organized as follows. Section 2 discusses
ATLAS, FFTW, and SPIRAL in detail and compares the
three approaches; Section 3 discusses the new SPIRAL de-
sign; and Section 4 presents conclusions and future research
directions.

2. OVERVIEW OF ADAPTIVE LIBRARIES AND
CODE GENERATORS

All systems we discuss share a common methodology: they
use domain-specific methods to generate and optimize code,
and use empirical search in a set of implementation alter-
natives to perform platform adaptation. Here give a brief
overview of ATLAS, FFTW and SPIRAL, focusing on SPI-
RAL.

ATLAS. The domain of ATLAS [1] is Basic Linear Al-
gebra Subroutines (BLAS). BLAS are not only very im-
portant as standalone kernels, but also form the basis of
practically all linear algebra computations. BLAS routines
are subdivided into three groups called “levels.” Level 1
includes vector-vector routines, level 2 matrix-vector rou-
tines, and level 3 matrix-matrix routines, such as matrix-
matrix multiplication (MMM). Level 1 and level 2 routines
have a fairly low computation / data ratio, and therefore are
IO bound and fairly easy to optimize by choosing the cor-
rect blocking parameters. Level 3 routines are more difficult
to optimize, since they perform more computations per data
element and have more potential data reuse, which must be
efficiently exploited. We focus our attention on MMM, the
most important level 3 routine.

ATLAS uses three techniques to adapt MMM code to
the underlying platform: parametrization, code generation,
and multiple implementation.

A straightforward blockedO(n3) MMM algorithm is
used in ATLAS as the top-level algorithm that reduces MMM
to so-called Mini-MMMs, which perform matrix-matrix mul-
tiplication of the blocks. Parametrization involves intro-
ducing variable implementation parameters; at the top-level
MMM these include the block (or tile) size. Code gen-
eration is used to automatically generate optimized Mini-



MMM code. ATLAS code generator unrolls the loops of
Mini-MMM, to exploit additional low-level optimizations,
such as operation scheduling, blocking for registers, scalar
replacement of array references, and others. Finally, with
multiple implementation, ATLAS chooses between differ-
ent implementations of MMM and Mini-MMM. At the top
level it has the choice to use MMM with block row-major
or column-major loop order. At the Mini-MMM level, AT-
LAS might choose its own generated kernel or a contributed
hand-written implementation.

At install time the system determines the best top-level
blocking parameters, top-level loop order, and scheduling
parameters for the code generator using runtime feedback-
driven search. In addition, it times all contributed Mini-
MMMs to compare against the generated code. If a con-
tributed Mini-MMM outperforms the generated code, the
contributed routine is used instead.

Reference [6] developed performance models that en-
able computing the parameters for MMM and Mini-MMM
from architectural information, such as the cache sizes and
the number of registers without using search. The authors
show that the MMM code generated this way (without search)
matches the performance of ATLAS generated code (with
search).

An interesting fact pointed out by [6] is that ATLAS per-
forms compiler optimizations that have been known to the
research community for years, and most have been imple-
mented in various general purpose high performance C and
Fortran compilers. In particular, blocking for cache local-
ity, hand-coded in the parameterized top-level MMM algo-
rithm, and automatically generated by the Mini-MMM code
generator, is achieved using a general compiler optimization
known as loop tiling [7]. Nevertheless, no general purpose
compiler was shown to match the performance of ATLAS
generated code.

FFTW. While ATLAS uses a single parametrized blocked
MMM algorithm, FFTW [2] has a mechanism to enumer-
ate a large space of different recursive algorithms, called
“plans,” for computing the DFT.

Each step of the plan is a recursion step in the con-
ventional program. However, FFTW has several choices
in picking each recursion step, and these choices affect the
memory locality of the algorithm and to some extent the op-
erations count, and thus the performance. FFTW thus uses
these choices to adapt to the host platform using search.

For smaller size DFTs, FFTW uses a special-purpose
compiler, described in [3], to generate fast fully unrolled
basic blocks calledcodelets for small DFT sizes, which are
used in the plans for large DFT sizes. In addition to stan-
dard optimizations, the compiler performs highly efficient
strength reduction optimizations that reduce the number of
floating point operations, and aggressively schedules for reg-
ister locality using a DFT-specific scheduling approach.

While the special purpose compiler ensures high perfor-
mance for small DFT sizes, the search-based planner finds
the best recursion strategy for large DFT sizes.

An important difference between MMM and DFT is that
MMM has an extremely regular and well understood struc-
ture, with blocking and other parameters mapping directly
to the microarchitectural parameters, while the degrees of
freedom in the DFT do not correspond directly to the pa-
rameters of the microarchitecture.

SPIRAL. SPIRAL [4] is a standalone code generator
for discrete linear signal transforms, such as the DFT. While
in both ATLAS and FFTW only the small kernels are gen-
erated, and the top-level algorithm is hand-written, SPIRAL
does not use any hand-written code at all. Instead, SPIRAL
generates code for the entire transform from scratch. In ad-
dition to the DFT, the current version can generate code for
FIR filters, wavelets, discrete cosine and sine transforms,
and many other transforms.

In SPIRAL, the DFT is called atransform, andDFT8

is an example of atransform instance, i.e., the DFT of size
8. All linear signal transforms are uniquely defined by some
matrixM , and transforming an input signalx into the output
signaly corresponds to the matrix-vector multiplicationy =
Mx. For example, the DFT is defined by then × n matrix

DFTn =
[

ωkℓ
n

]

0≤k,ℓ<n
, ωn = e−2π

√
−1/n,

and computing the DFT of ann-dimensional input vectorx
corresponds to the matrix vector producty = DFTn x.

Transforms supported by SPIRAL havefast algorithms
that reduce the cost of the matrix-vector product from the
generalO(n2) to typically O(n log n). Fast algorithms are
captured in SPIRAL using recursive matrixdecomposition
rules. For example,

DFTmk ⇒ (DFTm ⊗ Ik)D(Im ⊗DFTk)P (1)

is a DFT decomposition rule that corresponds to the well
known Cooley-Tukey algorithm written in the notation in-
troduced by Van Loan in [8]. In the rule aboveD denotes a
certain diagonal matrix,P a permutation, andIn then × n

identity matrix. The operator⊗ denotes the tensor or Kro-
necker product of matrices, defined by

A ⊗ B = [ak,ℓ · B], A = [ak,ℓ].

After applying the rule (1) once, the problem of computing
the DFT of an input vectorx is reduced to 4 steps corre-
sponding to the 4 factors in (1). First,x is permuted accord-
ing toP , then theDFTk is performed onm subvectors, the
result is scaled by the diagonalD, and finally theDFTm is
performed onk subvectors.

We call the right hand side of rule (1) aformula. Each
application of a recursive decomposition rule to the original
transform yields a formula with reduced arithmetic cost, and
the decomposition is applied until no more transforms ap-
pear in the formula. We call such formula afully expanded



Fig. 1. Adaptive code generation in SPIRAL.

formula. Fully expanded formulas are obtained by eventu-
ally applying base case rules; the base case rule for the DFT
is simple:DFT2 ⇒

[

1 1

1 −1

]

.
The decomposition rules and the formulas are repre-

sented in SPIRAL using a declarative domain-specific lan-
guage called SPL, which supports operators such as⊗, and
also has a mechanism for defining symbols for diagonals,
permutations, and other structured matrices.

Figure 1 shows how SPIRAL performs platform adap-
tation using the formula framework described above. After
the user specifies a transform instance to be implemented,
theSearch module starts generating alternative SPL formu-
las for the transform using theFormula Generator and the
decomposition rules for the specified transform. Each SPL
formula is compiled with theSPL compiler into a C pro-
gram, which is subsequently compiled with a C compiler
and timed. TheSearch module uses the runtime feedback to
guide the formula generation process. This closes the feed-
back loop.

To date, several search strategies have been implemented
in SPIRAL. The most effective strategies are dynamic pro-
gramming and evolutionary (genetic) search. These are de-
scribed in detail in [4].

3. REDESIGN OF SPIRAL

The original SPIRAL system as described in [4] has several
limitations. First, in many cases only the straightline code
achieves high performance, limiting several transforms to
small sizes only. Second, it is usually possible to reduce the
memory footprint of the generated code by overwriting the
input vector with the output data, this type of code is called
inplace. SPIRAL is not able to generate inplace code. Fi-
nally, the system can only generate code for a prespecified
transform size, while often it is useful to have a package that
can compute a transform of arbitrary size not known a pri-
ori. In this section we discuss the transform size limitation

in more detail, then outline the redesign of the system, show
how it solves the small size limitation, and briefly describe
how the new design addresses other limitations.

Large transform sizes. Recall the Cooley-Tukey DFT
decomposition rule (1). Straightforward conversion of this
formula to code leads to a program with four loops that
traverse the entire input vector, as described in Section 2.
However, the equivalent of this recursive decomposition hand-
written in FFTW uses only two loops, merging the diago-
nal and the permutation with the computation of the smaller
DFTs. Using only two loops enables more data reuse and
instruction level parallelism, and reduces memory traffic.
The permutation is combined with the computation by read-
dressing the input, and therefore no data movement is per-
formed. This problem only manifests itself for large trans-
form sizes, because the loops in the code for small trans-
forms are fully unrolled. As the size of the transform in-
creases, more and more recursive steps are required, and
since typically each step introduces a permutation, the inef-
ficiency is aggravated.

Original SPIRAL [4] solved this problem by usingtem-
plates to recursively match the common case SPL subfor-
mulas and produce optimized code with merged loops. How-
ever, these templates had to be handwritten for a large num-
ber of possible subformulas, and for many transforms the
necessary templates were missing. In the new system we
fuse the redundant loops with the computation fully auto-
matically without using hand-written templates.
∑

-SPL1 and the new design. In the redesigned ar-
chitecture we introduce an intermediate formula language
called

∑

-SPL, described in [5].
∑

-SPL represents an al-
gorithm at an abstraction level below SPL, but above the
actual code.

∑

-SPL makes the loop structure explicit while
still allowing to perform optimization at the formula level.
We use a powerful rewriting engine to perform code gener-
ation.

Figure 2 shows all of the steps involved in generating
code for a given transform instance in the redesigned SPI-
RAL, i.e., these steps correspond to the Formula Genera-
tor and the SPL Compiler blocks in Figure 1. Initially, like
in the original system, the decomposition rewrite rules are
used to obtain a fast DFT algorithm as a fully expanded SPL
formula. Afterwards, the SPL formula is converted to a

∑

-
SPL formula using the rewrite rules shown in [5]. For exam-
ple, translating the right-hand side of (1) into

∑

-SPL yields
(

k−1
∑

i=0

Sfi
DFTn Gfi

)

Diagd

(

n−1
∑

j=0

Sgj
DFTk Ggj

)

Permp,

whereGfi
denotes ann × nk gather matrix, which loads

or gathersn input values out ofnk using a certain index
mapping functionfi, Sfi

denotes annk × n scatter matrix
which stores or scattersn values into an output vector of size

1Pronounced as “Sigma-SPL”.



Fig. 2. Data flow of the redesigned SPIRAL.

nk using the same index mapping functionfi. Further, the
diagonal is represented in terms of its generating functiond,
and permutation in terms of the index mapping functionp.

Consequently, we use rewriting rules to merge redun-
dant loops and perform other optimizations of the

∑

-SPL
formula to obtain the optimized

∑

-SPL formula. For ex-
ample, the formula above after the optimization becomes
(

k−1
∑

i=0

Sfi
DFTn Diagd◦fi

Gfi

)(

n−1
∑

j=0

Sgj
DFTk Gp◦gj

)

,

which will have only two loops in the code, assuming that
bothn andk are smaller than the unrolling threshold (oth-
erwise, the optimization can proceed on the formulas for
smaller DFTs). Observe, that the permutation was incorpo-
rated into the gather operation yielding the composite index
mapping functionp ◦ gj , where◦ denotes function compo-
sition. The diagonal is interchanged with the subsequent
gather, by permuting its entries. More details and the used
rewrite rules can be found in [5]. The final step uses rewrite
rules convert the optimized

∑

-SPL formula to code.
Results. Using

∑

-SPL we can overcome the deficien-
cies of looped code in the original system, without hand-
writing a large number of templates. Further, in

∑

-SPL it
is possible to express both inplace and out-of-place compu-
tations. As in the case of loop merging, transformations on
the
∑

-SPL level are used to obtain an inplace formula, and
subsequently generate inplace code. Finally, the enhanced
symbolic computation capabilities enabled with rewriting
allow us to generate a recursive routine for a transform with
size as a parameter.

Neither FFTW nor ATLAS address the loop code gen-
eration problem directly, since both systems can only gen-
erate fully unrolled code for smaller subproblems, and use
hand-written top-level algorithms. Our approach, however,
is general enough to cover the more complicated Rader’s al-
gorithm for the prime-size DFT, and the prime-factor DFT
algorithm. In FFTW, the complicated permutation used in
the Rader’s algorithm is not merged with the computation,
making it a good candidate for comparison with SPIRAL
generated code with automatically merged loops. In this
case, using the same algorithm, SPIRAL achieves speedups
of a factor of 2-3 over FFTW. Reference [5] gives further
runtime results.

4. CONCLUSIONS AND FUTURE WORK

Our goal is to evolve SPIRAL into a user-friendly well-
designed code generation system that works for all trans-

forms, sizes, and various code types. We believe that
∑

-
SPL is a step in the right direction, as it extends the mathe-
matical SPL language with code-like idioms, and thus en-
ables optimizations, which are prohibitively expensive at
the code level, to be performed at the formula level, Fur-
ther, optimizing the formula directly allows easy verifica-
tion using the methods described in [4], and also enables us
to inspect the optimized formula to understand the gener-
ated loop structure, without looking at the potentially very
long code sequences.

Efficient code for large sizes of several currently sup-
ported transforms still can not be generated, because more
general loop merging techniques are required. However,
this does not pose a significant challenge, since the opti-
mization is performed at a very high level of abstraction,
and therefore is much easier to implement than in a general
purpose compiler.

Our long-term goal is to use SPIRAL to generate li-
braries like FFTW. optionally customized to different sub-
sets of functionality, different memory footprints, or other
requirements.

5. REFERENCES

[1] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet,
R. Vuduc, C. Whaley, and K. Yelick, “Self adapting linear
algebra algorithms and software,”Proceedings of the IEEE,
vol. 93, no. 2, 2005.

[2] M. Frigo and S.G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, 2005.

[3] M. Frigo, “A fast fourier transform compiler,” inProc.
PLDI’99, 1999.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. W. Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,”Proceedings of the IEEE,
vol. 93, no. 2, 2005.

[5] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop
merging for signal transforms,” 2005, to appear inPLDI’05.

[6] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,
and P. Stodghill, “Is search really necessary to generate high-
performance BLAS?,”Proceedings of the IEEE, vol. 93, no.
2, 2005.

[7] M. Wolfe, “More iteration space tiling,” inSupercomputing
’89: Proceedings of the 1989 ACM/IEEE conference on Su-
percomputing. 1989, pp. 655–664, ACM Press.

[8] C. F. Van Loan, Computational frameworks for the Fast
Fourier Transform, SIAM, 1992.


