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Abstract

Multi-channel sparse blind deconvolution, or convolutional sparse coding, refers to the problem of
learning an unknown filter by observing its circulant convolutions with multiple input signals that are
sparse. This problem finds numerous applications in signal processing, computer vision, and inverse
problems. However, it is challenging to learn the filter efficiently due to the bilinear structure of the
observations with respect to the unknown filter and inputs, as well as the sparsity constraint. In this
paper, we propose a novel approach based on nonconvex optimization over the sphere manifold by
minimizing a smooth surrogate of the sparsity-promoting loss function. It is demonstrated that manifold
gradient descent with random initializations will provably recover the filter, up to scaling and shift
ambiguity, as soon as the number of observations is sufficiently large under an appropriate random data
model. Numerical experiments are provided to illustrate the performance of the proposed method with
comparisons to existing ones.
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1 Introduction
In various fields of signal processing, computer vision, and inverse problems, it is of interest to identify the
location of sources from traces of responses collected from sensors. For example, neural or seismic recordings
can be modeled as the convolution of a pulse shape (i.e. a filter), corresponding to characteristics of neuron
or earth wave propagation, with a spike train modeling time of activations (i.e. a sparse input) [1, 2, 3].
Thanks to the advances of sensing technologies, in many applications, one can make multiple observations
that share the same filter, but actuated by diverse sparse inputs, either spatially or temporally. Examples
include underwater communications [4, 5], neuroscience [6], seismic imaging [7, 8], image deblurring [9, 10],
and so on. The goal of this paper is to identify the filter as well as the sparse inputs by leveraging multiple
observations in an efficient manner, a problem termed as multi-channel sparse blind deconvolution (MSBD).

Mathematically, we model each observation yi ∈ Rn as a convolution, between a filter g ∈ Rn, and a
sparse input, xi ∈ Rn:

yi = g ~ xi = C(g)xi, i = 1, . . . , p, (1)

where the total number of observations is given as p. Here, we consider circulant convolution, denoted as ~,
whose operation is expressed equivalently via pre-multiplying a circulant matrix C(g) to the input, defined as

C(g) =


g1 gn · · · g2

g2 g1 · · · g3

...
...

. . .
...

gn gn−1 · · · g1

 . (2)

In practice, the circulant convolution is used in situations when the filter g satisfies periodic boundary
conditions [11, 12], or as an approximation of the linear convolution when the filter has compact support or
decays fast [13, 14]. It is particularly attractive in large-scale problems to accelerate computation by taking
advantage of the fast Fourier transform [11, 12].
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1.1 Nonconvex Optimization on the Sphere
Our goal is to recover both the filter g and sparse inputs {xi}pi=1 from the observations {yi}pi=1. The problem
is challenging due to the bilinear form of the observations with respect to the unknowns, as well as the
sparsity constraint. A direct observation tells that the unknowns are not uniquely identifiable, since for any
circulant shift Sk(·) by k entries (defined in Section 1.3) and a non-zero scalar β 6= 0, we have

yi = (βSk(g)) ~
(
β−1S−k(xi)

)
, (3)

for k = 1, . . . , n− 1. Hence, we can only hope to recover g and {xi}pi=1 accurately up to certain circulant
shift and scaling factor.

In this paper, we focus on the case that C(g) is invertible, which is equivalent to requiring all Fourier
coefficients of g are nonzero. This condition plays a critical role in guaranteeing the identifiability of the
model as long as p is large enough [15]. Under this assumption, there exists a unique inverse filter, ginv ∈ Rn,
such that

C(ginv)C(g) = C(g)C(ginv) = I. (4)

This allows us to convert the bilinear form (1) into a linear form, by multiplying C(ginv) on both sides:

C(ginv)yi = C(ginv)C(g)xi = xi, i = 1, . . . , p.

Consequently, we can equivalently aim to recover ginv via exploiting the sparsity of the inputs {xi}pi=1. An
immediate thought is to seek a vector h that minimizes the cardinality of C(h)yi = C(yi)h:

min
h∈Rn

1

p

p∑
i=1

‖C(yi)h‖0 ,

where ‖ · ‖0 is the pseudo-`0 norm that counts the cardinality of the nonzero entries of the input vector.
However, this simple formulation is problematic for two obvious reasons:

1) first, due to scaling ambiguity, a trivial solution is h = 0;

2) second, the cardinality minimization is computationally intractable.

The first issue can be addressed by adding a spherical constraint ‖h‖2 = 1 to avoid scaling ambiguity. The
second issue can be addressed by relaxing to a convex smooth surrogate that promotes sparsity. In this paper,
we consider the function

ψµ(z) = µ log cosh(z/µ), (5)

which serves as a convex surrogate of ‖ · ‖0, where µ > 0 controls the smoothness of the surrogate. With slight
abuse of notation, we assume ψµ(z) =

∑n
i=1 ψµ(zi) is applied in an entry-wise manner, where z = [zi]1≤i≤n.

Putting them together, we arrive at the following optimization problem:

min
h∈Rn

fo(h) :=
1

p

p∑
i=1

ψµ(C(yi)h) s.t. ‖h‖2 = 1, (6)

which is a nonconvex optimization problem due to the sphere constraint. As we shall see later, while this
approach works well when C(g) is an orthogonal matrix, further care needs to be taken when it is a general
invertible matrix in order to guarantee a benign optimization geometry. Following [14, 16], we introduce the
following pre-conditioned optimization problem:

min
h∈Rn

f(h) =
1

p

p∑
i=1

ψµ(C(yi)Rh) s.t. ‖h‖2 = 1, (7)

where R is a pre-conditioning matrix depending only on the observations {yi}pi=1 that we will formally
introduce in Section 2.
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(a) orthogonal filter (b) general filter (c) general filter
no pre-conditioning no pre-conditioning with pre-conditioning

Figure 1: An illustration of the landscape of the empirical loss function fo(h) or f(h) with or without the
pre-conditioning matrix R in R3, where the sparse inputs are generated according to a Bernoulli-Gaussian
model with p = 30 observations and activation probability θ = 0.3. (a) orthogonal filter C(g) = I, no
pre-conditioning is applied; (b) a general filter, no pre-conditioning is applied; (c) the same general filter as
(b) with pre-conditioning.

1.2 Optimization Geometry and Manifold Gradient Descent
Encouragingly, despite nonconvexity, under a suitable random model of the sparse inputs, the empirical
loss functions exhibits benign geometric curvatures as long as the sample size p is sufficiently large. As
an illustration, Fig. 1 shows the landscape of fo(h) and f(h) when n = 3 and p = 30, and the sparse
inputs {xi}pi=1 follow the standard Bernoulli-Gaussian model (with an activation probability θ = 0.3, see
Definition 1). When the filter is orthogonal, e.g. C(g) = I, it can be seen from Fig. 1 (a) that the function
fo(h) in (6) has benign geometry without pre-conditioning, where the local minimizers are approximately all
shift and sign-flipped variants of the ground truth (i.e, the basis vectors), and are symmetrically distributed
across the sphere. On the other end, for filters that are not orthogonal, the geometry of fo(h) in (6) is less
well-posed without pre-conditioning, as illustrated in Fig. 1 (b). By introducing pre-conditioning, which
intuitively stretches the loss surface to mirror the orthogonal case, the pre-conditioned loss function f(h)
given in (7) for the same non-orthogonal filter used in Fig. 1 (b) is much easier to optimize over, as illustrated
in Fig. 1 (c).

Motivated by this benign geometry, it is therefore natural to optimize h over the sphere. One simple
and low-complexity approach is to minimize f(h) over the sphere via (projected) manifold gradient descent
(MGD), i.e. for k = 0, 1, . . .

h(k+1) :=
h(k) − η∂f(h(k))

‖h(k) − η∂f(h(k))‖2
, (8)

where η is the step size, ∂f(h) is the Riemannian manifold gradient with respect to h (defined in Sec. 2.2).
Surprisingly, this simple approach works remarkably well even with random initializations for appropriately
chosen step sizes. As an illustration, Fig. 2 depicts that MGD converges within a few number of iterations
for the problem instance in Fig. 1 (c). Based on such empirical success, our goal is to address the following
question: can we establish theoretical guarantees of MGD to recover the filter for MSBD?

In this paper, we formally establish the benign geometry of the empirical loss function over the sphere,
and prove that MGD, with a small number of random initializations, is guaranteed to recover the filter with
high probability in polynomial time. Our result is stated informally below.

Theorem 1 (Informal). Assume the sparse inputs are generated using a Bernoulli-Gaussian model, where
the activation probability θ ∈ (0, 1/3). As long as the sample size is sufficiently large, i.e. p = O(poly(n)),
manifold gradient descent, initialized from at most O(log n) independently and uniformly selected points on
the sphere, recovers the filter accurately with high probability, for properly chosen µ, and step size ηt.

Our theorem provides justifications to the empirical success of MGD with random initializations. This
result is achieved through an integrated analysis of geometry and optimization. Namely, we identify a union
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Figure 2: The normalized reconstruction error of MGD with respect to the number of iterations for the
problem instance in Fig. 1 (c).

of subsets, corresponding to neighborhoods of equivalent global minimizers, and show that this region has
large gradients pointing towards the direction of minimizers. Consequently, if the iterates of MGD lie in
this region, and never jump out of it during its execution, we can guarantee that MGD converges to the
global minimizers. Luckily, this region is also large enough, so that the probability of a random initialization
selected uniformly over the sphere has at least a constant probability falling into the region. By independently
initializing a few times, it is guaranteed with high probability at least one of the initializations successfully
land into the region of interest and return a faithful estimate of the filter.

1.3 Paper Organization and Notation
The rest of this paper is organized as follows. Section 2 presents the problem formulation and main results,
with comparisons to existing approaches. Section 3 outlines the analysis framework and sketches the proof.
Section 4 provides numerical experiments on both synthetic and real data with comparisons to existing
algorithms. Section 5 further discusses the related literature and we conclude in Section 6 with future
directions.

Throughout the paper, we use boldface letters to represent vectors and matrices. Let x>, xH denote
the transpose and conjugate transpose of x, respectively. Let [n] denote the index set {1, 2, · · · , n}. For a
vector x ∈ Rn, let xj denote its jth element. Let xD, D ⊆ [n] denote the length-|D| vector composed of the
elements in the index set D of x, and let x\D denote the vector obtained by removing the elements of x in
the index set D. For example, x1:j denotes the length-j vector composed of the first j entries of x, i.e., the
vector [x1, x2, · · · , xj ]>, and x\{i} denotes the length-(n− 1) vector composed of all entries of x except the
ith one, i.e. the vector x1:i−1,i+1:n. If an index j /∈ [n] for an n-dimensional vector, then the actual index
is computed as in the modulo n sense. Sj denotes a circular shift by j positions, i.e., [Sj(x)]k = xk−j for
j, k ∈ [n]. Let ‖·‖p, p ∈ [1,∞] represent the `p norm of a vector, and ‖ · ‖, ‖ · ‖F denote the operator norm
and the Frobenius norm of a matrix, respectively. Let σi(A) be the ith largest eigenvalue of a matrix A.Let
� denote the Hadamard product for two vector x,y ∈ Rn of the same dimension. Let I denote an identity
matrix, and ei ∈ Rn, i ∈ [n] be the ith standard basis vector. If A � B, then B −A is positive semidefinite.
Last, we use c1, c2, C, . . . to denote universal constants whose values may change from line to line.

2 Main Results
To begin, we state a few key assumptions. In this paper, we assume that the sparse inputs are generated
according to the well-known Bernoulli-Gaussian model, defined below.
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Definition 1 (Bernoulli-Gaussian model [17]). The inputs xi, i = 1, · · · , p, are said to satisfy the Bernoulli-
Gaussian model with parameter θ ∈ (0, 1), i.e. xi ∼iid BG(θ), if xi = Ωi� zi, where Ωi is an i.i.d. Bernoulli
vector with parameter θ, and zi is a random vector with i.i.d. random Gaussian variables drawn from N (0, 1).

Furthermore, the geometry of the loss function f(h) turns out to be highly related to the condition
number of the matrix C(g), which is defined below.

Definition 2 (Condition number). Let κ be the condition number of C(g), i.e. κ = σ1(C(g))/σn(C(g)).

When C(g) is orthogonal, we have κ = 1. Let the discrete Fourier transform (DFT) of g be ĝ = Fg,
then κ is equivalent to the ratio of the largest and the smallest absolute values of ĝ, i.e. κ := |ĝ|max/|ĝ|min.
Therefore, κ measures the flatness of the spectrum ĝ, which plays a similar role as the coherence introduced
in early works of blind deconvolution with a single snapshot [18, 19]. In addition, since ginv can only be
identified up to scaling and shift ambiguities, without loss of generality, we assume ‖ginv‖2 = 1.

2.1 Geometry of the Empirical Loss
We start by describing the geometry of fo(h) when C(g) is an orthonormal matrix, where pre-conditioning is
not needed. Without loss of generality, we can assume C(g) = I,1 which corresponds to the ground truth
ginv = e1 and yi = xi. Therefore, the loss function fo(h) in (6) can be equivalently reformulated as

min
h∈Rn

fo(h) =
1

p

p∑
i=1

ψµ(C(xi)h) s.t. ‖h‖2 = 1. (9)

Our geometric theorem characterizes benign properties of the curvatures in the local neighborhood of {±ei}ni=1,
shifted and sign-flipped copies of the ground truth. Inspired by [20, 21], we introduce 2n subsets,

S(i±)
ξ =

{
h : hi ≷ 0,

h2
i∥∥h\{i}∥∥2

∞

> 1 + ξ

}
, i ∈ [n], (10)

where ξ ∈ [0,∞). Clearly, ei ∈ S(i+)
ξ and −ei ∈ S(i−)

ξ , for all i ∈ [n]. The quantity ξ captures the size of the

local neighborhood — the smaller ξ is, the larger the size of S(i±)
ξ .

Due to symmetry, we focus on describing the geometry of fo(h) in one of such subsets, say S(n+)
ξ . For

convenience, we introduce a reparametrization trick [16]. Define w = h1:n−1 ∈ Bn−1, corresponding to the
first (n − 1) entries of h, where Bn−1 := {w ∈ Rn−1 : ‖w‖2 ≤ 1} is the unit ball in Rn−1. Given w, the
vector h can be written as

h(w) =

(
w,

√
1− ‖w‖22

)
, ∀w ∈ Bn−1. (11)

Therefore, w = 0 is equivalent to h(0) = en, which is the shifted ground truth within S(n+)
ξ . The loss

function fo(h) can be rewritten with respect to w as

φo(w) = fo(h(w)) =
1

p

p∑
i=1

ψµ(C(xi)h(w)). (12)

In addition, a short calculation reveals that,2

‖w‖22 ≤
n− 1

n+ ξ
whenever h(w) ∈ S(n+)

ξ . (13)

1Denote h̃ = C(g)h, we have ‖h̃‖2 = ‖C(g)h‖2 = 1 due to the orthonormality of C(g). Rewriting the loss function with
respect to h̃ confirms this assertion. This does not change the geometry of the objective function that is of primary interest.

2When h(w) ∈ S(n+)
ξ , we have h2

n ≥ (1 + ξ)‖h\{i}‖2∞, which leads to 1 = ‖h‖22 ≤ h2
n + (n− 1)‖h\{i}‖2∞ ≤

(
1 + n−1

1+ξ

)
h2
n =(

1 + n−1
1+ξ

)
(1− ‖w‖22).
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The theorem below states the geometry of φo(w) in the neighborhood h(w) ∈ S(n+)
ξ0

for ξ0 ∈ (0, 1). In
particular, we split the region of interest into two subregions:

Q1 :=

{
w :

µ

4
√

2
≤ ‖w‖2 ≤

√
n− 1

n+ ξ0

}
, Q2 :=

{
w : ‖w‖2 ≤

µ

4
√

2

}
. (14)

Theorem 2 (Geometry in the orthogonal case). Without loss of generality, suppose C(g) = I. For any
ξ0 ∈ (0, 1), θ ∈ (0, 1

3 ), there exist constants c1, c2, c3, c4, c5, C such that when µ < c1 min{θ, ξ1/6
0 n−3/4} and

p ≥ Cn4

θ2ξ2
0

log n log

(
n3 log p

µθξ0

)
, (15)

the following holds with probability at least 1− c3p−7 − exp (−c4n) for h(w) ∈ S(n+)
ξ0

:

(large directional gradient)
w>∇φo(w)

‖w‖2
≥ c2ξ0θ, if w ∈ Q1, (16a)

(strong convexity) ∇2φo(w) � c2nθ

µ
I, if w ∈ Q2. (16b)

Furthermore, the function φo(w) has exactly one unique local minimizer w?
o near 0, such that

‖w?
o − 0‖2 ≤

c5µ

θ

√
log2 p

p
. (17)

Theorem 2 has the following implications when h(w) ∈ S(n+)
ξ0

, as long as the sample size p is sufficiently
large and satisfies (15):

• The function φo(w) either has a large gradient when ‖w‖2 is large (cf. (16a)), or is strongly convex
when ‖w‖2 is small (cf. (16b)), indicating the geometry is rather benign and suitable for optimization
using first-order methods such as MGD;

• There are no spurious local minima, and the unique local optimizer is close to the ground truth according
to (17) with an error decays at the rate O

(
µ
θ

√
log2 p
p

)
as the sample size p increases.

Theorem 2 also suggests that a larger sample size is necessary to guarantee a benign geometry when the
subset S(i±)

ξ0
gets larger – with the decrease of ξ0. By a simple union bound, we can ensure a similar geometry

applies to all 2n subsets S(i±)
ξ0

defined in (10).

Extension to the general case. To extend the geometry in Theorem 2 to the general case when C(g) is
invertible, we adopt the trick in [14, 16] and introduce the pre-conditioning matrix R:

R =

[
1

θnp

p∑
i=1

C(yi)>C(yi)

]−1/2

. (18)

The main purpose of the pre-conditioning is to convert the loss function to one similar to the orthogonal case
studied above. Recognizing that E

[
1
θnp

∑p
i=1 C(xi)>C(xi)

]
= I, we have R ≈

(
C(g)>C(g)

)−1/2 asymptoti-

cally as p increases. Plugging C(yi) = C(xi)C(g) and R ≈
(
C(g)>C(g)

)−1/2 into the loss function of (7), we
have

f(h) ≈ 1

p

p∑
i=1

ψµ(C(xi)Uh), (19)

where U is a circulant orthonormal matrix given by

U := C(g)
(
C(g)>C(g)

)− 1
2 . (20)
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By the rotation invariance of the loss function over the sphere with respect to the orthonormal transform by U ,
(19) is equivalent to the one studied in the orthogonal case, thus justifying our choice of the pre-conditioning
matrix. Returning to the original loss function without approximating R by its population counterpart, we
can repeat the same argument performed in (9) and rewrite a rotationed version of (7) as

min
h∈Rn

f(h) =
1

p

p∑
i=1

ψµ(C(xi)C(g)RU>h) s.t ‖h‖2 = 1, (21)

where the shifted and sign-flipped ground truth has been rotated to almost {±ei}ni=1, which is the same as
the orthogonal case. The theorem below suggests that under the same reparameterization h = h(w) in (11),
a similar geometry as Theorem 2 can be guaranteed for φ(w) = f(h(w)).

Theorem 3 (Geometry in the general case). Suppose C(g) is invertible with condition number κ. For any
ξ0 ∈ (0, 1), θ ∈ (0, 1

3 ), there exist constants c1, c2, c3, c4, C such that when µ < c1 min{θ, ξ1/6
0 n−3/4} and

p ≥ Cκ
8n3 log4 p log2 n

θ4µ2ξ2
0

, (22)

the geometry (16) holds for φ(w) with probability at least 1 − c3p−7 − exp (−c4n) for h(w) ∈ S(n+)
ξ0

. In
addition, the function φ(w) has exactly one unique local minimizer w? near 0, such that

‖w? − 0‖2 ≤
c2κ

4

θ2

√
n log3 p log2 n

p
.

Theorem 3 demonstrates that a benign geometry similar to that in Theorem 2 can be guaranteed for the
general case, as long as a proper pre-conditioning is applied, and the sample size is sufficiently large. In
particular, the sample size in (22) increases with the increase of the condition number of C(g).

2.2 Convergence Guarantees of MGD

Owing to the benign geometry in the subsets of interest
{
S(i±)
ξ0

, i ∈ [n]
}
, a simple MGD algorithm is proposed

to optimize (21), by updating

h(k+1) =
h(k) − η∂f(h(k))∥∥h(k) − η∂f

(
h(k)

)∥∥
2

(23)

for k = 1, . . . , T − 1, where ∂f(h) = (I− hh>)∇f(h) is the Riemannian manifold gradient with respect to h,
∇f(h) is the Euclidean gradient of f(h), and η is the step size. The next theorem demonstrates that with an
initialization in one of the 2n subsets

{
S(i±)
ξ0

, i ∈ [n]
}
, the proposed MGD algorithm, with a proper step size,

will recover ±ei in that region in a polynomial time.

Theorem 4. Let 0 < ε < 1 and instate the assumptions of Theorem 3. If the initialization satisfies
h(0) ∈ S(i±)

ξ0
for any i ∈ [n], then with a step size η ≤ cµξ0θ

n2
√

log(np)
for some sufficiently small constant c, the

iterates h(k), k = 1, 2, · · · stay in S(i±)
ξ0

and achieve ‖h(T ) ∓ ei‖2 . κ4

θ2

√
n log3 p log2 n

p + ε in

T .
n

µηξ0θ
+

µ

nθη
log
(µ
ε

)
iterations.

With Theorem 4 in place, one still needs to address how to find an initialization that satisfies h(0) ∈ S(i±)
ξ0

.
Fortunately, setting ξ0 = 1/(4 log n) allows a sufficiently large basin of attraction, such that a random
initialization can land into it with a constant probability. A few random initializations guarantee that the
MGD algorithm will succeed with high probability. This is made precise in the following corollary.
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Algorithm 1: Manifold Gradient Descent for MSBD
Input: Observation {yi}pi=1, step size η, initialization h(0) on the sphere, the loss function f(h) in

(7);
for k = 0 to T − 1 do

h(k+1) =
h(k) − η∂f(h(k))∥∥h(k) − η∂f

(
h(k)

)∥∥
2

;

Output: Return ĝinv = Rh(T ), where R is given in (18).

Putting everything together, Alg. 1 summarizes the proposed MGD algorithm for the original loss function
in (7), where the pre-conditioning matrix is applied back at the end of the iterations to produce the final
estimate ĝinv of ginv. To measure the success of recovery, we use the following distance metric that takes into
account the ambiguities:

dist(ĝinv, ginv) = min
j∈[n]

‖ginv ± Sj(ĝinv)‖2. (24)

We have the following corollary.

Corollary 1 (Putting everything together). Suppose C(g) is invertible with condition number κ. For
θ ∈ (0, 1

3 ), there exists some constant c1 such that when µ < c1 min{θ, (log n)−1/6n−3/4} and the sample
complexity satisfies

p &
κ8n3 log3 n log4 p

θ4µ2
, (25)

with O(log n) random initializations selected uniformly over the sphere, the MGD algorithm in Alg. 1 with a
proper step size is guaranteed to obtain a vector ĝinv that satisfies

dist(ĝinv, ginv) .
κ4

θ2σn(C(g))

√
n log3 p log2 n

p
+

ε

σn(C(g))

for any 0 < ε < 1, in O(poly(n)) iterations.

Corollary 1 provides theoretical footings to the success of MGD for solving the highly nonconvex MSBD
problem. In particular, consider the interesting regime when θ = O(1) and κ = O(1), it is sufficient to set
µ . (log n)−1/6n−3/4, which leads to a sample size p = O(n4.5) up to logarithmic factors.

2.3 Comparisons to Existing Approaches
The identifiability of the MSBD problem is established in [15] that says under the Bernoulli-Gaussian model
(cf. Definition 1) on the sparse coefficients, the filter is identifiable with high probability, provided that g is
invertible, θ ∈ (1/n, 1/4) and p & n log n. Wang and Chi proposed a linear program in [22] that succeeds
when p & n log4 n. However, the success of the linear program therein imposes stringent requirements on the
conditioning number of the filter g and the sparsity level θ.

Our approach is most related to the subsequent work of Li and Bresler [14], which runs perturbed MGD
with a random initialization, over a spherically constrained loss function based on `4 norm maximization. Li
and Bresler showed that, when the sample complexity is large enough, the landscape of the loss function
does not possess spurious local maxima, and all saddle points admit directions that strictly increase the loss
function. However, their sample complexity is significantly worse. Specifically, to reach a similar accuracy
as ours, [14] requires O(n9) samples, while we only require O(n4.5) samples ignoring logarithmic factors,
leading to an order-of-magnitude improvement. One key observation is that the large sample complexity
required by [14] is partially due to bounding the global geometry everywhere over the sphere, through
uniform concentration of the gradient and the Hessian of the empirical loss function around their population
counterparts, which is sufficient but in fact not necessary to ensure the algorithmic success of MGD. Indeed,
motivated by [20, 21], to optimize the sample complexity, we only require the uniform concentration of
directional gradient over a large region near the global minimizer, which can be guaranteed at a significantly
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reduced sample complexity. In addition, this region is large enough so that with a logarithmic number of
random initializations we are guaranteed to land into this region with high probability and recover the signal
of interest via vanilla MGD. It is worth pointing out that since we focused on a region without saddle points,
no perturbation is needed to ensure the success of MGD, which is another salient difference from [14]. As will
be seen in Section 4, the proposed loss function not only theoretically, but also empirically, outperforms the
`4 norm used in [14].

At the time of finishing this paper, we became aware of another concurrent work [23], which optimized a
different smooth surrogate of the `1 norm over the sphere for the same problem. Their work [23] requires
a sample complexity on the order of O(n5), which is slightly worse than ours (i.e. O(n4.5)), to guarantee
the benign geometry in a similar region near the global optimizer. In addition, a refinement procedure is
proposed in [23] to allow exact recovery of the filter. Their path to a better sample complexity than [14] is
similar to ours as described above. We expect that their method behaves similar to ours in practice.

3 Overview of the Analysis
In this section, we outline the proof of the main results, while leaving the details to the appendix. We first
deal with the simpler case when C(g) is an orthonormal matrix employing the objective function φo(w) (i.e,
fo(h)) without pre-conditioning in Section 3.1, and then extend the analysis to the general case where the
objective function φ(w) (i.e, f(h)) is pre-conditioned in Section 3.2. Finally, we discuss the convergence
guarantee of MGD in Section 3.3.

3.1 Proof Outline of Theorem 2
The proof of Theorem 2 is divided into several steps.

1. First, we characterize the landscape of the population loss function E[φo(w)];

2. Second, we prove the pointwise concentration of the directional gradient and the Hessian of the empirical
loss φo(w) around those of the population one E[φo(w)] in the region of interest;

3. Third, we extend such concentrations to the uniform sense, thus the benign geometric properties of
E[φo(w)] carry over to the empirical version φo(w).

To begin, the lemma below describes the geometry of E[φo(w)], whose proof is given in Appendix B.1.

Lemma 1 (Geometry of the population loss in the orthogonal case). Without loss of generality, suppose C(g) =

I. For any ξ0 ∈ (0, 1), θ ∈ (0, 1
3 ), there exists some constant c1 such that when µ < c1 min{θ, ξ1/6

0 n−3/4}, we
have for h(w) ∈ S(n+)

ξ0
:

(large directional gradient)
w>∇Eφo(w)

‖w‖2
≥ ξ0θ

480
√

10π
, w ∈ Q1, (26a)

(strong convexity) ∇2Eφo(w) � nθ

5
√

2πµ
I, w ∈ Q2. (26b)

To extend the benign geometry to the empirical loss with a finite sample size p, we first need to prove the
pointwise concentration of these quantities around their expectations for a fixed w, using the Bernstein’s
inequality. The next two propositions demonstrate the pointwise concentration results, whose proofs are
provided in Appendix B.2 and B.3.

Proposition 1. For any w satisfies ‖w‖2 ≤
√

n−1
n , there exist some universal constants C1 and C2 such

that for any t > 0:

P
[∣∣∣∣w>∇φo(w)

‖w‖2
− w>∇Eφo(w)

‖w‖2

∣∣∣∣ ≥ t] ≤ 2 exp

(
−pt2

C1n3 log n+ C2t
√
n3 log n

)
.
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Proposition 2. For any w satisfies ‖w‖2 ≤ 1/2, there exist some universal constants C1 and C2 such that
for any t > 0,

P
[∥∥∇2φo(w)−∇2Eφo(w)

∥∥ ≥ t] ≤ 4n exp

(
−pµ2t2

C1n2 log2 n+ C2µnt log n

)
.

The concentration of the Hessian and directional gradient between the empirical and population objective
functions at a fixed point suggests that the empirical objective function may inherit the benign geometry of
the population one outlined in Lemma 1. However, one needs to carefully extend the pointwise concentrations
in Propositions 1 and 2 through a covering argument, which requires bounding the Lipschitz constants of the
Hessian and directional gradients. The rest of the proof of Theorem 2 is provided in Appendix B.4.

3.2 Proof Outline of Theorem 3
To extend the benign geometry to the general case, we show that through pre-conditioning, the landscape of
φ(w) is not too far from that of φo(w). Recall that the pre-conditioned loss function (21) is

φ(w) =
1

p

p∑
i=1

ψµ
(
C(xi)C(g)RU>h(w)

)
=

1

p

p∑
i=1

ψµ

(
C(xi)

[
I +

(
C(g)RU−1 − I

)︸ ︷︷ ︸
∆

]
h(w)

)
, (27)

where ∆ := C(g)RU−1 − I = (U ′ − U)U−1, with U ′ = C(g)R and U in (20). As was discussed earlier,
as R converges to

[
C(g)>C(g)

]−1/2 when p increases, it is expected that U ′ converges to U . Therefore, by
bounding the size of ∆, we can control the deviation between φo(w) and φ(w). To this end, the rest of the
proof is divided into the following two steps.

First, we show that the spectral norm of ∆ is bounded when the sample size is sufficiently large in
Lemma 2, whose proof is given in Appendix C.1.

Lemma 2 (Spectral norm of ∆). There exist some constants C1, cf , such that when p ≥ C1κ
4n log2 n log p

θ2 ,
with probability at least 1− 2np−8,

‖∆‖ ≤ cfκ4

√
log2 n log p

θ2p
. (28)

Second, we show that the deviation between the directional gradient and the Hessian of φ(w) and φo(w)
can be bounded by the spectral norm of ∆, as shown in Lemma 3. The proof can be found in Appendix C.2.

Lemma 3 (Deviation between φo(w) and φ(w)). There exist some constants cg, ch, C1, such that when
p ≥ C1κ

8n log2 n log p
θ2 , with probability at least 1− 2p−8, we have

‖∇φo(w)−∇φ(w)‖2 ≤ cg
n3/2 log(np)

µ
‖∆‖ , w ∈ Q1, (29a)

∥∥∇2φo(w)−∇2φ(w)
∥∥ ≤ chn5/2 log3/2(np)

µ2
‖∆‖ , w ∈ Q2. (29b)

To complete the proof of Theorem 3, we need to show that the perturbations of the Hessian and the
gradient between φo(w) and φ(w) are sufficiently small, which hold as long as the sample size is sufficiently
large, in view of Lemma 2. Consequently, we can propagate the benign geometry of φo(w) in Theorem 2 to
φ(w). The complete proof is provided in Appendix C.3.

3.3 Proof Outline of Theorem 4
To capitalize on the benign geometry established in Theorem 3, one of the key arguments is to ensure that
the iterates of MGD stay in the 2n subsets

{
S(i±)
ξ0

, i ∈ [n]
}

implicitly. This requires bounding properties
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of the directional gradient of f(h) in (21), supplied in the following lemma whose proof can be found in
Appendix D.1.

Lemma 4 (Uniform concentration of the directional gradient). Instate the assumptions of Theorem 3. There
exist some constants ca, cb, C1, such that with probability at least 1− 3(np)−8 − 2 exp (−can),

∂f(h)>
(
ek
hk
− en
hn

)
≥ cbξ0θ

2
, (30)

for h ∈ Hk =
{
h : h ∈ S(n+)

ξ0
, hk 6= 0, h2

n/h
2
k < 4

}
, and

‖∂f(h)‖2 ≤ ‖∇f(h)‖2 ≤ C1n
√

log(np) (31)

for h ∈ Sn−1.

The following lemma, proved in Appendix D.2, then shows that the iterates of MGD will always stay in
one of the subsets

{
S(i±)
ξ0

, i ∈ [n]
}
that it initializes in, as long as the sample complexity p is large enough

and the step size is properly chosen.

Lemma 5 (Implicitly staying in the subsets). Instate the assumptions of Theorem 3. For the MGD
algorithm in Alg. 1, if the initialization satisfies that h(0) ∈ S(i±)

ξ0
for any i ∈ [n], and the step size satisfies

η ≤ c

n3/2
√

log(np)
for some small enough constant c, then the iterates h(k), k = 1, 2, · · · will stay in S(i±)

ξ0
.

The proof of Theorem 4 then follows by analyzing the convergence in two stages, corresponding to when
the iterates lie in the region with large directional gradients, and the region with strong convexity, respectively.
The details are given in Appendix D.3.

Till this point, the only left ingredient is to make sure a valid initialization can be obtained efficiently.
By setting ξ0 sufficiently small, it is known from the following lemma [21, Lemma 3] that the union of{
S(i±)
ξ0

, i ∈ [n]
}

is large enough to ensure a random initialization will land in it with a constant probability.

Lemma 6 ([21, Lemma 3]). When ξ0 = 1
4 logn , an initialization selected uniformly at random on the sphere

lies in one of these 2n subsets
{
S(i±)
ξ0

, i ∈ [n]
}

with probability at least 1/2.

Finally, combining Lemma 6 and Theorem 4, by setting ξ0 = 1/(4 log n), we can guarantee to recover ginv

accurately up to global ambiguity with high probability, as long as Alg. 1 is initialized uniformly at random
over the sphere with O(log n) times. This leads precisely to Corollary 1.

4 Numerical Experiments
In this section, we examine the performance of the proposed approach with comparison to [14], which is also
based on MGD but using a different loss function L(h) = − 1

4p

∑p
i=1 ‖C(yi)Rh‖44 over the sphere, on both

synthetic and real data.

4.1 MSBD with Synthetic Data
We first compare the success rates of the proposed approach and the approach in [14], following a similar
simulation setup as in [14]. In each experiment, the sparse inputs are generated following BG(θ), and C(g)
with specific κ is synthesized by generating the DFT ĝ of g which is random with the following rules: 1) the
DFT ĝ is symmetric to ensure that g is real, i.e., ĝj = ĝ∗n+2−j , where ∗ denotes the conjugate operation; 2)
the gains of ĝ follow a uniform distribution on [1, κ], and the phases of ĝ follow a uniform distribution on
[0, 2π).

In all experiments, we run MGD (cf. Alg. 1) for no more than T = 200 iterations with a fixed step size of
η = 0.1 and apply backtracking line search for both methods for computational efficiency. For our formulation,
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Figure 3: Success rates of the proposed approach (first row) and the approach in [14] (second row) under
various parameter settings.

we set µ = min (10n−5/4, 0.05). For each parameter setting, we conduct 10 Monte Carlo simulations to
compute the success rate. Recall that the desired estimate ĝinv is a signed shifted version of ginv, since
C(g)ginv = ±ej (j ∈ [n]). Therefore, to evaluate the accuracy of the output ĝinv, we compute C(g)ĝinv using
the ground truth g, and declare that the recovery is successful if ‖C(g)ĝinv‖∞/‖C(g)ĝinv‖2 > 0.99.

Fig. 3 (a) and (d) show the success rates of the proposed approach and the approach in [14] with respect
to n and p, where θ = 0.3 and κ = 8 are fixed. It can be seen that the proposed approach succeeds at a much
smaller sample size, even when p is smaller than n. This indicates room for improvements of our theory.
Fig. 3 (b) and (e) shows the success rates of the two approaches with respect to θ and p, where n = 64 and
κ = 8 are fixed. The proposed approach continues to work well even at a relatively high value of θ up to
around 0.5. Finally, Fig. 3 (c) and (f) shows the success rate of the two approaches with respect to κ and p,
where n = 64 and θ = 0.3 are fixed. Again, the performance of the proposed approach is quite insensitive to
the condition number κ as long as the sample size p is large enough. On the other end, the approach in [14]
performs significantly worse than the proposed approach under the examined parameter settings.

4.2 Image Deconvolution and Deblurring
To further evaluate our method, we performance the task of blind image reconstruction and deblurring, and
compare with [14]. Firstly, suppose multiple circulant convolutions {yi}pi=1 (illustrated in Fig. 4 (b)) of an
unknown 2D image (illustrated in the ground truth figure in Fig. 4, the Hamerschlag Hall on the campus
of CMU) and multiple Bernoulli-Gaussian (BG) sparse inputs {xi ∼iid BG(θ)}pi=1 (illustrated in Fig. 4 (a))
are observed. Here, the size of the observations is n = 128× 128, θ = 0.1, and the number of observations
p = 1000, which is significantly smaller than n.

We apply the proposed reconstruction method to each channel of the image, i.e. R, G, B, respectively
using the corresponding channel of the observations {yi}pi=1, and obtain the final recovery by summing up the

recovered channels. For each channel, the recovered image is computed as ĝ = F−1

[
F
(
Rĥ
)�−1

]
, where

ĥ denotes the output of the algorithm, F is the 2D DFT operator, and x�−1 is the entry-wise inverse of a
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ground truth

(a) BG input (b) observation (c) recovery via ours (d) recovery via [14]

(e) blurring input (f) observation (g) recovery via ours (h) recovery via [14]

Figure 4: Multi-channel sparse blind image deconvolution and deblurring. Top row: the ground truth image.
Middle row: (a) the sparse input generated from the BG model; (b) the observation; (c) and (d): the recovery
via our method and [14]. Bottom row: (e) the sparse input modeling motion blur; (f) the observation; (g)
and (h): the recovery via our method and [14].

vector x. Fig. 4 (c) and (d) show the final recovered images by our method and [14] (after aligning the shift
and sign) respectively. It implies that the proposed approach obtains much better recovery than that in [14]
when the sparse inputs {xi}pi=1 are with constant sparsity level θ.

We next consider a more realistic setting and examine the performance of the proposed algorithm when
the sparse coefficients do not obey the Bernoulli-Gaussian model. Using the same 2D image, we now generate
multiple circulant convolutions {yi}pi=1 (illustrated in Fig. 4 (f)) using realistically-generated motion blur
kernels3 (illustrated in Fig. 4 (e)). Fig. 4 (g) and (h) show the final recovered images by our method and
[14] (after aligning the shift and sign) respectively. It can be seen that the proposed approach still obtains a
robust recovery and removes the blurring effectively, while the recovery using [14] further degenerates possibly
due to the model mismatch.

5 Further Related Work
In this section, we discuss further related literature, emphasizing on algorithms with provable guarantees.

Provable blind deconvolution. The problem of blind deconvolution with a single snapshot (or equivalently,
channel) has been studied recently under different geometric priors such as sparsity and subspace assumptions

3The nonlinear blur kernels are randomly produced using the tool in https://github.com/LeviBorodenko/motionblur.
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on both the filter and the input, using both convex and nonconvex optimization formulations [18, 24, 19,
25, 26, 27, 28, 29, 30, 31, 32]. With the presence of multiple channels, one expects to identify the filter with
fewer prior assumptions. Algorithms for multi-channel blind deconvolution include sparse spectral methods
[33], linear least squares [34], and nonconvex regularization [35]. A different model called “sparse-and-short”
deconvolution is studied in [36, 37].

Provable dictionary learning. Learning a sparsifying invertible transform from data has been extensively
studied, e.g. in [38, 17, 20, 21, 39, 40, 41]. In addition, provable algorithms for learning overcomplete
dictionaries are also proposed in [42, 43, 44, 45]. Our problem can be regarded as learning a convolutional
invertible transform, where the proposed algorithm is inspired by the approach in [20] that characterizes a local
region large enough for the success of gradient descent with random initializations. However, the approach in
[20] is only applicable to an orthogonal dictionary, while we deal with a general invertible convolutional kernel.
Compared to sample complexities required in learning complete dictionaries [16], our result demonstrates the
benefit of exploiting convolutional structures in further reducing the sample complexity.

Provable nonconvex statistical estimation. Our work belongs to the recent line of activities of designing
provable nonconvex procedures for high-dimensional statistical estimation, see [46, 47, 48] for recent overviews.
Our approach interpolates between two popular approaches, namely, global analyses of optimization landscape
(e.g. [38, 16, 49, 50, 51, 52, 53, 54, 14]) that are independent of algorithmic choices, and local analyses with
careful initializations and local updates (e.g. [55, 56, 57, 58, 59, 60, 26, 61, 62, 63, 64]).

6 Discussions
This paper proposes a novel nonconvex approach for multi-channel sparse blind deconvolution based on
manifold gradient descent with random initializations. Under a Bernoulli-Gaussian model for sparse inputs,
we demonstrate that the proposed approach succeeds as long as the sample complexity satisfies p =
O(n4.5polylogp), a result significantly improving prior art in [14]. We conclude the paper by some discussions
on future directions.

• Improve sample complexity. Our numerical experiments indicate that there is still room to further
improve the sample complexity of the proposed algorithm, which may require a more careful analysis of
the trajectory of the gradient descent iterates, as done in [65].

• Efficient exploitation of negative curvature. We remark that it is possible to characterize the global
geometry over the sphere, where the remaining region contains saddle points with negative curvatures.
However, a direct analysis leads to an increase of sample complexity which is undesirable and therefore
not pursued in this paper. On the other end, it seems random initialization without restarts also works
well in practice, which warrants further investigation.

• Super-resolution blind deconvolution. The model studied in this paper assumes the same temporal
resolution of the input and the output, while in practice the sparse activations of the input can occur at
a much higher resolution. This lead to the consideration of a refined model, where the observation is
given as y = F H

n×ndiag(ĝ)Fn×Dx, where Fn×D is the oversampled DFT matrix of size n×D, D ≥ n.
The approach taken in this paper cannot be applied anymore, and new formulations are needed to
address this problem, see [66] for a related problem.

• Convolutional dictionary learning. Our work can be regarded as a first step towards developing
sample-efficient algorithms for convolutional dictionary learning [67] with performance guarantees. An
interesting model for future investigation is when multiple filters are present, and the observation
is modeled as y =

∑L
`=1 C(g`)x`, with L the number of filters. The goal is thus to simultaneously

learn multiple filters {g`}L`=1 from a number of observations in the form of y. See [68] for some recent
developments.
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A Prerequisites
For convenience, let X ∈ Rn×p be the inputs X = [x1,x2, · · · ,xp]. Denote the first-order derivative of ψµ(x)
as ψ′µ(x) = tanh(x/µ) and the second-order derivative as ψ′′µ(x) =

(
1− tanh2 (x/µ)

)
/µ. The gradient of

ψµ(C(xi)h) with respect to h can be written as

∇hψµ(C(xi)h) = C(xi)> tanh

(
C(xi)h
µ

)
, (32)
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where, with slight abuse of notation, we allow tanh(·) to take a vector-value in an entry-wise manner.

Recalling the reparameterization h = h(w) =

(
w,
√

1− ‖w‖22

)
, let Jh(w) be the Jacobian matrix of

h(w), i.e.

Jh(w) =

[
I,− w

hn(w)

]
∈ R(n−1)×n, (33)

where hn(w) =
√

1− ‖w‖22 is the last entry of h(w). By the chain rule, the gradient of ψµ (C(xi)h(w)) with
respect to w is given as

∇wψµ (C(xi)h(w)) = Jh(w)∇hψµ (C(xi)h) = Jh(w)C(xi)> tanh

(
C(xi)h(w)

µ

)
. (34)

Moreover, the Hessian of ψµ (C(xi)h(w)) is given as

∇2
wψµ (C(xi)h(w)) =

1

µ
Jh(w)C(xi)>

[
I− diag

(
tanh2

(
C(xi)h(w)

µ

))]
C(xi)Jh(w)>

− 1

hn
Sn−1(xi)

> tanh

(
C(xi)h(w)

µ

)
Jh(w)Jh(w)>. (35)

A.1 Useful Concentration Inequalities
We first introduce some notation and properties of sub-Gaussian variables. A random variable X is called
sub-Gaussian if its sub-Gaussian norm satisfies ‖X‖ψ2

< ∞ [69]. Similarly, we have ‖x‖ψ2
< ∞ for a

sub-Gaussian random vector x [69, Definition 3.4.1]. For Bernoulli-Gaussian random variables / vectors, we
have the following two facts, which imply that they are also sub-Gaussian.

Fact 1 ([20, Lemma F.1]). A random variable X ∈ BG(θ) is sub-Gaussian, i.e. ‖X‖ψ2
≤ Ca for some

constant Ca. Similarly, for a random vector x ∼iid BG(θ) and any deterministic vector v ∈ Rn, we have∥∥v>x∥∥
ψ2
≤ Cb ‖v‖2 for some constant Cb.

Fact 2 ([16, Lemma 21]). Assume x, y ∈ Rn satisfy x ∼iid BG(θ) and y ∼iid N (0, I). Then for any
deterministic vector u ∈ Rn, we have E(

∣∣u>x∣∣m) ≤ E(
∣∣u>y∣∣m), and E(‖x‖m2 ) ≤ E(‖y‖m2 ) for all integers

m ≥ 1.

The second fact allows us to bound the moments of a Bernoulli-Gaussian vector via the moments of a
Gaussian vector, which are given below.

Fact 3 ([16, Lemma 35]). Let y ∈ Rn be y ∼iid N (0, I), we have for any m ≥ 1, E (‖y‖m2 ) ≤ m!nm/2.

In addition, let us list a few more useful facts about sub-Gaussian random variables.

Fact 4 ([69, Lemma 2.6.8]). If X is sub-Gaussian, then X − EX is also sub-Gaussian with ‖X − EX‖ψ2
≤

C ‖X‖ψ2
for some constant C.

Fact 5 ([69, Proposition 2.6.1]). If X1, X2, · · · , Xn are zero-mean independent sub-Gaussian random variables,
then there exists some constant C such that ‖

∑n
i=1Xi‖

2

ψ2
≤ C

∑n
i=1 ‖Xi‖2ψ2

.

Fact 6 ([69, Eq. (2.14-2.15)]). If X is sub-Gaussian, it satisfies the following bounds:

P (|X| ≥ t) ≤ 2 exp
(
−ct2/ ‖X‖2ψ2

)
∀t ≥ 0, (E|X|m)

1/m ≤ C
√
m ‖X‖ψ2

∀m ≥ 1,

where c, C are some universal constants.

Combining standard tail bounds with the union bound, we have the following facts.

Fact 7. Let {xi}pi=1 ∈ Rn be independent sub-Gaussian vectors with ‖xi‖ψ2
≤ B for some constant B. Then

there exists some universal constant C such that with probability at least 1− p−8, we have

max
i∈[p]
‖xi‖2 ≤ CB

√
n log p.
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Fact 8. Let X ∈ Rn×p be X ∼iid BG(θ), where θ ∈ (0, 1/2). With probability at least 1− θ(np)−7, we have

‖X‖∞ = max
i,j
|Xij | ≤ 4

√
log(np).

Finally, let us record the useful Bernstein’s inequality for random vectors and matrices, which does not
require the quantities of interest to be centered. This is a direct consequence of Fact 4 on centering and [70,
Theorem 6.2].

Lemma 7 (Moment-controlled Bernstein’s inequality). Let {Xk ∈ Rn×n}pk=1 be a set of independent random
matrices. Assume there exist σ,R such that for all m ≥ 2, E (‖Xk‖m) ≤ m!

2 σ
2Rm−2. Denote S = 1

p

∑p
k=1 Xk,

then we have for any t > 0,

P (‖S − ES‖ > t) ≤ 2n exp

(
−pt2

2σ2 + 2Rt

)
.

Let {xk ∈ Rn}pk=1 be a set of independent random vectors. Assume there exist σ, R such that E (‖xk‖m2 ) ≤
m!
2 σ

2Rm−2. Denote s = 1
p

∑p
k=1 xk, then we have for any t > 0,

P (‖s− Es‖2 > t) ≤ (n+ 1) exp

(
−pt2

2σ2 + 2Rt

)
.

A.2 Technical Lemmas
In this section, we provide some technical lemmas that are used throughout the proof. We start with some
useful properties about the tanh(·) function since it appears frequently in our derivation.

Lemma 8. Let X ∼ N (0, σ2
x), Y ∼ N (0, σ2

y), then we have

E [tanh(aX)X] = aσ2
xE
[
1− tanh2(aX)

]
,

E [tanh (a(X + Y ))X] = aσ2
xE
[
1− tanh2 (a(X + Y ))

]
.

Proof. Using integration by parts, we have

E [tanh(aX)X] =
1√

2πσx

∫ ∞
−∞

tanh(aX)X exp

(
−X2

2σ2
x

)
dX

= − 2σ2
x√

2πσx
tanh(aX) exp

(
−X2

2σ2
x

) ∣∣∣∞
0

+
1√

2πσx

∫ ∞
−∞

aσ2
x

(
1− tanh2(aX)

)
exp

(
−X2

2σ2
x

)
dX

= aσ2
xE
[
1− tanh2(aX)

]
,

and

E [tanh (a(X + Y ))X] =
1

2πσxσy

∫ ∞
−∞

X exp

(
−X2

2σ2
x

)∫ ∞
−∞

tanh(a(X + Y )) exp

(
−Y 2

2σ2
y

)
dY dX

= − 1

2πσxσy
· σ2

x

[∫ ∞
−∞

tanh(a(X + Y )) exp

(
−Y 2

2σ2
y

)
dY

]
exp

(
−X2

2σ2
x

) ∣∣∣∞
−∞

+
1

2πσxσy

∫∫ ∞
−∞

aσ2
x

(
1− tanh2(a(X + Y ))

)
exp

(
−X2

2σ2
x

)
exp

(
−Y 2

2σ2
y

)
dY dX

= aσ2
xE
[
1− tanh2(a(X + Y ))

]
,

where we used the fact that the first term in the second line is 0.

Lemma 9. The functions ψ′µ(x) = tanh(x/µ) and ψ′′µ(x) =
(
1− tanh2 (x/µ)

)
/µ are Lipschitz continuous

with Lipschitz constants 1/µ and 2/µ2, respectively.
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Proof. Since ψµ(x) is continuous and third-order differentiable, we have for any x and x′,

∣∣ψ′µ(x)− ψ′µ(x′)
∣∣ ≤ ∣∣∣∣∣

∫ x′

x

ψ′′µ(z)dz

∣∣∣∣∣ ≤ |x− x′|max
z
|ψ′′µ(z)| ≤ |x− x

′|
µ

,

and

∣∣ψ′′µ(x)− ψ′′µ(x′)
∣∣ ≤ ∣∣∣∣∣

∫ x′

x

ψ′′′µ (z)dz

∣∣∣∣∣ ≤
∫ x′

x

∣∣∣∣− 2

µ2
tanh

(
z

µ

)(
1− tanh2

(
z

µ

))∣∣∣∣ dz ≤ 2 |x− x′|
µ2

,

where we use the fact that |tanh(x)| ≤ 1 and 1− tanh2 (x) ≤ 1 for all x ∈ R.

Lemma 10. Let x ∼iid BG(θ) for θ ∈ (0, 1]. There exist some constants c1 and c2 such that

P (‖C(x)‖ ≥ t) ≤ 2n exp

(
−t2

c1n

)
, and E ‖C(x)‖2m ≤ m!

2
(c2n log n)

m

for all m ≥ 1.

Proof. Since a circulant matrix is diagonalizable by the DFT matrix, the spectral norm of C(x) is the
maximum magnitude of the DFT coefficients of x, where the ith coefficient is given as x̂i = fH

i x, where
f i = [1, ej2πi/n, · · · , ej2πi(n−1)/n]> is the ith column of the DFT matrix. Since x ∼iid BG(θ) is sub-Gaussian,
by Fact 1, x̂i is also sub-Gaussian with ‖x̂i‖ψ2

≤ C‖f i‖2 = C
√
n. Therefore, by the union bound, together

with Fact 6, we have

P (‖C(x)‖ ≥ t) = P
(

max
i∈[n]
|x̂i| ≥ t

)
≤ 2n exp

(
−t2

c1n

)
,

for some constant c1. Equipped with the above bound, we can bound the moments of ‖C(x)‖2 by

E ‖C(x)‖2m =

∫ ∞
0

P(‖C(x)‖2m > u)du =

∫ ∞
0

P(‖C(x)‖ > t) · 2mt2m−1dt, (36)

where the second equality follows by a change of variable t = u1/2m. To continue, we break the bound as

E ‖C(x)‖2m ≤
∫ 2
√
c1n logn

0

1 · 2mt2m−1dt+

∫ ∞
2
√
c1n logn

2n exp

(
−t2

c1n

)
2mt2m−1dt

≤ (4c1n log n)
m

+

∫ ∞
0

exp

(
−t2

2c1n

)
2mt2m−1dt

= (4c1n log n)
m

+ (2c1n)
m
m! ≤ m!

2
(c2n log n)

m
,

where the second line used the fact exp
(
−t2
2c1n

)
> 2n exp

(
−t2
c1n

)
when t ≥ 2

√
c1n log n, and the third line used

the definition of the Gamma function. The proof is completed.

Lemma 11. Let {xi}pi=1 ∈ Rn be drawn according to xi ∼iid BG(θ), θ ∈ (0, 1/2). There exists some constant
C such that ∥∥∥∥∥ 1

θnp

p∑
i=1

C(xi)>C(xi)− I

∥∥∥∥∥ ≤ C
√

log2 n log p

θ2p

holds with probability at least 1− 2np−8.

Proof. By assumption, it is easy to check

E

[
1

θnp

p∑
i=1

C(xi)>C(xi)

]
= E

[
1

θn
C(x1)>C(x1)

]
= I.
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The remaining of the proof is to verify the quantities needed to apply Lemma 7. Specifically, we bound the
mth moment of 1

θnC(xi)
>C(xi) as

E
∥∥∥∥ 1

θn
C(xi)>C(xi)

∥∥∥∥m =
1

θmnm
E ‖C(xi)‖2m ≤

m!

2

(
c log n

θ

)m
,

where the last line comes from Lemma 10. Let σ2 = c2 log2 n
θ2 , R = c logn

θ in Lemma 7, we have

P

(∥∥∥∥∥ 1

θnp

p∑
i=1

C(xi)>C(xi)− I

∥∥∥∥∥ ≥ t
)
≤ 2n exp

(
−pθ2t2

2c2 log2 n+ 2cθt log n

)
. (37)

Setting t = C
√

log2 n log p
θ2p for some sufficiently large C, we complete the proof.

B Proofs for Section 3.1

B.1 Proof of Lemma 1
Recall the two regions introduced in (14):

Q1 :=

{
w :

µ

4
√

2
≤ ‖w‖2 ≤

√
n− 1

n+ ξ0

}
, Q2 :=

{
w : ‖w‖2 ≤

µ

4
√

2

}
.

We further divide Q1 into two subregions,

R0 =

{
w :

µ

4
√

2
≤ ‖w‖2 ≤

1

20
√

5

}
, R1 =

{
w :

1

20
√

5
≤ ‖w‖2 ≤

√
n− 1

n+ ξ0

}
,

which we will prove the desired bound separately.
Note that

Eφo(w) = n · Eψµ
(
x>h(w)

)
, (38)

since every row of C(x) has the same distribution as x ∼iid BG(θ). Therefore, the strong convexity bound
(26b) in Q2 follows directly from the following lemma from [16, Proposition 8] by a multiplicative factor of n.

Lemma 12 ([16, Proposition 8]). For any θ ∈ (0, 1/2), if µ ≤ 1
20
√
n
, it holds for all w with ‖w‖2 ≤

µ

4
√

2
that

∇2
wEψµ

(
x>h(w)

)
� θ

5
√

2πµ
I.

Similarly, by the following lemma from [16, Proposition 7], we have the desired bound (26a) in R0.

Lemma 13 ([16, Proposition 7]). For any θ ∈ (0, 1/3), if µ ≤ 9/50, it holds for all w ∈ R0 such that

w>∇wEψµ(x>h(w))

‖w‖2
≥ θ

20
√

2π
.

Therefore, the remainder of the proof is to show that (26a) also applies to R1. To ease presentation, we
introduce a few short-hand notations. For x = Ω� z ∼iid BG(θ) ∈ Rn, we denote the first n− 1 dimension
of x, z and Ω as x̄, z̄ and Ω̄, respectively. Denote I as the support of Ω and J as the support of Ω̄.

Note that it is easy to confirm the exchangeability of the expectation and derivatives [16, Lemma 31] as

w>∇wEψµ(x>h(w))

‖w‖2
= E

[
w>∇wψµ

(
x>h(w)

)
‖w‖2

]
, (39a)

∇2
wEψµ

(
x>h(w)

)
= E∇2

wψµ
(
x>h(w)

)
. (39b)

Thus, plugging in (34), we rewrite the expectation of the directional gradient as following:

E

[
w>∇wψµ

(
x>h(w)

)
‖w‖2

]
=

1

‖w‖2
E

[
tanh

(
x> · h(w)

µ

)
·

(
w>x̄−

xn ‖w‖22
hn

)]
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=
(1− θ)
‖w‖2

Ex̄

[
tanh

(
w>x̄

µ

)
w>x̄

]
︸ ︷︷ ︸

I1

+
θ

‖w‖2
Ex̄,zn

[
tanh

(
w>x̄ + hnzn

µ

)(
w>x̄−

‖w‖22
hn

zn

)]
︸ ︷︷ ︸

I2

, (40)

where the second line is expanded over the distribution of Ωn ∼ Bernoulli(θ). Conditioned on the support
of Ω̄, we have X = w>x̄|Ω̄ ∼ N (0, ‖wJ ‖22). Moreover, denote Y = hnzn ∼ N (0, h2

n). Therefore, invoking
Lemma 8, we can express I1 and I2 respectively as

I1 = EΩ̄

[
EX

(
tanh

(
X

µ

)
X

)]
=

1

µ
EΩ̄

[
‖wJ ‖22 EX

(
1− tanh2

(
X

µ

))]
,

I2 = EΩ̄

[
EX,Y

(
tanh

(
X + Y

µ

)(
X −

‖w‖22
h2
n

Y

))]
=

1

µ
EΩ̄

[(
‖wJ ‖22 − ‖w‖

2
2

)
EX,Y

(
1− tanh2

(
X + Y

µ

))]
.

Plugging the above quantities back into (40), and using ‖wJ ‖22 =
∑n−1
i=1 w

2
i 1{Ωi = 1}, ‖wJ c‖22 =

∑n−1
i=1 w

2
i 1{Ωi =

0}, we arrive at

E

[
w>∇wψµ

(
x>h(w)

)
‖w‖2

]
=

(1− θ)
µ ‖w‖2

EΩ̄

[
n−1∑
i=1

w2
i 1{Ωi = 1} · Ez

(
1− tanh2

(
w>\{i}x̄\{i} + wizi1{Ωi = 1}

µ

))]

− θ

µ ‖w‖2
EΩ̄

[
n−1∑
i=1

w2
i 1{Ωi = 0} · Ez

(
1− tanh2

(
w>\{i}x̄\{i} + wizi1{Ωi = 1}+ hnzn

µ

))]

=
1

µ‖w‖2

n−1∑
i=1

w2
iQi, (41)

where Qi is written as

Qi = (1− θ)EΩ̄

[
1{Ωi = 1} · Ez

(
1− tanh2

(
w>\{i}x̄\{i} + wizi1{Ωi = 1}

µ

))]

− θEΩ̄

[
1{Ωi = 0} · Ez

(
1− tanh2

(
w>\{i}x̄\{i} + wizi1{Ωi = 1}+ hnzn

µ

))]
.

Evaluating EΩ̄ over Ω̄ \ {i} and Ωi sequentially, and combining terms, we can rewrite Qi as,

Qi = (1− θ)θEΩ̄\{i}

[
Ez

(
1− tanh2

(
w>\{i}x̄\{i} + wizi

µ

))
− Ez

(
1− tanh2

(
w>\{i}x̄\{i} + hnzn

µ

))]

= (1− θ)θEΩ̄\{i}

[
Ez

(
tanh2

(
w>\{i}x̄\{i} + hnzn

µ

)
− tanh2

(
w>\{i}x̄\{i} + wizi

µ

))
︸ ︷︷ ︸

=:Ki

]
. (42)

Our goal is to lower bound Qi for all i ∈ [n− 1]. Without loss of generality, we denote the index of the largest
entry of w in magnitude as i0, i.e, |wi0 | ≥ |wj |, ∀j ∈ [n− 1]. We first claim

Qj ≥ Qi0 , ∀j ∈ [n− 1], (43)

whose proof is given at the end of this subsection. With this claim, we only need to lower bound Qi0 . We
proceed to lower bound Ez[Ki0 ]. Let X := w>\{i0}x̄\{i0} + wi0zi0 |Ω̄ ∼ N (0,

∥∥wJ\{i0}∥∥2

2
+ w2

i0
) := N (0, σ2

X)

and Y := w>\{i0}x̄\{i0} + hnzn|Ω̄ ∼ N (0,
∥∥wJ\{i0}∥∥2

2
+ h2

n) := N (0, σ2
Y ). By the fundamental theorem of

calculus, we have

Ki0 = tanh2

(
Y

µ

)
− tanh2

(
X

µ

)
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=
2

µ

∫ |Y |
|X|

tanh

(
x

µ

)
·
(

1− tanh2

(
x

µ

))
dx

≥ 2

µ

∫ |Y |
|X|

[
2 exp

(
−2x

µ

)
− exp

(
−4x

µ

)][
1− 2 exp

(
−2x

µ

)]
dx

≥ 2

µ

∫ |Y |
|X|

[
2 exp

(
−2x

µ

)
− 5 exp

(
−4x

µ

)]
dx

= 2

[
exp

(
−2 |X|
µ

)
− exp

(
−2 |Y |
µ

)]
︸ ︷︷ ︸

K1

− 5

2

[
exp

(
−4 |X|
µ

)
− exp

(
−4 |Y |
µ

)]
︸ ︷︷ ︸

K2

, (44)

where the third line follows from the bounds 2 exp(−2x/µ)− exp(−4x/µ) ≤ 1− tanh2 (x/µ) and tanh(x/µ) ≤
1− exp(−2x/µ) in [16, Lemma 29]. To continue, we record the lemma rephrased from [16, Lemma 32, 40]
and obtain the following lemma by directly repeating integration by parts.

Lemma 14 ([16, Lemma 32, 40]). Let X ∼ N (0, σ2
X). For any a > 0, we have

1√
2π

(
1

aσX
− 1

a3σ3
X

+
3

a5σ5
X

− 15

a7σ7
X

)
≤ E [exp(−aX)1{X > 0}] ≤ 1√

2π

(
1

aσX
− 1

a3σ3
X

+
3

a5σ5
X

)
.

Therefore, K1 can be bounded as

K1 = 2E
[
exp

(
−2 |X|
µ

)
− exp

(
−2 |Y |
µ

)]
= 4E

[
exp

(
−2X

µ

)
1{X > 0} − exp

(
−2Y

µ

)
1{Y > 0}

]
≥ 4√

2π

(
µ

2σX
− µ3

8σ3
X

+
3µ5

32σ5
X

− 15µ7

27σ7
X

)
− 4√

2π

(
µ

2σY
− µ3

8σ3
Y

+
3µ5

32σ5
Y

)
=

2√
2π

[(
µ

σX
− µ

σY

)
−
(
µ3

4σ3
X

− µ3

4σ3
Y

)
+

(
3µ5

16σ5
X

− 3µ5

16σ5
Y

)
− 15µ7

26σ7
X

]
.

Similarly, we have

K2 ≤
5

4
√

2π

[(
µ

σX
− µ

σY

)
−
(

µ3

16σ3
X

− µ3

16σ3
Y

)
+

(
3µ5

44σ5
X

− 3µ5

44σ5
Y

)
− 15µ7

46σ7
Y

]
.

Plugging the above bounds back into (44), we have

Ez [Ki0 ] ≥ EX,Y [K1 −K2]

≥ 2√
2π

[(
µ

σX
− µ

σY

)
−
(
µ3

4σ3
X

− µ3

4σ3
Y

)
+

(
3µ5

16σ5
X

− 3µ5

16σ5
Y

)
− 15µ7

26σ7
X

]
(45)

− 5

4
√

2π

[(
µ

σX
− µ

σY

)
−
(

µ3

16σ3
X

− µ3

16σ3
Y

)
+

(
3µ5

44σ5
X

− 3µ5

44σ5
Y

)
− 15µ7

46σ7
Y

]
=

1√
2π

[
3µ

4

(
1

σX
− 1

σY

)
− 27µ3

64

(
1

σ3
X

− 1

σ3
Y

)
+

113µ5

45

(
1

σ5
X

− 1

σ5
Y

)
− 15µ7

25σ7
X

− 75µ7

47σ7
Y

]
=

1√
2π

[(
1

σX
− 1

σY

)(
3µ

4
− 27µ3

64

(
1

σ2
X

+
1

σ2
Y

+
1

σXσY

))
+

113µ5

45

(
1

σ5
X

− 1

σ5
Y

)
− 15µ7

25σ7
X

− 75µ7

47σ7
Y

]
≥ 1√

2π

[(
1

σX
− 1

σY

)(
3µ

4
− 27µ3

64

(
1

σ2
X

+
1

σ2
Y

+
1

σXσY

))
− µ7

2σ7
X

]
(46)

where the last line follows from the fact σX < σY and 113µ5

45

(
1
σ5
X
− 1

σ5
Y

)
> 0.
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To continue, since σX =
√∥∥wJ\{i0}∥∥2

2
+ h2

i0
< 1 and σY =

√∥∥wJ\{i0}∥∥2

2
+ h2

n < 1,

1

σX
− 1

σY
=

σ2
Y − σ2

X

σXσY (σX + σY )
≥ σ2

Y − σ2
X

2
=

1

2

(
h2
n − h2

i0

)
≥ 1

2

[
h2
n −

1

1 + ξ0
h2
n

]
≥ ξ0

4n
, (47)

where the second inequality uses the fact h2
n/h

2
i0
≥ 1 + ξ0, hn ≥ 1/

√
n and ξ0 ∈ (0, 1). In addition, as

|hi0 | = maxi wi and ‖w‖2 >
1

20
√

5
, we have |hi0 | ≥ 1

20
√

5n
. So we have 1

σX
≤ 1

|hi0 |
≤ 20

√
5n, such that

1

σ2
X

+
1

σ2
Y

+
1

σXσY
≤ 2061n =⇒ 27µ3

64

(
1

σ2
X

+
1

σ2
Y

+
1

σXσY

)
≤ µ

4
, (48)

provided µ ≤ cn−1/2 for a sufficiently small c > 0. Plugging (47) and (48) back into (46), we have

Ez [Ki0 ] ≥ µξ0

8
√

2πn
− µ7

2
√

2πσ7
X

≥ µξ0

16
√

2πn
, (49)

conditioned on the support Ω̄\{i0}, provided that 1
σ7
X
≤ (20

√
5)7n7/2 and µ ≤ cξ

1/6
0 n−3/4 for a sufficiently

small c > 0.
Plugging (49) back into (42), then into (41) with the help of (43), finally, by the assumption ‖w‖2 ≥

1
20
√

5

and (39a), we have

w>E∇φo(w)

‖w‖2
= E

[
n
w>∇wψµ

(
x>h(w)

)
‖w‖2

]
≥ n
‖w‖2 θ(1− θ)

µ

µξ0

16
√

2πn
≥ θξ0

480
√

10π
, (50)

where the final bound follows from the constraint θ ∈ (0, 1/3).

Proof of (43): For any j ∈ [n− 1] and j 6= i0, by evaluating Ω̄ \ {i0} over Ω̄ \ {i0, j} and Ωj sequentially,
we can rewrite Qi0 as

Qi0 = (1 − θ)θ2EΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn + wjzj

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + wi0zi0 + wjzj

µ

))]

+ (1 − θ)2θEΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + wi0zi0

µ

))]
.. (51)

Similarly, we can write Qj as

Qj = (1 − θ)θ2EΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn + wi0zi0

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + wi0zi0 + wjzj

µ

))]

+ (1 − θ)2θEΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + wjzj

µ

))]
. (52)

Combining (51) and (52), we have

Qj −Qi0

= (1 − θ)θ2EΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn + wi0zi0

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + hnzn + wjzj

µ

))
︸ ︷︷ ︸

I3

]

+ (1 − θ)2θEΩ̄\{i0,j}

[
Ez

(
tanh2

(
w>\{i0,j}x̄\{i0,j} + wi0zi0

µ

)
− tanh2

(
w>\{i0,j}x̄\{i0,j} + wjzj

µ

))
︸ ︷︷ ︸

I4

]
. (53)
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To show that I3 ≥ 0, let X1 := w>\{i0,j}x̄\{i0,j} + hnzn + wi0zi0 |Ω̄ ∼ N (0,
∥∥wJ\{i0,j}∥∥2

2
+ h2

n + w2
i0

=: σ2
X1

)

and Y1 := w>\{i0,j}x̄\{i0,j}+hnzn +wjzj |Ω̄ ∼ N (0,
∥∥wJ\{i0,j}∥∥2

2
+h2

n +w2
j := σ2

Y1
). Plugging X1, Y1 into the

term I3, we have

I3 = Ez

(
tanh2

(
X1

µ

)
− tanh2

(
Y1

µ

))
≥ 0 (54)

conditioned on any support Ω̄\{i0, j}, since σ2
X1
≥ σ2

Y1
and the function tanh2(x) is monotonically increasing

with respect to |x|. Similarly, we have I4 ≥ 0 as well. In view of I3, I4 ≥ 0 and (53), we have (43).

B.2 Proof of Proposition 1
The directional gradient can be written as a sum of p i.i.d. random variables as following:

w>∇wφo(w)

‖w‖2
:=

1

p

p∑
i=1

Xi, where Xi =
w>∇wψµ (C(xi)h(w))

‖w‖2
.

In order to apply the Bernstein’s inequality in Lemma 7, we turn to bound the moments of Xi. Plugging in
(34), we have

Xi =
w>Jh(w)

‖w‖2
C(xi)> tanh

(
C(xi)h(w)

µ

)
=
[

w>

‖w‖2
− ‖w‖2hn(w)

]
C(xi)> tanh

(
C(xi)h(w)

µ

)
≤
√

2n ‖C(xi)‖ , (55)

where the last inequality follows from |tanh(·)| ≤ 1 and
∥∥∥[ w
‖w‖2

− ‖w‖2hn(w)

]∥∥∥
2

=
√

1 +
‖w‖22
h2
n
≤
√

1 + n ≤
√

2n,

since ‖w‖22 ≤ n−1
n and hn =

√
1− ‖w‖22 ≥ 1√

n
. Invoking Lemma 10, we have for any m ≥ 2,

E |Xi|m ≤ (
√

2n)mE ‖C(xi)‖m ≤
m!

2
·
(
Cn3 log n

)m/2 (56)

for some constant C. Finally, using (39a), we complete the proof by setting σ2 = Cn3 log n, R =
√
Cn3 log n

and applying the Bernstein’s inequality in Lemma 7.

B.3 Proof of Proposition 2
The Hessian of φo(w) can be written as a sum of p i.i.d. random matrices as following:

∇2
wφo(w) :=

1

p

p∑
i=1

Yi, where, Yi = ∇2
wψµ (C(xi)h(w)) .

Plugging in (35), we divide Yi into two parts as:

Yi =
1

µ
Jh(w)C(xi)>

[
I− diag

(
tanh2

(
C(xi)h(w)

µ

))]
C(xi)Jh(w)>︸ ︷︷ ︸

Di

− 1

hn
Sn−1(xi)

> tanh

(
C(xi)h(w)

µ

)
Jh(w)Jh(w)>︸ ︷︷ ︸

Ei

.

Therefore, we bound the sums of Di and Ei respectively, using the Bernstein’s inequality in Lemma 7.
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Bound the concentration of Ei: We start by bounding the moments of Ei. Recalling the Jacobian
matrix Jh(w) in (33), we have

Jh(w)Jh(w)> = I +
ww>

h2
n

,

and therefore,
∥∥Jh(w)Jh(w)>

∥∥ = 1 + ‖w‖22/h2
n ≤ 5 since for ‖w‖2 ≤ 1/2, we have hn(w) ≥ 1/2. Conse-

quently, by the triangle inequality,

‖Ei‖ ≤
1

hn
‖xi‖2

∥∥∥∥tanh

(
C(xi)h(w)

µ

)∥∥∥∥
2

∥∥Jh(w)Jh(w)>
∥∥ ≤ 10

√
n‖xi‖2.

We can bound the moments of Ei as

E‖Ei‖m ≤ 10mnm/2E‖xi‖m2 ≤ 10mnm/2 ·m!nm/2 ≤ m!

2
(20n)2 · (20n)m−2,

where the second line follows from Fact 2 and Fact 3 that bound the moments of ‖xi‖2.
Setting σ2 = 400n2, R = 20n, we apply the Bernstein’s inequality in Lemma 7 and obtain:

P

(∥∥∥∥∥1

p

p∑
i=1

Ei − E

(
1

p

p∑
i=1

Ei

)∥∥∥∥∥ ≥ t

2

)
≤ 2n exp

(
−pt2

c1n2 + c2nt

)
(57)

for some large enough constants c1 and c2.

Bound the concentration of Di: Using the fact that 1− tanh2 (·) ≤ 1, the spectral norm of Di can be
bounded as

‖Di‖ ≤
1

µ
‖C(xi)‖2 ‖Jh(w)‖2 ≤ 5

µ
‖C(xi)‖2 ,

where we have used again ‖Jh(w)‖2 =
∥∥Jh(w)Jh(w)>

∥∥ ≤ 5 derived above. Invoking Lemma 10, we obtain

E ‖Di‖m ≤
(

5

µ

)m
E ‖C(xi)‖2m ≤

m!

2

(
Cn log n

µ

)m
, (58)

for some constant C. Let σ2 = C2n2 log2 n
µ2 , R = Cn logn

µ , by the Bernstein’s inequality in Lemma 7, we have:

P

(∥∥∥∥∥1

p

p∑
i=1

Di − E

(
1

p

p∑
i=1

Di

)∥∥∥∥∥ ≥ t

2

)
≤ 2n exp

(
−pµ2t2

c3n2 log2 n+ c4µnt log n

)
. (59)

for some constants c3 and c4.
Recall the Hessian of interest is written as:

∇2
wφo(w) =

1

p

p∑
i=1

Yi =
1

p

p∑
i=1

Di −
1

p

p∑
i=1

Ei. (60)

Combining the bounds for Di (cf. (59)) and Ei (cf. (57)), and observing ∇2
wEφo(w) = E∇2

wφo(w) from
(39b), we obtain the final bound as advertised:

P
(∥∥∇2

wφo(w)−∇2
wEφo(w)

∥∥ ≥ t) ≤ 4n exp

(
−pµ2t2

c5n2 log2 n+ c6µn log(n)t

)
.

B.4 Proof of Theorem 2
We start by introducing the event

A0 :=
{
‖X‖∞ ≤ 4

√
log(np)

}
,

which holds with probability at least 1− θ(np)−7 by Fact 8.
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B.4.1 Proof of (16a)

To show that w>∇wφo(w)
‖w‖2

is lower bounded uniformly in the region Q1, we will apply a standard covering
argument. Let N1 be an ε-net of Q1, such that for any w ∈ Q1, there exists w1 ∈ N1 with ‖w −w1‖2 ≤ ε.
By standard results [71, Lemma 5.7], the size of N1 is at most d3/εen, where the value of ε will be determined
later. We have

w>∇wφo(w)

‖w‖2
=

[
w>∇wφo(w)

‖w‖2
− w>1 ∇wφo(w1)

‖w1‖2

]
+

[
w>1 ∇wφo(w1)

‖w1‖2
− w>1 E∇wφo(w1)

‖w1‖2

]
+

w>1 E∇wφo(w1)

‖w1‖2

≥ w>1 E∇wφo(w1)

‖w1‖2︸ ︷︷ ︸
I

−
∣∣∣∣w>∇wφo(w)

‖w‖2
− w>1 ∇wφo(w1)

‖w1‖2

∣∣∣∣︸ ︷︷ ︸
II

−
∣∣∣∣w>1 ∇wφo(w1)

‖w1‖2
− w>1 E∇wφo(w1)

‖w1‖2

∣∣∣∣︸ ︷︷ ︸
III

.

In the sequel, we derive bounds for the terms I, II, III respectively.

• For term I, as w1 ∈ N1 ⊆ Q1, by Lemma 1, we have

I =
w>1 E∇wφo(w1)

‖w1‖2
≥ θ

480
√

10π
ξ0 := c1θξ0.

• To bound term II, by the additivity of Lipschitz constants and [16, Proposition 13], we have w>∇wφo(w)
‖w‖2

is L1-Lipschitz with

L1 ≤

(
8
√

2n3/2

µ
+ 8n5/2

)
‖X‖∞ +

4n3

µ
‖X‖2∞ .

Therefore, under the event A0, we have L1 ≤ c2n
3

µ log(np) for some constant c2. Setting ε = c1θξ0
3L1

, we
obtain that

II =

∣∣∣∣w>∇wφo(w)

‖w‖2
− w>1 ∇wφo(w1)

‖w1‖2

∣∣∣∣ ≤ L1 ‖w −w1‖2 ≤ L1ε ≤
c1θξ0

3
.

Along the way, we determine the size of N1 is upper bounded by

|N1| ≤ d3/εen ≤ exp

{
n log

(
c3n

3 log(np)

µθξ0

)}
.

• For term III, by setting t = c1θξ0
3 in Proposition 1 and the union bound, we have the event

A1 :=

{
max

w1∈N1

∣∣∣∣w>1 ∇wφo(w1)

‖w1‖2
− w>1 E∇wφo(w1)

‖w1‖2

∣∣∣∣ ≤ c1θξ0
3

}
holds with probability at least

1− |N1| · 2 exp

(
−pt2

C1n3 log n+ C2

√
n3 log(n)t

)
≥ 1− 2 exp

(
−c4pθ2ξ2

0

n3 log n
+ n log

(
c3n

3 log(np)

µθξ0

))
≥ 1− 2 exp (−c5n) ,

provided p ≥ Cn4

θ2ξ20
log n log

(
n3 log p
µθξ0

)
for some sufficiently large C and n is sufficiently large.

Combining terms, conditioned on A0

⋂
A1, which holds with probability at least 1− θ(np)−7 − 2 exp (−c5n),

we have that for all w ∈ Q1, (16a) holds since,

w>∇wφo(w)

‖w‖2
≥ I− II− III ≥ −c1θξ0

3
− c1θξ0

3
+ c1θξ0 =

c1θξ0
3

.
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B.4.2 Proof of (16b)

The proof is similar to the above proof of (16a) in Appendix B.4.1. Let N2 be an ε-net of Q2, such that for
any w ∈ Q2, there exists w2 ∈ N2 with ‖w −w2‖2 ≤ ε. By standard results [71, Lemma 5.7], the size of N2

is at most d3µ/(4
√

2ε)en, where the value of ε will be determined later. By the triangle inequality, we have
for all w ∈ Q2,

∇2
wφo(w) � inf

w2∈N2

∇2
wE (φo(w2))︸ ︷︷ ︸
H1

−
∥∥∇2

wφo(w2)−∇2
wφo(w)

∥∥ I︸ ︷︷ ︸
H2

−
∥∥∇2

wφo(w2)−∇2
wE (φo(w2))

∥∥ I︸ ︷︷ ︸
H3

.

In the sequel, we derive bounds for the terms H1, H2, H3 respectively.

• For H1, by Theorem 1, we have

H1 = inf
w2∈N2

∇2
wE (φo(w2)) � nθ

5
√

2πµ
I :=

c5nθ

µ
I.

• To bound H2, by the additivity of Lipschitz constants and [16, Proposition 14], we have ∇2
wφo(w) is

L2-Lipschitz with

L2 ≤
4n3

µ2
‖X‖3∞ +

(
4n2

µ
+

8
√

2n3/2

µ

)
‖X‖2∞ + 8n ‖X‖∞ .

Under the event A0, we have L2 ≤ c6n
3

µ2 log3/2(np) for some constant c6. Setting ε = c5nθ
3µL2

, we obtain

∥∥∇2
wφo(w2)−∇2

wφo(w)
∥∥ ≤ c5nθ

3µ
, and H2 �

c5nθ

3µ
I.

Along the way, we determine the size of N2 is upper bounded by

|N2| ≤ d3µ/(4
√

2ε)en ≤ exp

[
n log

(
c7n

2 log3/2(np)

θ

)]
.

• To bound H3, by setting t = c5nθ
3µ in Proposition 2 (as ‖w‖2 ≤ 1/2 for w ∈ Q2 when µ < 1) and the

union bound, we have H3 � c5nθ
3µ I under the event

A2 :=

{
max

w2∈N2

∥∥∇2
wφo(w2)−∇2

wE (φo(w2))
∥∥ ≤ c5nθ

3µ

}
holds with probability at least

1− |N2| · 4n exp

(
−pµ2t2

C3n2 log2 n+ C4µtn log n

)
≥ 1− 4n exp

(
− c8pθ

2

log2 n
+ n log

(
c7n

2 log3/2(np)

θ

))
≥ 1− exp(−c9n),

provided p ≥ Cn
θ2 log2 n log

(
n2 log3/2 p

θ

)
for some sufficiently large C and n is sufficiently large.

Combining terms, conditioned on A0

⋂
A2, which holds with probability at least 1− θ(np)−7− exp(−c9n),

we have (16b) holds since,

∇2
wφo(w) �H1 −H2 −H3 �

c5nθ

3µ
I.
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B.4.3 Proof of (17)

The characterized geometry of φo(w) implies that it has at most one local minimum in Q2 due to strong
convexity, which is denoted as w?

o . We are going to show that w?
o is close to 0 in Q2. By the optimality of

w?
o and the mean value theorem, we have for some t ∈ (0, 1):

φo(0) ≥ φo(w?
o) ≥ φo(0) + 〈∇wφo(0),w?

o〉+ w?>
o ∇2φo(tw

?
o)w?

o

≥ φo(0)− ‖w?
o‖2 ‖∇wφo(0)‖2 +

c5nθ

2µ
‖w?

o‖
2
2 ,

where the second line follows from (16b) and the Cauchy-Schwartz inequality. Therefore, we have

‖w?
o‖2 ≤

2µ

c5nθ
‖∇wφo(0)‖2 . (61)

It remains to bound ‖∇wφo(0)‖2, which we resort to the Bernstein’s inequality in Lemma 7. As ∇wφo(0) =
1
p

∑p
i=1∇wψµ (C(xi)h(0)), where it is straightforward to check E∇wψµ (C(xi)h(0)) = 0 due to symmetry.

We turn to bound the moments of ‖∇wψµ (C(xi)h(0))‖2 as follows,

‖∇wψµ (C(xi)h(0))‖2 =

∥∥∥∥Jh(0)C(xi)> tanh

(
C(x)h(0)

µ

)∥∥∥∥
2

≤ ‖Jh(0)‖ ‖C(xi)‖
∥∥∥∥tanh

(
C(x)h(0)

µ

)∥∥∥∥
2

≤
√
n ‖C(xi)‖ ,

where the last inequality follows from ‖Jh(0)‖ =
∥∥[In−1 0

]∥∥ = 1 and |tanh (·)| ≤ 1. Invoking Lemma 10,
we have for all m ≥ 2,

E
[
‖∇wψµ (C(x)h(0))‖m2

]
≤
(√
n
)m E ‖C(xi)‖m ≤

m!

2
·
(
Cn2 log(n)

)m/2
for some constant C. Setting σ2 = Cn2 log(n), R =

√
Cn2 log(n) in the Bernstein’s inequality in Lemma 7,

we have

P (‖∇wφo(0)‖2 ≥ t) ≤ 2(n+ 1) exp

(
−pt2

2Cn2 log(n) + 2
√
Cn2 log(n)t

)
.

Let t = c9

√
n2 log(n) log(p)

p , we have

‖∇wφo(0)‖2 ≤ c9

√
n2 log n log p

p
(62)

with probability at least 1− 4np−7 when p ≥ c10n log(n). Under the sample size requirement on p, we have

‖w?
o − 0‖2 ≤

c6µ

θ

√
log n log p

p
≤ µ

10
,

for some constant c6, which ensures w?
o ∈ Q2.

C Proofs for Section 3.2

C.1 Proof of Lemma 2
Recalling ∆ = (U ′ −U)U−1, we have

‖∆‖ =
∥∥(U ′ −U)U−1

∥∥ = ‖U ′ −U‖ , (63)
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since U is an orthonormal matrix, i.e.,
∥∥U−1

∥∥ = 1. Therefore, it is sufficient to bound ‖U ′ −U‖ instead.
Plugging in the definition of U ′ and U , we have

‖U ′ −U‖ =
∥∥∥C(g)R− C(g)

(
C(g)>C(g)

)−1/2
∥∥∥

≤ ‖C(g)‖
∥∥∥R− (C(g)>C(g)

)−1/2
∥∥∥

≤ ‖C(g)‖

∥∥∥R2 −
(
C(g)>C(g)

)−1
∥∥∥

σmin

(
(C(g)>C(g))

−1/2
)

≤ ‖C(g)‖2 ‖
(
C(g)>C(g)

)−1 ‖
∥∥C(g)>C(g)R2 − I

∥∥
= κ2

∥∥C(g)>C(g)R2 − I
∥∥ , (64)

where the second inequality follows from the fact [72, Theorem 6.2] that for two positive matrices U ,V , we

have
∥∥U−1/2 − V −1/2

∥∥ ≤ ‖U−1−V −1‖
σmin(V −1/2)

. We continue by plugging in the definition of R,

∥∥C(g)>C(g)R2 − I
∥∥ =

∥∥∥∥∥∥(C(g)>C(g)
)
·

(
1

θnp

p∑
i=1

(
C(g)>C(xi)>C(xi)C(g)

))−1

− I

∥∥∥∥∥∥
=

∥∥∥∥∥∥
[
I +

(
C(g)>

[
1

θnp

p∑
i=1

C(xi)>C(xi)− I

]
C(g)

)
·
(
C(g)>C(g)

)−1

]−1

− I

∥∥∥∥∥∥
:=
∥∥∥(I + A)

−1 − I
∥∥∥ . (65)

where A =
(
C(g)>

[
1
θnp

∑p
i=1 C(xi)>C(xi)− I

]
C(g)

)
·
(
C(g)>C(g)

)−1.
By Lemma 11, we have when p ≥ Cn log(n),∥∥∥∥∥ 1

θnp

p∑
i=1

C(xi)>C(xi)− I

∥∥∥∥∥ ≤ C
√

log2 n log p

θ2p

with probability at least 1− 2np−8, and ‖A‖ ≤ Cκ2
√

log2(n) log(p)
θ2p . Then as long as ‖A‖ ≤ 1/2, which holds

when p ≥ C2κ
4 log2(n) log p

θ2 for some large enough constant C2, we have∥∥∥(I + A)
−1 − I

∥∥∥ ≤ ∥∥∥(I + A)
−1
∥∥∥ ‖A‖ ≤ ‖A‖

1− ‖A‖
≤ 2‖A‖.

Plugging this back into (64), we have

‖U ′ −U‖ ≤ C3κ
4

√
log2 n log p

θ2p
.

C.2 Proof of Lemma 3
We first record some useful facts. For any h ∈ S(n+)

0 , we have the Jacobian matrix Jh(w) =
[
I,− w

hn

]
∈

R(n−1)×n satisfies

‖Jh(w)‖ ≤ ‖Jh(w)‖F ≤

√
n− 1 +

‖w‖22
h2
n

≤
√

2n, (66)

since ‖w‖2 ≤ 1 and hn ≥ 1√
n
. In addition, by the union bound and Lemma 10, we have with probability at

least 1− (np)−8,
max
i∈[p]
‖C(xi)‖ ≤ C

√
n log(np), (67)

for some constant C.
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C.2.1 Proof of (29a)

Similar to (34), we can write the gradient ∇wφ(w) as

∇wφ(w) =
1

p

p∑
i=1

Jh(w) (I + ∆)
> C(xi)> tanh

(
C(xi) (I + ∆)h(w)

µ

)
.

Recalling the expression of ∇wφo(w) in (34), we write

∇wφo(w)−∇wφ(w)

=
1

p

p∑
i=1

Jh(w)C(xi)> tanh

(
C(xi)h(w)

µ

)
− 1

p

p∑
i=1

Jh(w) (I + ∆)
> C(xi)> tanh

(
C(xi) (I + ∆)h(w)

µ

)

=
1

p

p∑
i=1

Jh(w)C(xi)>
[
tanh

(
C(xi)h(w)

µ

)
− tanh

(
C(xi) (I + ∆)h(w)

µ

)]
︸ ︷︷ ︸

g1

− 1

p

p∑
i=1

Jh(w)∆>C(xi)> tanh

(
C(xi) (I + ∆)h(w)

µ

)
︸ ︷︷ ︸

g2

.

Therefore, we continue to bound ‖g1‖2 and ‖g2‖2.
• To bound ‖g1‖2, we have

‖g1‖2 ≤ ‖Jh(w)‖ ·max
i∈[p]
‖C(xi)‖ ·max

i∈[p]

∥∥∥∥tanh

(
C(xi)h(w)

µ

)
− tanh

(
C(xi) (I + ∆)h(w)

µ

)∥∥∥∥
2

≤ 1

µ
‖Jh(w)‖ ·max

i∈[p]
‖C(xi)‖2 · ‖∆‖ . (68)

Here, the second line follows from for any i ∈ [p],∥∥∥∥tanh

(
C(xi)h(w)

µ

)
− tanh

(
C(xi) (I + ∆)h(w)

µ

)∥∥∥∥
2

≤
∥∥∥∥(C(xi)hµ

)
−
(
C(xi)(I + ∆)h

µ

)∥∥∥∥
2

=
1

µ
‖C(xi)∆h‖2 ≤

1

µ
‖C(xi)‖ ‖∆‖ ‖h‖2 =

1

µ
‖C(xi)‖ ‖∆‖ , (69)

where the second line follows from Lemma 9, and the last equality is due to ‖h‖2 = 1.

• To bound ‖g2‖2, we have

‖g2‖2 ≤ ‖Jh(w)‖ ·max
i∈[p]
‖C(xi)‖ ·max

i∈[p]

∥∥∥∥tanh

(
C(xi) (I + ∆)h(w)

µ

)∥∥∥∥
2

· ‖∆‖

≤
√
n ‖Jh(w)‖ ·max

i∈[p]
‖C(xi)‖ · ‖∆‖ , (70)

where the second line uses | tanh(·)| ≤ 1, and
∥∥∥tanh

(
C(xi)(I+∆)h(w)

µ

)∥∥∥
2
≤
√
n.

Combining (68) and (70), we have

‖∇wφo(w)−∇wφ(w)‖2 ≤ ‖g1‖2 + ‖g2‖2 ≤ ‖Jh(w)‖ ·max
i∈[p]
‖C(xi)‖ · ‖∆‖

(√
n+

1

µ
max
i∈[p]
‖C(xi)‖

)
≤ Cn

3/2 log(np)

µ
‖∆‖ ,

for some constant C, where the last line follows from (66) and (67), which holds with probability at least
1− (np)−8.
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C.2.2 Proof of (29b)

First, under the sample size p ≥ C2κ
8n log2(n) log p

θ2 , from Lemma 2, we can ensure ‖∆‖ ≤ 1. Note that

∥∥∇2
wφo(w)−∇2

wφ(w)
∥∥ =

∥∥∥∥∥1

p

p∑
i=1

∇2
wψµ(C(xi)h(w))− 1

p

p∑
i=1

∇2
wψµ(C(xi) (I + ∆)h(w))

∥∥∥∥∥
≤ 1

p

p∑
i=1

∥∥∇2
wψµ(C(xi)h(w))−∇2

wψµ(C(xi) (I + ∆)h(w))
∥∥ . (71)

Similar to (35), we can write the Hessian ∇2
wψµ(C(xi) (I + ∆)h(w)) as

∇2
wψµ(C(xi) (I + ∆)h(w))

=
1

µ
Jh(w) (I + ∆) C(xi)>

[
I− diag

(
tanh2

(
C(x) (I + ∆)h(w)

µ

))]
C(xi) (I + ∆)Jh(w)>

− 1

hn
Sn−1(x)> (I + ∆) tanh

(
C(x) (I + ∆)h(w)

µ

)
Jh(w)Jh(w)>. (72)

Subtracting ∇2
wψµ(C(xi)h(w)) in (35) from the above equation, we have

∇2
wψµ(C(xi)h(w))−∇2

wψµ(C(xi) (I + ∆)h(w))

=
1

µ
Jh(w)C(xi)>

[
diag

(
tanh2

(
C(xi) (I + ∆)h(w)

µ

)
− tanh2

(
C(xi)h(w)

µ

))]
C(xi)Jh(w)>︸ ︷︷ ︸

Q1

− 1

µ
Jh(w)∆C(xi)>

[
I− diag

(
tanh2

(
C(xi) (I + ∆)h(w)

µ

))]
C(xi) (I + ∆)Jh(w)>︸ ︷︷ ︸

Q2

− 1

µ
Jh(w)C(xi)>

[
I− diag

(
tanh2

(
C(xi) (I + ∆)h(w)

µ

))]
C(xi)∆Jh(w)>︸ ︷︷ ︸

Q3

+
1

hn
Sn−1(xi)

>
[
tanh

(
C(xi) (I + ∆)h(w)

µ

)
− tanh

(
C(xi)h(w)

µ

)]
Jh(w)Jh(w)>︸ ︷︷ ︸

Q4

+
1

hn
Sn−1(xi)

>∆ tanh

(
C(xi) (I + ∆)h(w)

µ

)
Jh(w)Jh(w)>︸ ︷︷ ︸

Q5

,

where in the sequel we’ll bound these terms respectively.

• Q1 can be bounded as

‖Q1‖ ≤
1

µ
‖Jh(w)‖2 ‖C(xi)‖2

∥∥∥∥tanh2

(
C(xi) (I + ∆)h(w)

µ

)
− tanh2

(
C(xi)h(w)

µ

)∥∥∥∥
∞

≤ 2

µ2
‖Jh(w)‖2 ‖C(xi)‖2 ‖C(xi)∆h(w)‖∞

≤ 2

µ2
‖Jh(w)‖2 ‖C(xi)‖2 ‖xi‖2 ‖∆‖ ,

where the second line follows from Lemma 9, where the last line uses ‖h‖2 = 1.

• Q2 can be bounded as

‖Q2‖ ≤
1

µ
‖Jh(w)‖2 ‖C(xi)‖2 ‖∆‖ (1 + ‖∆‖) ≤ 2

µ
‖Jh(w)‖2 ‖C(xi)‖2 ‖∆‖ ,

where we have used 1− tanh2(·) ≤ 1, ‖∆‖ ≤ 1 respectively.
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• Similar to Q2, Q3 can be bounded as

‖Q3‖ ≤
1

µ
‖Jh(w)‖2 ‖C(xi)‖2 ‖∆‖ .

• Q4 can be bounded as

‖Q4‖ ≤
1

hn
‖xi‖2 ‖Jh(w)‖2

∥∥∥∥tanh

(
C(xi) (I + ∆)h(w)

µ

)
− tanh

(
C(xi)h(w)

µ

)∥∥∥∥
2

≤
√
n

µ
‖Jh(w)‖2 ‖C(xi)‖ ‖xi‖2 ‖∆‖ ,

where the second line follows from (69) and hn ≥ 1/
√
n.

• Q5 can be bounded as

‖Q5‖ ≤
1

hn
‖xi‖2 ‖Jh(w)‖2 ‖∆‖

∥∥∥∥tanh

(
C(xi) (I + ∆)h(w)

µ

)∥∥∥∥
2

≤ n ‖xi‖2 ‖Jh(w)‖2 ‖∆‖ ,

where the second line uses | tanh(·)| ≤ 1 and hn ≥ 1/
√
n.

Combining the above bounds back into (71), we have∥∥∇2
wφo(w)−∇2

wφ(w)
∥∥

≤ ‖Jh(w)‖2 ‖∆‖max
i∈[p]

(
2

µ2
‖C(xi)‖2 ‖xi‖2 +

3

µ
‖C(xi)‖2 +

√
n

µ
‖C(xi)‖ ‖xi‖2 + n ‖xi‖2

)
.

Plugging in (66), (67), and Fact 7, where with probability at least 1− 2p−8,

max
i∈[p]
‖C(xi)‖ ≤ C

√
n log(np), max

i∈[p]
‖xi‖2 ≤ C

√
n log p,

we have ∥∥∇2
wφo(w)−∇2

wφ(w)
∥∥ ≤ C9

n5/2

µ2
log3/2(np) ‖∆‖ .

C.3 Proof of Theorem 3
To begin, by Lemma 3, we have∣∣∣∣w>∇wφo(w)

‖w‖2
− w>∇wφ(w)

‖w‖2

∣∣∣∣ ≤ ‖∇wφo(w)−∇wφ(w)‖2 ≤ cg
n3/2 log(np)

µ
‖∆‖ ≤ c2ξ0θ

2
, (73a)

∥∥∇2
wφo(w)−∇2

wφ(w)
∥∥ ≤ chn5/2 log3/2(np)

µ2
‖∆‖ ≤ c2nθ

2µ
, (73b)

as long as the sample size satisfies

‖∆‖ ≤ cfκ4

√
log2 n log p

θ2p
≤ C ξ0θµ

n3/2 log3/2(np)
,

for some constant C in view of Lemma 2. Translating this into the sample size requirement, it means

p ≥ Cκ
8n3 log4 p log2 n

θ4µ2ξ2
0

.
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Under the assumption of Theorem 2, and in view of (16a) and (16b), we have

w>∇wφ(w)

‖w‖
≥ w>∇wφo(w)

‖w‖
−
∣∣∣∣w>∇wφo(w)

‖w‖
− w>∇wφ(w)

‖w‖

∣∣∣∣ ≥ c2ξ0θ

2
,

∇2
wφ(w) � ∇2

wφo(w)−
∥∥∇2

wφo(w)−∇2
wφ(w)

∥∥ I � c2nθ

2µ
I.

Now let w? be the local minimizer of φ(w) in the region of interest. Similar to the proof in Appendix B.4.3,
we have

‖w?‖2 ≤
4µ

c2nθ
‖∇wφ(0)‖2

≤ 4µ

c2nθ
‖∇wφo(0)‖2 +

4µ

c2nθ
‖∇wφ(0)−∇wφo(0)‖2

≤ c9µ

nθ

√n2 log(n) log(p)

p
+
n3/2 log(np)

µ
κ4

√
log2(n) log(p)

θ2p

 .

where the first term is bounded by (62) and the second term is bounded by Lemma 3. Under the sample size
requirement, the latter term dominates and therefore we have

‖w? − 0‖2 ≤
cκ4

θ2

√
n log3 p log2 n

p
.

D Proofs for Section 3.3
We start by stating a useful observation. Notice that

(
ek

hk
− en

hn

)
is on the tangent space of h, i.e.,

(
I− hh>

)(ek
hk
− en
hn

)
=

(
ek
hk
− en
hn

)
,

we have the relation

∂f(h)>
(
ek
hk
− en
hn

)
=
[(

I− hh>
)
∇f(h)

]>(ek
hk
− en
hn

)
= ∇f(h)>

(
ek
hk
− en
hn

)
, (74)

holds for both ∂f(h) and ∂fo(h).

D.1 Proof of Lemma 4
We first prove the upper bound of ‖∂f(h)‖2 in (31), which is simpler. Plugging the bound for maxi∈[p] ‖C(xi)‖
in (67) and ‖∆‖ ≤ 1 ensured by the sample size requirement and Lemma 2, for any h on the unit sphere,
with probability at least 1− (np)−8, the manifold gradient satisfies

‖∂f(h)‖2 ≤ ‖∇f(h)‖2 =

∥∥∥∥∥1

p

p∑
i=1

(I + ∆)
> C(xi)> tanh

(
C(xi) (I + ∆)h(w)

µ

)∥∥∥∥∥
2

≤
√
n ‖I + ∆‖max

i∈[p]
‖C(xi)‖

≤ 2C1n
√

log(np).

We now move to prove the lower bound of the directional gradient in (30). We first consider the directional
gradient of fo(h) for the orthogonal case, following the proof procedure of the Theorem 2 to obtain the
empirical geometry of fo(h) in the region of interest (shown in Lemma 15), which is proved in Appendix D.4.
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Lemma 15 (Uniform concentration for the orthogonal case). Instate the assumptions of Theorem 2. There
exist some constants ca, cb, such that for h ∈ Hk =

{
h : h ∈ S(n+)

ξ0
, hk 6= 0, h2

n/h
2
k < 4

}
, with probability at

least 1− (np)−8 − 2 exp (−can),

∂fo(h)>
(
ek
hk
− en
hn

)
≥ cbξ0θ. (75)

Based on the result, we derive the bound for the directional gradient of f(h) in the general case by
bounding the deviation between the directional gradient of fo(h) and f(h). Using (74), we can relate the
directional gradient of f(h) to that of fo(h) as

(∂f(h)− ∂fo(h))>
(
ek
hk
− en
hn

)
= (∇f(h)−∇fo(h))

>
(
ek
hk
− en
hn

)
. (76)

We have ∣∣∣∣(∂f(h)− ∂fo(h))
>
(
ek
hk
− en
hn

)∣∣∣∣ ≤ ‖∇f(h)−∇fo(h)‖2

∥∥∥∥ekhk − en
hn

∥∥∥∥
2

≤
√

5n ‖∇f(h)−∇fo(h)‖2 ,

where the last line follows from ∥∥∥∥ekhk − en
hn

∥∥∥∥
2

=

√
1

h2
k

+
1

h2
n

≤

√
5

h2
n

≤
√

5n, (77)

due to the assumption h2
n/h

2
k ≤ 4 and hn ≥ 1/

√
n. Therefore, it is sufficient to bound ‖∇f(h)−∇fo(h)‖2.

By (32), we have

‖∇fo(h)−∇f(h)‖2 =

∥∥∥∥∥1

p

p∑
i=1

C(xi)> tanh

(
C(xi)h
µ

)
− 1

p

p∑
i=1

(I + ∆)
> C(xi)> tanh

(
C(xi) (I + ∆)h

µ

)∥∥∥∥∥
2

≤

∥∥∥∥∥1

p

p∑
i=1

∆>C(xi)> tanh

(
C(xi) (I + ∆)h

µ

)∥∥∥∥∥
2

+

∥∥∥∥∥1

p

p∑
i=1

C(xi)>
[
tanh

(
C(xi)h
µ

)
− tanh

(
C(xi) (I + ∆)h

µ

)]∥∥∥∥∥
2

≤ max
i∈[p]
‖C(xi)‖ ·max

i∈[p]

∥∥∥∥tanh

(
C(xi) (I + ∆)h

µ

)∥∥∥∥
2

‖∆‖

+ max
i∈[p]
‖C(xi)‖ ·max

i∈[p]

∥∥∥∥tanh

(
C(xi)h
µ

)
− tanh

(
C(xi) (I + ∆)h

µ

)∥∥∥∥
2

≤ max
i∈[p]
‖C(xi)‖ ·

(√
n ‖∆‖+

1

µ
max
i∈[p]
‖C(xi)‖ ‖∆‖

)
≤ C1

n log(np)

µ
‖∆‖

with probability at least 1 − (np)−8, where the penultimate inequality follows from (69), and the last
inequality follows from (67). By Lemma 2, there exists some constant C, such that under the sample
complexity requirement, we have∣∣∣∣(∂f(h)− ∂fo(h))

>
(
ek
hk
− en
hn

)∣∣∣∣ ≤ C1
n3/2 log(np)

µ
κ4

√
log2 n log p

θ2p
≤ cbξ0θ

2
. (78)

In addition, Lemma 15 guarantees that ∂fo(h)>
(

ek

hk
− en

hn

)
≥ cbξ0θ. Putting together, we have

∂f(h)>
(
ek
hk
− en
hn

)
≥ ∂fo(h)>

(
ek
hk
− en
hn

)
−
∣∣∣∣(∂f(h)− ∂fo(h))

>
(
ek
hk
− en
hn

)∣∣∣∣
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≥ cbξ0θ −
cbξ0θ

2
=
cbξ0θ

2

with probability at least 1− 2(np)−8 − 2 exp (−can).

D.2 Proof of Lemma 5
Owing to symmetry, without loss of generality, we will show that if the current iterate h ∈ S(n+)

ξ0
with

ξ0 ∈ (0, 1), the next iterate

h+ =
h− η∂f(h)

‖h− η∂f(h)‖2

stays in S(n+)
ξ0

for a sufficiently small step size η. For any i ∈ [n− 1], we have(
h+
n

h+
i

)2

=
(hn − η[∂f(h)]n)2

(hi − η[∂f(h)]i)2
=

(1− η[∂f(h)]n/hn)2

(hi/hn − η[∂f(h)]i/hn)2
. (79)

By (31) in Lemma 4, which bounds ‖∂f(h)‖∞ ≤ ‖∂f(h)‖2 ≤ Cn
√

log(np) for some constant C, and
hn ≥ 1/

√
n, by setting η ≤ 1

10Cn3/2
√

log(np)
, we can lower bound the numerator of (79) as

‖η∂f(h)‖∞ /hn ≤
1

10
and (1− η[∂f(h)]n/hn)

2 ≥ 2

3
. (80)

To continue, we take a similar approach to [20, Lemma D.1], and divide our discussions of the denominator
of (79) for different coordinates in three subsets:

J0 := {i ∈ [n− 1] : hi = 0} , (81a)

J1 :=

{
i ∈ [n− 1] :

h2
n

h2
i

≥ 4, hi 6= 0

}
, (81b)

J2 :=

{
i ∈ [n− 1] :

h2
n

h2
i

≤ 4

}
. (81c)

• For any index i ∈ J0, we have hi = 0, and then by (79) and (80),(
h+
n

h+
i

)2

=
(1− η[∂f(h)]n/hn)2

(η[∂f(h)]i/hn)2
≥ 2/3

(1/10)2
≥ 2.

• For any index i ∈ J1, we have(
h+
n

h+
i

)2

=
(1− η[∂f(h)]n/hn)2

(hi/hn − η[∂f(h)]i/hn)2
≥ 2/3

(1/4 + 1/102)
≥ 2.

• For any index i ∈ J2, we have(
h+
n

h+
i

)2

=
h2
n

h2
i

(
1 + η

∂f(h)>(ei/hi − en/hn)

1− η[∂f(h)]i/hi

)2

.

Since h ∈ Hi as defined in Lemma 4, using (30), we have ∂f(h)>(ei/hi − en/hn) ≥ cb
2 ξ0θ > 0, and

consequently, (
h+
n

h+
i

)2

≥ h2
n

h2
i

(
1 + η

∂f(h)>(ei/hi − en/hn)

1− η[∂f(h)]i/hi

)2

≥ h2
n

h2
i

≥ 1 + ξ0, (82)

where the last inequality is due to h ∈ S(n+)
ξ0

.

Combining the above, we have that for all i ∈ [n− 1],
(
h+
n /h

+
i

)2 ≥ 1 + ξ0, i.e, h+ ∈ S(n+)
ξ0

.
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D.3 Proof of Theorem 4
First, as the step size requirement satisfies that in Lemma 5, the iterates never jumps out of S(n+)

ξ0
, if

initialized in it. Denote h+
u as the unnormalized update of h with step size η on the tangent space of h, i.e,

h+
u = h− η∂f(h) = h− η

(
I− hh>

)
∇hf(h).

and w+
u the first (n− 1) entries of h+

u , whose update can be written with respect to φ(w) as

w+
u = w − η

[
I 0

] (
I− hh>

)
∇hf(h)

= w − η
(
I−ww>

)
Jh(w)∇hf(h)

= w − η
(
I−ww>

)
∇wφ(w). (83)

The normalized updates are respectively h+ = h+
u / ‖h+

u ‖2 and w+ = w+
u / ‖h+

u ‖2. By the property that
h ⊥

(
I− hh>

)
∇hf(h), we have ‖h+

u ‖2 ≥ ‖h‖2 ≥ 1.

Convergence in the region of Q1 ∩ {w : h(w) ∈ S(n+)
ξ0
}. By (83), we have∥∥w+

u

∥∥2

2
= ‖w‖22 − η hn(w)2w>∇wφ(w)︸ ︷︷ ︸

I1

+η2
∥∥(I−ww>

)
∇wφ(w)

∥∥2

2︸ ︷︷ ︸
I2

. (84)

• First, I1 can be bounded as

I1 = h2
nw
>∇wφ(w) ≥ c1h2

n ‖w‖2 ξ0θ.

for some constant c1, where the last inequality owes to (26a).

• Second, I2 can be bounded as

I2 ≤
∥∥[I 0

]∥∥ · ∥∥I− hh>
∥∥ ‖∇hf(h)‖2 ≤ 1 · (1 + ‖h‖22) ‖∇hf(h)‖2 ≤ c2n

√
log(np)

for some constant c2, where the last inequality follows from (31) in Lemma 4, which holds with
probability at least 1− (np)−8.

Sum up the above results for I1 and I2, we have with probability at least 1− (np)−8,∥∥w+
∥∥

2
≤
∥∥w+

u

∥∥2

2
≤ ‖w‖22 − ηc1h

2
n(w) ‖w‖2 ηξ0θ + c2η

2n
√

log(np),

where the first inequality follows from ‖h+
u ‖2 ≥ 1. Setting η ≤ cµξ0θ

n2
√

log(np)
≤ c1h

2
n‖w‖2ξ0θ

2c2n
√

log(np)
for some sufficiently

small c, we have ∥∥w+
∥∥

2
≤ ‖w‖22 − η

c1
2
h2
n(w) ‖w‖2 ηξ0θ ≤ ‖w‖

2
2 − η

c1
2n
‖w‖2 ξ0θ. (85)

Denote the k-th iteration as h(k), we have that as long as w(k) ∈ Q1,∥∥∥w(k+1)
∥∥∥2

2
≤
∥∥∥w(k)

∥∥∥2

2
− η c1

2n

∥∥∥w(k)
∥∥∥

2
ξ0θ ≤

∥∥∥w(k)
∥∥∥2

2
− η c1µ

8
√

2n
ξ0θ.

Telescoping the above inequality for the first T1 iterations, we have

T1 · η
c1µ

8
√

2n
ξ0θ ≤

∥∥∥w(0)
∥∥∥2

2
−
∥∥∥w(T1)

∥∥∥2

2
≤ 1, =⇒ T1 ≤

Cn

µηξ0θ
,

which means it takes at most T1 iterations to enter Q2 ∩ {w : h(w) ∈ S(n+)
ξ0
}.

Remark 1. Using arguments similar to [21], the iteration complexity in this phase can be improved to
T1 . 1

η

(
n
µθ + log

(
1
ξ0

))
which only has a logarithmic dependence on ξ0; we didn’t pursue it here as it only

leads to a logarithmic improvement to the overall complexity due to our choice of ξ0 = O(1/ log n).
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Convergence in the region of Q2 ∩{w : h(w) ∈ S(n+)
ξ0
}: Denoting the unique local minima in Q2 ∩{w :

h(w) ∈ S(n+)
ξ0
} as w?, whose norm is bounded in Theorem 3. By setting p sufficiently large, we can ensure

that the iterates stay in Q2 following a similar argument as (84). To begin, we note that ∇wφ(w) is L-
Lipschitz with

L ≤ Cn3/2 log(np)

µ
, (86)

which is proved in Appendix D.3.1, and c1nθ/µ-strongly convex in Q2 ∩ {w : h(w) ∈ S(n+)
ξ0
}. For w ∈ Q2,

we have
1

2
≤ 1− µ2

32
≤
∥∥I−ww>

∥∥ ≤ 1 +
µ2

32
, (87)

with µ < c1 min{θ, ξ1/6
0 n−3/4} ≤ 4 sufficiently small.

We now consider two cases based on the size of ‖w+‖2, which is the next iterate with respect to w given
in (83).

1. ‖w+‖2 < ‖w?‖2: in this case, we already achieve

∥∥w+ − 0
∥∥

2
≤ ‖w?‖2 .

κ4

θ2

√
n log3 p log2 n

p
.

2. ‖w+‖2 ≥ ‖w?‖2: by the fundamental theorem of calculus, we have∥∥w+
u −w?

∥∥
2

=
∥∥w −w? − η

(
I−ww>

)
∇wφ(w)

∥∥
2

=

∥∥∥∥[I− η (I−ww>
) ∫ 1

0

∇2
wφ(w(t))dt

]
(w −w?)

∥∥∥∥
2

≤
∥∥∥∥[I− η (I−ww>

) ∫ 1

0

∇2
wφ(w(t))dt

]∥∥∥∥ ‖w −w?‖2

≤
(

1− c1nθη

2µ

)
‖w −w?‖2 . (88)

where w(t) := w + t(w? − w), t ∈ [0, 1], and the step size η ≤ cµξ0θ

n2
√

log(np)
≤ 1

2L . Moreover, since

w+ = w+
u / ‖h+‖2 = w+

u /(1 +K) for some K > 0, we have∥∥w+
u −w?

∥∥2

2
=
∥∥(1 +K)w+ −w?

∥∥2

2

=
∥∥w+ −w?

∥∥2

2
+ (2K +K2)

∥∥w+
∥∥2

2
− 2Kw?>w+

≥
∥∥w+ −w?

∥∥2

2
+ (2K +K2)

∥∥w+
∥∥2

2
− 2K

∥∥w+
∥∥

2
‖w?‖2 ≥

∥∥w+ −w?
∥∥2

2
(89)

where the last inequality owes to ‖w+‖2 ≥ ‖w?‖2. Combining (88) and (89), we have the update w+

satisfies ∥∥w+ −w?
∥∥

2
≤
(

1− c1nθη

2µ

)
‖w −w?‖2 . (90)

Therefore, to ensure ‖w+ −w?‖2 ≤ ε, it takes no more than

T2 ≤
2c1µ

nθη
log

(
3µ

2
√

2ε

)
(91)

iterations, since for any w ∈ Q2, we have ‖w −w∗‖2 ≤ ‖w‖2 + ‖w∗‖2 ≤
3µ

2
√

2
.

Summing up, to achieve ‖w(T ) − 0‖2 . κ4

θ2

√
n log3 p log2 n

p + ε, the total number of iterates is bounded by

T = T1 + T2 .
n

µηξ0θ
+

µ

nθη
log
(µ
ε

)
.
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We next translate this bound into bounds of
∥∥h(T ) − en

∥∥
2
and dist(ĝinv, ginv), where the latter leads to

Corollary 1. For notation simplicity, we denote β := κ4

θ2

√
n log3 p log2 n

p + ε < 1 which holds for sufficiently

large sample size.4 First, observe that h(T ) = h(w(T )) satisfies

∥∥∥h(T ) − en

∥∥∥
2

=

√∥∥w(T )
∥∥2

2
+

(
1−

√
1−

∥∥w(T )
∥∥2

2

)2

≤
√(

1−
√

1− β2
)2

+ β2 ≤
√

2β2 .
κ4

θ2

√
n log3 p log2 n

p
+ ε. (92)

Since we consider the loss function f(h) in (21) throughout the proof, the estimate of ginv is given by
ĝinv = RU>h(T ). Hence, we have

dist(ĝinv, ginv) = dist(RU>h(T ), C(ginv)en) ≤
∥∥C(g)−1

∥∥∥∥∥C(g)RU>h(T ) − en

∥∥∥
2

≤
∥∥C(g)−1

∥∥∥∥∥C(g)RU>(h(T ) − en)
∥∥∥

2
+
∥∥C(g)−1

∥∥∥∥(C(g)RU> − I)en
∥∥

2

≤
∥∥C(g)−1

∥∥ ‖∆ + I‖
∥∥∥h(T ) − en

∥∥∥
2

+
∥∥C(g)−1

∥∥ ‖∆‖ ‖en‖2 (93)

where we used the definition of ∆ = C(g)RU> − I (cf. (27)). Under the sample size requirement, we have

‖∆‖ ≤ cfκ4
√

log2 n log p
θ2p < 1 with probability at least 1− 2np−8 by Lemma 2. Plugging it into (93), we have

dist(ĝinv, ginv) ≤ 2

σn(C(g))

∥∥∥h(T ) − en

∥∥∥
2

+
1

σn(C(g))
‖∆‖

.
κ4

θ2σn(C(g))

√
n log3 p log2 n

p
+

ε

σn(C(g))
, (94)

where the last line follows from (92).

D.3.1 Proof of (86)

Recalling ψ′µ(x) = tanh(x/µ), for any w1,w2 ∈ Q2, using the expression

∇wφ(w) =
1

p

p∑
i=1

Jh(w) (I + ∆)
> C(xi)>ψ′µ (C(xi) (I + ∆)h(w)) ,

we have

∇wφ(w1)−∇wφ(w2)

=
1

p

p∑
i=1

[Jh(w1)− Jh(w2)] (I + ∆)
> C(xi)>ψ′µ (C(xi) (I + ∆)h(w1))︸ ︷︷ ︸
g1

+
1

p

p∑
i=1

Jh(w2) (I + ∆)
> C(xi)>

[
ψ′µ (C(xi) (I + ∆)h(w1))− ψ′µ (C(xi) (I + ∆)h(w2))

]
︸ ︷︷ ︸

g2

.

We bound ‖g1‖2 and ‖g2‖2 respectively. Under the sample size requirement, from Lemma 2, we can
ensure ‖∆‖ ≤ 1. To bound ‖g1‖2, we have

‖g1‖2 ≤ ‖Jh(w1)− Jh(w2)‖ · ‖I + ∆‖ ·max
i∈[p]
‖C(xi)‖ ·

∥∥∥∥tanh

(
C(xi) (I + ∆)h(w1)

µ

)∥∥∥∥
2

4Note that ‖w(T )‖2 < 1 by the spherical constraint, the bound is vacuous otherwise
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≤ C
√
n2 log(np)

∥∥∥[0 (
w2

hn(w2) −
w1

hn(w1)

)]∥∥∥ ,
where the second line follows from |tanh(·)| ≤ 1 and (67), which holds with probability at least 1− (np)−8.
To continue, we observe that∥∥∥[0, (

w2

hn(w2) −
w1

hn(w1)

)]∥∥∥ =

∥∥∥∥ w2

hn(w2)
− w1

hn(w1)

∥∥∥∥
2

≤
∥∥∥∥ w2

hn(w2)
− w1

hn(w2)

∥∥∥∥
2

+

∥∥∥∥ w1

hn(w2)
− w1

hn(w1)

∥∥∥∥
2

(i)

≤ 2 ‖w2 −w1‖2 + ‖w1‖2

∣∣∣∣ 1

hn(w2)
− 1

hn(w1)

∣∣∣∣
(ii)

≤ 2 ‖w2 −w1‖2 + 8 ‖w2 −w1‖2
≤ 10 ‖w2 −w1‖2

where (i) follows from hn(w2) =
√

1− ‖w2‖22 ≥ 1/2 when we used the fact that ‖w‖2 ≤ µ/(4
√

2) ≤
√

3/2 in
Q2, and (ii) follows from the Lipschitz smoothness of 1/hn(w) and hn(w) ≥ 1/2:∣∣∣∣ 1

hn(w2)
− 1

hn(w1)

∣∣∣∣ ≤ (max
w∈Q2

1

(1− ‖w‖22)3/2

)
‖w2 −w1‖2 ≤ 8‖w2 −w1‖2. (95)

Therefore, we have
‖g1‖2 ≤ C

√
n2 log(np) ‖w2 −w1‖2 .

To bound ‖g2‖2, we have

‖g2‖2 ≤ ‖Jh(w2)‖ ‖I + ∆‖ ·max
i∈[p]
‖C(xi)‖ ·max

i∈[p]

∥∥∥∥tanh

(
C(xi) (I + ∆)h(w1)

µ

)
− tanh

(
C(xi) (I + ∆)h(w2)

µ

)∥∥∥∥
2

≤ 1

µ
‖Jh(w2)‖ ‖I + ∆‖2 ·max

i∈[p]
‖C(xi)‖2 · ‖h(w1)− h(w2)‖2

≤ Cn3/2 log(np)

µ
‖w1 −w2‖2 ,

where the second line follows from a similar argument in (69), the last line follows from (66) and (67), which
holds with probability at least 1− (np)−8, and

‖h(w1)− h(w2)‖2 ≤ ‖w1 −w2‖2 +

∣∣∣∣ 1

hn(w2)
− 1

hn(w1)

∣∣∣∣ ≤ 9‖w1 −w2‖2,

following (95). Combining the bounds on ‖g1‖2 and ‖g2‖2 achieve the desired result.

D.4 Proof of Lemma 15
The proof follows a standard covering argument similar to the proof of Theorem 2 in Appendix B.4. To begin,
we need the following propositions, proved in Appendix D.4.1, D.4.2, and D.4.3, respectively.

Proposition 3. For any ξ0 ∈ (0, 1), θ ∈ (0, 1
3 ), k ∈ [n − 1], there exists some constant c1 such that when

µ < c1 min{θ, ξ1/6
0 n−3/4}, for any h ∈ Hk, we have

E∂fo(h)>
(
ek
hk
− en
hn

)
≥ θξ0

24
√

2π
.

Proposition 4. For any ξ0 ∈ (0, 1), θ ∈ (0, 1
3 ), k ∈ [n − 1], there exists some constant c1 such that when

µ < c1 min{θ, ξ1/6
0 n−3/4}, for any fixed h ∈ Hk, there exists some constant C such that for any t > 0

P
(∣∣∣∣∂fo(h)>

(
ek
hk
− en
hn

)
− E∂fo(h)>

(
ek
hk
− en
hn

)∣∣∣∣ ≥ t) ≤ 2 exp

(
−pt2

2Cn3 log n+ 2t
√
Cn3 log n

)
.
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Proposition 5. For any ξ0 ∈ (0, 1), θ ∈ (0, 1
3 ), k ∈ [n − 1], ∂fo(h)>

(
ek

hk
− en

hn

)
is L3-Lipschitz in the

domain Hk with

L3 ≤ max
i∈[p]

(√
5n

µ
‖C(xi)‖2 + 4n3/2 ‖C(xi)‖

)
.

We now continue to the proof of Lemma 15. In the subset Hk, for any 0 ≤ ε ≤ 2
√

n−1
n+ξ0

, we have an ε-net
N3 of size at most d3/εen, where ε will be determined later. Under the event (67) and Proposition 5, we have

L3 ≤
c10n

3/2

µ
log(np).

For all h ∈ Hk, there exists h′ ∈ N3 such that ‖h′ − h‖2 ≤ ε. By Proposition 5, we have∣∣∣∣∂fo(h)>
(
ek
hk
− en
hn

)
− ∂fo(h′)>

(
ek
h′k
− en
h′n

)∣∣∣∣ ≤ L3 ‖h′ − h‖2 ≤
c10n

3/2

µ
log(np)ε ≤ c1θξ0

3
,

which holds when ε ≤ cµθξ0
n3/2 log(np)

for some sufficiently small c. With this choice of ε, the covering number of
N3 satisfies

|N3| ≤ exp

(
n log

(
cn3/2 log(np)

µθξ0

))
.

Let A3 denote the event

A3 :=

{
max
h∈Hk

∣∣∣∣∂fo(h)>
(
ek
hk
− en
hn

)
− E∂fo(h)>

(
ek
hk
− en
hn

)∣∣∣∣ ≤ c1θξ0
3

}
.

Setting t = c1θξ0
3 in Proposition 4, by the union bound, A3 holds with probability at least

1− |N3| · 2 exp

(
−pt2

2Cn3 log n+ 2t
√
Cn3 log n

)
≥ 1− 2 exp

(
−c11pθ

2ξ2
0

n3 log n
+ n log

(
c10n

3/2 log(np)

µθξ0

))
≥ 1− 2 exp (−c12n) ,

provided p ≥ C n4 logn
θ2ξ20

log
(
n3/2 log(np)

µθξ0

)
. Finally, we have for all h ∈ Hk,

∂fo(h)>
(
ek
hk
− en
hn

)
=

[
∂fo(h)>

(
ek
hk
− en
hn

)
− ∂fo(h′)>

(
ek
h′k
− en
h′n

)]
+

[
∂fo(h

′)>
(
ek
h′k
− en
h′n

)
− E∂fo(h′)>

(
ek
h′k
− en
h′n

)]
+ E∂fo(h′)>

(
ek
h′k
− en
h′n

)
≥ −c1θξ0

3
− c1θξ0

3
+ c1θξ0 =

c1θξ0
3

.

D.4.1 Proof of Proposition 3

First, recall a few notation introduced in Appendix B.1. For x = Ω � z ∼iid BG(θ) ∈ Rn, we denote the
first n− 1 dimension of x, z and Ω as x̄, z̄ and Ω̄, respectively. Denote I as the support of Ω and J as the
support of Ω̄. For any k ∈ [n− 1] with hk 6= 0, by (74) and (32), we have

E∂fo(h)>
(
ek
hk
− en
hn

)
= E∇fo(h)>

(
ek
hk
− en
hn

)
= n · E∇ψµ(x>h)

>
(
ek
hk
− en
hn

)
, (96)

since the rows of C(x) has the same distribution as x ∼iid BG(θ). Further plugging in (34), we rewrite it as:

E∇ψµ(x>h)
>
(
ek
hk
− en
hn

)
= E

[(
ek
hk
− en
hn

)>
tanh

(
x>h

µ

)
x

]
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= E
[
tanh

(
x>h

µ

)
xk
hk

]
− E

[
tanh

(
x>h

µ

)
xn
hn

]
= EΩEz

[
tanh

(
x>h

µ

)
xk
hk

]
︸ ︷︷ ︸

I1

−EΩEz

[
tanh

(
x>h

µ

)
xn
hn

]
︸ ︷︷ ︸

I2

. (97)

Evaluating EΩ over Ωk, Ωn, and Ω̄\{k} sequentially, we can express I1, I2 respectively as:

I1 = θEΩ\{k}Ez

[
tanh

(
x>\{k}h\{k} + hkzk

µ

)
zk
hk

]

= θ(1 − θ)EΩ̄\{k}
Ez

[
tanh

(
x̄>\{k}w\{k} + hkzk

µ

)
zk
hk

]
︸ ︷︷ ︸

I11

+θ2 EΩ̄\{k}
Ez

[
tanh

(
x̄>\{k}w\{k} + hkzk + hnzn

µ

)
zk
hk

]
︸ ︷︷ ︸

I12

,

I2 = (1 − θ)EΩ\{k}Ez

[
tanh

(
x>\{k}h\{k}

µ

)
xn
hn

]
+ θEΩ\{k}Ez

[
tanh

(
x>\{k}h\{k} + hkzk

µ

)
xn
hn

]

= θ(1 − θ)EΩ̄\{k}
Ez

[
tanh

(
x̄>\{k}w\{k} + hnzn

µ

)
zn
hn

]
︸ ︷︷ ︸

I21

+θ2 EΩ̄\{k}
Ez

[
tanh

(
x̄>\{k}w\{k} + hkzk + hnzn

µ

)
zn
hn

]
︸ ︷︷ ︸

I22

.

Introduce the short-hand notation X1 = hkzk ∼ N (0, h2
k), Y1 = x̄>\{k}w\{k} + hnzn, X2 = hnzn ∼ N (0, h2

n),
Y2 = x̄>\{k}w\{k} + hkzk. Invoking Lemma 8, the difference of the second terms of I1 and I2 is

I12 − I22 = EΩ̄\{k}

[
EX1,Y1

(
tanh

(
X1 + Y1

µ

)
X1

h2
k

)]
− EΩ̄\{k}

[
EX2,Y2

(
tanh

(
X2 + Y2

µ

)
X2

h2
n

)]
=

1

µ
EΩ̄\{k}

[
EX1,Y1

(
1− tanh2

(
X1 + Y1

µ

))]
− 1

µ
EΩ̄\{k}

[
EX2,Y2

(
1− tanh2

(
X2 + Y2

µ

))]
= 0.

Consequently, we have

E∇ψµ(x>h)>
(
ek
hk
− en
hn

)
= θ(1− θ)(I11 − I21)

=
θ(1− θ)

µ
EΩ̄\{k}

Ez

[(
1− tanh2

(
x̄>\{k}w\{k} + hkzk

µ

))
−

(
1− tanh2

(
x̄>\{k}w\{k} + hnzn

µ

))]

≥ θ(1− θ)
µ

ξ0

16
√

2πn
=

θξ0

24n
√

2π
,

where the second line follows from Lemma 8, and the last line follows from (49) and θ ∈ (0, 1/3). Finally, we
have

E∂fo(h)>
(
ek
hk
− en
hn

)
= nE∇ψµ(x>h)>

(
ek
hk
− en
hn

)
≥ θξ0

24
√

2π
.

D.4.2 Proof of Proposition 4

We start by writing the directional gradient as a sum of p i.i.d. random variables:

∂fo(h)>
(
ek
hk
− en
hn

)
= ∇fo(h)>

(
ek
hk
− en
hn

)
=

1

p

p∑
i=1

tanh

(
C(xi)h
µ

)>
C(xi)

(
ek
hk
− en
hn

)
︸ ︷︷ ︸

Zi

, (98)

where the first equality is due to (74) and the second equality is due to (32). Moreover,

|Zi| ≤
∥∥∥∥tanh

(
C(xi)h
µ

)∥∥∥∥
2

∥∥∥∥ekhk − en
hn

∥∥∥∥
2

‖C(xi)‖ ≤
√
n

∥∥∥∥ekhk − en
hn

∥∥∥∥
2

‖C(xi)‖ ≤
√

5n ‖C(xi)‖ ,
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where the second inequality follows from | tanh(·)| ≤ 1 and the third inequality follows from (77). Therefore,
for any m ≥ 2, the moments of |Zi| can be controlled by Lemma 10 as

E |Zi|m ≤
(√

5n
)m

E ‖C(x)‖m ≤ m!

2

(
Cn3 log n

)m/2
.

The proof is then completed by setting σ2 = Cn3 log n, R =
√
Cn3 log n and applying the Bernstein’s

inequality in Lemma 7.

D.4.3 Proof of Proposition 5

Using (98), we have for any h,h′,∣∣∣∣∂fo(h)>
(
ek
hk
− en
hn

)
− ∂fo(h′)>

(
ek
h′k
− en
h′n

)∣∣∣∣
=

1

p

p∑
i=1

∣∣∣∣∣tanh

(
C(xi)h
µ

)>
C(xi)

(
ek
hk
− en
hn

)
− tanh

(
C(xi)h′

µ

)>
C(xi)

(
ek
h′k
− en
h′n

)∣∣∣∣∣
≤ 1

p

p∑
i=1

∣∣∣∣∣
[
tanh

(
C(xi)h
µ

)
− tanh

(
C(xi)h′

µ

)]>
C(xi)

(
ek
hk
− en
hn

)∣∣∣∣∣︸ ︷︷ ︸
Ai

+
1

p

p∑
i=1

∣∣∣∣∣tanh

(
C(xi)h′

µ

)>
C(xi)

[(
ek
h′k
− en
h′n

)
−
(
ek
hk
− en
hn

)]∣∣∣∣∣︸ ︷︷ ︸
Bi

,

where the second line follows by the triangle inequality. In the sequel, we’ll bound Ai and Bi respectively.

• To bound Ai, we have

Ai ≤
∥∥∥∥tanh

(
C(xi)h
µ

)
− tanh

(
C(xi)h′

µ

)∥∥∥∥
2

‖C(xi)‖
∥∥∥∥ekhk − en

hn

∥∥∥∥
2

≤
√

5n

µ
‖C(xi)‖2 ‖h− h′‖2 ,

where the second line follows from (69) and (77).

• To bound Bi, we have

Bi ≤
∥∥∥∥tanh

(
C(xi)h′

µ

)∥∥∥∥
2

‖C(xi)‖
∥∥∥∥(ek

h′k
− en
h′n

)
−
(
ek
hk
− en
hn

)∥∥∥∥
2

≤
√
n ‖C(xi)‖

√(
1

h′k
− 1

hk

)2

+

(
1

h′n
− 1

hn

)2

≤ 4n3/2 ‖C(xi)‖
√

(hk − h′k)
2

+ (hn − h′n)
2 ≤ 4n3/2 ‖C(xi)‖ ‖h− h′‖2

where the first line follows from | tanh(·)| ≤ 1, and the second line follows from hn, h
′
n ≥ 1/

√
n and

h2
n/h

2
k < 4, (h′n)2/(h′k)2 < 4.

Combining terms, we have∣∣∣∣∂fo(h)>
(
ek
hk
− en
hn

)
− ∂fo(h′)>

(
ek
h′k
− en
h′n

)∣∣∣∣ ≤ max
i∈[p]

(√
5n

µ
‖C(xi)‖2 + 4n3/2 ‖C(xi)‖

)
‖h− h′‖2 .
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