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Abstract
Throughout many fields of science, images are used to display information in a

relatable matter about objects which may not be directly visible. Instead, sensors
are used–beyond standard cameras–to capture measurements of the object. These
measurements are then processed to reconstruct an image of the object which created
them. This process of reconstructing the cause of the observed effects is known
as an inverse problem. In this thesis, algorithms are proposed for solving various
inverse problems in image reconstruction. These algorithms are then analyzed to
demonstrate their statistical and computational efficiency. The main through-line tying
these problems together is that the proposed solutions leverage inherent structural
information.

The thesis begins by demonstrating how to design effective spectral methods for
estimating an image from phaseless measurements given approximate knowledge
of the structure of the noise effecting the system. Next, an amplitude-based loss
function is proposed for solving a generalized matrix phaseless sensing problem and
algorithms are derived which reach a critical point of such a loss function. Continu-
ing, stochastic variance-reduction gradient techniques are applied to an algorithmic
framework for reconstructing an image known as Plug-and-Play (PnP) to achieve
faster computation times while maintaining high accuracy. The thesis closes by
analyzing how to reconstruct a large set of images when there exists a global structure
relating the images to each other. The methods presented in this thesis are applied
to phase retrieval, compressive sensing magnetic resonance imaging, and electron
back-scattered diffraction microscopy.
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Chapter 1

Introduction

This thesis ties together a breadth of topics applicable to inverse problems in imaging, rather

than tackling many challenges within a single imaging modality. In this chapter, we cover some

general background for understanding the work. Then, there are four chapters which investigate

inverse problems in image reconstruction. In general, each piece of work within this thesis is

tied together by a few core principles. First, we are interested in deriving algorithms which are

efficient in the sense that they do not require an extraneous amount of measurements or time for

arriving at accurate solutions. Secondly, we are interested in incorporating tools from statistics

and mathematics at large for making the most out of the finite resources available. These are ways

to tie these problems together beyond simply applying them to imaging inverse problems. Indeed,

the methodology presented in this thesis is generalizable beyond imaging to inverse problems as a

whole.

1.1 On Forward and Inverse Problems in Imaging

Scientists have extensively attempted to create mathematical models of different phenomena in

the world. With these models in hand, one can understand the cause and effect behind how the

world works. For example, from Newton’s laws of universal gravitation, one can calculate the

gravitational force between two objects by measuring their mass and the distance between them

1



[79]. This exemplifies the structure of a forward problem: given the state of the system from the

physical parameters that describe it (e.g. the mass of the two objects), we can predict the behavior

that we can observe (e.g. the gravitational force between the two objects).

The work in this thesis is concerned with solving inverse problems, which are the exact

opposite. An inverse problem in science is the process of calculating the factors which caused

a set of observations; the problem starts with the effects and then calculates the causes. Inverse

problems are some of the most important mathematical problems in science and engineering

because they tell us about parameters that we cannot directly observe. Related to the above, one

may wish to find the density of the Earth by comparing its volume to its weight. While we cannot

simply place the Earth on a scale, one may estimate the weight of the earth from the strength of

its gravitational fields.

This thesis is concerned with reconstructing an image from a set of measurements, i.e., finding

an image which caused the measurements (or effect) that one observes, in the same formulation as

an inverse problem described above. For an overview of various inverse problems in imaging, see

[9]. It should be emphasized that this work specifically does not propose new imaging techniques,

camera designs, or ways to utilize a certain imaging apparatus. Rather, this work is focused on

taking the measurements from an imaging system and reconstructing an image that represents

the object being imaged by the system. This is to say that we are focused on inverse problems,

not forward problems, which have already been (and, rightfully, continue to be) studied within

physics and other related disciplines.

While we typically think of capturing images with a handheld camera, the work of this thesis

is predominantly interested in reconstructing images of objects that cannot be directly observed.

Perhaps the object of interest is too small to be seen directly, or is occluded to the naked eye.

Nonetheless, understanding the structure visually may be useful for a trained professional to draw

exact conclusions. For example, a doctor is able to diagnose the presence of a tumor or a bone

fracture without an intrusive procedure to witness the abnormality directly. Rather, non-intrusive,

sophisticated imaging techniques can capture unobservable regions at a high enough resolution to

2



Figure 1.1: A visualization of the forward and inverse imaging problem “pipeline.” The blue box

denotes the forward problem, i.e. how the measurements are created. The orange box denotes the

inverse problem, i.e. reconstructing an image given the forward model and a set of measurements.

be conclusive.

In the recent past, techniques such as X-rays, ultrasounds, CT scans, and many others have

become common practices for medical diagnostics. As a case study, consider Magnetic Resonance

Imaging (MRI). MRI is a procedure which relies on magnetic fields and radio frequency waves

in order to produce detailed images of organs and bodily structures [25]. MRIs are novel—in

contrast to the imaging techniques listed above—in that they do not rely on forms of radiation

which may harm the patient if the exposure time is too long. This means that more time can

be spent to capture an MRI, which may be desirable (limitations are to be discussed shortly).

However, as we are capturing information that is not seen by the naked eye, we need to reconstruct

(the image of) the object’s structure which produced the measurements of magnetic resonance

that is observed at the MRI scanner.
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1.2 Understanding Complexity and Efficiency

A common motif of inverse problems in image reconstruction is that the accuracy and resolution

of the reconstructed image is proportional to the resources invested into collecting and processing

the measurements. However, many imaging systems may be prohibitively expensive—in terms of

monetary cost or time—such that a less-than-ideal number of measurements are taken. Nonethe-

less, one still desires to reconstruct a high fidelity image. Recalling MRI, the scanning process is

generally perceived as uncomfortable by patients. The scanning instrument can be quite noisy,

and the patient must lay still within a tube, resulting in a claustrophobic experience. This can be

especially difficult for children, for example, and relying on them to remain still for the entire

duration becomes unreasonable. A scan may take upwards of 90 minutes to capture, depending

on the region’s size and the number of measurements required to be taken [100]. Therefore, we

would like to minimize the number of measurements needed to produce a quality image.

Keeping the above relationship between cost and accuracy in mind, this thesis explores

algorithms and procedures for reconstructing accurate images within certain constraints. We will

now outline the background information necessary to quantify how efficient a method is in order

to adequately compare the proposed method to the current state-of-the-art. We propose data- and

physics-driven solutions for processing the measurements captured from a sensing or imaging

device in order to reconstruct an image. With this in mind, we propose algorithms based upon

optimization and statistical modeling that improve upon this sense of efficiency.

For a given inverse problem, we seek ways of comparing algorithms in order to determine

which one is more efficient. Suppose that we seek an algorithm which is able to reconstruct an

image with an estimate up to a certain level of accuracy. Building off the intuition provided in the

Section 1.1, there are two traits of an algorithm that are desirable. We formally define two notions

of complexity necessary for understanding the efficiency of an algorithm.

Definition 1.2.1 (Computational Complexity). The computational complexity of an algorithm

is the amount of time required to generate an estimate which reconstructs the image with some

measured accuracy.
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Definition 1.2.2 (Statistical Complexity). The statistical complexity of an algorithm is the amount

of measurements required (often as a ratio compared to the dimensions of the image) to generate

an estimate which reconstructs the image with some measured accuracy.

We are interested in algorithms which obtain an accurate image with minimal computational

and statistical complexity. In general, there are two key metrics which will be used to determine

the accuracy to which the estimate x̂ reconstructs the ground truth image x?. The first metric

is concerned with directly comparing the two objects. A common choice is to utilize a distance

metric such as the `2 norm difference between the two objects. This is related to the well-known

metric Mean Squared Error (MSE), defined as,

MSE = ‖x? − x̂‖2
2. (1.1)

Additionally interested is the Normalized MSE (NMSE), i.e., the quotient of the MSE and

the squared `2 norm of the ground truth image. For determining the accuracy in an image

reconstruction problem, one key metric of interest is known as the Peak Signal-to-Noise Ratio

(PSNR) defined (in decibels) as follows,

PSNR = −10 · log10 (MSE) dB. (1.2)

Note that this definition of PSNR makes the assumption that the maximum index value possible is

1. Generally speaking, a higher PSNR indicates that the reconstruction is of higher quality.

1.3 Solving Nonlinear Inverse Problems

When looking to solve an inverse problem in imaging, we will universally adopt the following

framework:

Given measurements and a forward model known a priori, reconstruct an image of interest, by

leveraging domain knowledge when available.

Formally, we are given a set of measurements m measurements, {yi}mi=1, where yi ∈ C,∀i ∈
[m]. Each measurement yi is observed through a known forward model, Ai : Rn 7→ C. Addition-
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ally, each measurement is assumed to be effected by some noise, {εi}mi=1, where εi ∈ C, ∀i ∈ [m].

Thus, our goal is to reconstruct an image of interest with n pixels, x? ∈ Rn, according to the

signal model,

yi = Ai(x?) + εi, for all i = 1, · · · ,m. (1.3)

Alternatively, it is often convenient to pose the signal model in matrix form. Let y =

[y1, · · · , ym]> , A : Rn 7→ Cm represent the set of forward models for each measurement,

and ε = [ε1, · · · , εm]> . Then, we can adopt the signal model,

y = A(x?) + ε. (1.4)

Thus, the goal to is to reconstruct the image, x?, from the set of measurements, y, using our

knowledge of the structure of the forward model, A.

1.3.1 Leveraging Structures for Improving Efficiency

As alluded to earlier, we often operate in non-ideal regimes when solving inverse problems in

imaging. Consider a simple example, where the forward model is a linear mapping. Basic intuition

from linear algebra tells us that in order to solve a system of equations with n unknowns, we

need at least n equations. This corresponds to a regime where the number of measurements is

at least equal to the number of pixels within the image. However, the expectation to receive as

many measurements is often ludicrous in practice. This leads us to look for deeper mathematical

structures within the data, sensing models, and measurements that we can leverage when designing

and implementing algorithms for image reconstruction.

Indeed, one can look towards the field of compressive sensing [17, 35] for an excellent example

of leveraging structural information to solve inverse problems in under-sampled regimes. In a

nutshell, consider a scenario where a general n-dimensional object can be accurately represented

with a smaller number of dimensions s � n. When this is the case, one can leverage this

information to accurately reconstruct the object of interest in a regime where the number of

measurements is less than n by utilizing knowledge of the latent s-dimensional structure. This
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Figure 1.2: Visualizing impact of exploiting lower dimensional structure in reconstructing MRI

scans. On the left, is an example of a reconstructed image when a naive linear regression method

is used. On the right, is the result when sparsity is leveraged during reconstruction. Fine details

are identified with white arrows. Figure credit: [41].

led to the development of many algorithms which incorporate a regularization function within

our optimization formulation to exploit this lower-dimensional, “sparse,” structure. Motivated by

this train of thought, the algorithms proposed within this thesis will look to exploit other familiar

notions of structure within the problem formulation. An example of exploiting lower dimensional

structure for reconstructing MRI images is shown in Figure 1.2.

1.3.2 An Optimization Approach

With a signal model in hand, we can define an optimization problem for reconstructing an image

from an inverse problem, bearing in mind our goal of enforcing structure within the reconstructed

estimate which is consistent with our domain knowledge. Dependent on the forward model,

one can handcraft a function ` : Rn 7→ R which quantifies the efficacy of an estimated image

based upon the system model and measurements received. Additionally, we can tailor a function

g : Rn 7→ R which captures how consistent our estimate is with our assumed structural knowledge.
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Ideally, our goal would be to find an image x̂ ∈ Rn such that `(x̂) ≤ `(x) and g(x̂) ≤ g(x) for

all x ∈ Rn. In reality, satisfying both functions ` and g is typically an unreasonable goal, and we

look to reconstruct an image which balances the requirements of both functions. In short, we aim

to solve the problem,

x̂ = arg min
x∈Rn
{`(x) + λg(x)}, (1.5)

where λ > 0 is a non-negative real number which dictates the amount of regularization enforced.

While many algorithms and procedures exist for solving optimization problems of the

form (1.5), a common choice which is studied in this thesis is to utilize gradient-based meth-

ods [84]. To start, consider the function ` on its own. Our goal is to find a critical point of the

function ` which is more specifically a (globally) minimum point. It is well-known in calculus

that the gradient at a critical point of a function is equal to 0. Additionally, at any given point x,

the gradient of the function will provide the direction of the steepest descent towards a critical

point. Given a function `, we can carefully choose some initial point x0 and calculate the gradient

at that point and update our estimate by moving along the gradient to a new point. We iteratively

update our estimate a fixed number of times to obtain our final estimate x̂. A brief description of

gradient descent follows as,

xt+1 = xt − η∇`(xt), t = 0, · · · , T. (1.6)

Here,∇`(xt) is the gradient of the function ` at the current iterate xt, and η > 0 is a non-negative

number known as the learning rate, which determines how far we travel in the direction determined

by the gradient.

Bringing g into play, additional measures are necessary to ensure that the estimate is consistent

with both the observed measurements and our domain knowledge. One common choice is to

consider a proximal operation [7]. On an intuitive level, the goal of a proximal operator is to find

an estimate which minimizes some function—e.g., g—that is also within the proximity of the

input estimate. Mathematically, the proximal operator is defined as an optimization problem itself,
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as,

proxλg(v) = arg min
x∈Rn

{
‖v − x‖2

2 + λg(x)
}
. (1.7)

Many choices of g yield closed-form solutions for the proximal operator. Combining the gradient

update with respect to ` with the proximal update with respect to g, we arrive at the update rule

for proximal gradient descent, i.e.,

xt+1 = proxλg (xt − η∇`(xt)) , t = 0, · · · , T. (1.8)

1.4 Summary of Contributions

As we’ve seen through this introductory chapter, there are many pieces to the puzzle when it comes

to designing an efficient algorithm for image reconstruction. First, we need to understand the

domain knowledge of how our measurements are collected and what types of structures exist in the

signals that we are measuring. Then, we need to pick an optimization function to solve and analyze

the structure or geometry of this objective function. Additionally, we need to understand how to

enforce the structural information that we know exists within a chosen algorithmic framework.

Finally, we need to keep in mind that we are often interested in reconstructing a set of images

rather than only a single instance. The work in this thesis brings insight to each of these notions

of structure.

The thesis begins by examining how to mitigate the effects of system noise on reconstruction

quality of a (vectorized) image from phaseless quadratic measurements. In reference to the signal

measurement model (1.4), it is generally understood that noise in our system negatively impacts

our ability to accurately reconstruct an image. Therefore, it makes sense to attempt to estimate the

level of noise in the measurements and run a preprocessing step. Given accurate knowledge of the

nature of the noise (e.g. the noise follows a certain probability distribution), one may develop a

so-called “optimal” preprocessing function in an asymptotic, information theoretic sense. That

being said, if we presume some noise structure and the true nature of the noise deviates from

our assumption, preprocessing become detrimental. In Chapter 2, we analyze the structure of
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Figure 1.3: The accuracy of three different preprocessing functions as the sampling complexity

is increased. The precise sampling ratios where a non-zero accuracy is obtained are highlighted

with the cyan circles.

different types of noise in order to understand the benefits and drawbacks of utilizing potentially

mismatched preprocessing functions. The efficiency of the preprocessing functions are determined

by the sampling ratio required to obtain a certain level of accuracy, which is directly related to the

sampling complexity. In Figure 1.3, we provide a simplified graph which demonstrates the desired

level of accuracy when utilizing the correct preprocessing function for noisy measurements in

comparison to suboptimal choices.

In Chapter 3, we consider the problem of recovering tall matrix from a set of phaseless

quadratic measurements. As we discussed in motivating the optimization problem formulation

in (1.5), it is important to consider the geometry of the chosen function, `(·). We demonstrate

that the choice of `(·) with a more favorable curvature can impact both the convergence speed

to an estimate and the number of measurements required in order to obtain an accurate estimate.

We analyze the structure of a popular intensity-based loss function in comparison to a proposed

amplitude-based loss function. The amplitude-based loss function is shown to have a more

desirable geometry that allows for steeper descent paths. Algorithms using this choice of loss

function are demonstrated to be more efficient in terms of both computational and statistical
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CS-MRI Example Image Reconstruction

noise level of � = 5, observe 50% of the Fourier coe�cients, limit run-time
to 200 seconds

32 / 51

Figure 1.4: A demonstration of the improved efficiency that our proposed algorithm, PnP-SVRG,

has over PnP-SGD, in terms of the PSNR of the reconstructed MRI within a fixed period of

runtime.

complexity.

Moving forward, we investigate how to incorporate stronger notions of prior knowledge

of images within the optimization framework. A popular image reconstruction algorithmic

framework known as Plug-and-Play (PnP) has demonstrated the ability to leverage image denoisers

to enforce “image-like” structure in a reconstructed signal. Previous work demonstrated how

to incorporate the PnP framework into a stochastic gradient descent algorithm, (PnP-SGD). In

Chapter 4, we demonstrate how to obtain the improved computational efficiency of variance-

reduced gradient methods within the Plug-and-Play framework, while maintaining the same image

reconstruction accuracy. The efficacy of PnP-SVRG is applied to an MRI application as well

as the problem of phase retrieval. Some example MRI reconstruction results are displayed in

Figure 1.4.

In many practical applications, we are not only interested in solving one instance of (1.4),

but rather a set of such instances. While it is possible to process each instance in parallel, we

look to improve by understanding structural knowledge present between any pair of instances.

We demonstrate that when we are given a large set of related images to analyze, we are able

to leverage similarities between ground truth images by introducing graph structures. This

proposed methodology is demonstrated to be particularly useful in the context of indexing a set

of electron back-scattered diffraction patterns obtained from a scanning electron microscope, as
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diffraction patterns captured at points within the same grain boundary will be identical. In the

work discussed in Chapter 5, we demonstrate how to use graph structures to tie together the set of

image reconstruction tasks.

Before moving into the body of this thesis, it is worth noting the role of image reconstruction

within the world of computational imaging as a whole. The field of computational imaging can be

understood with the help of the MRI example described above; some computation is necessary to

go from the measurements that we collect (e.g. from a MRI scanner) to actual image visualization

(e.g. the MRI image) for future tasks. A key part of this pipeline that is not addressed directly

in this thesis is the tasks that are then done after the image is reconstructed. For example, we

described that a doctor with a well-trained eye may be able to discern the presence and nature of a

tumor within a patient’s brain. However, another key component of computational imaging are

tasks of computer vision, i.e., automatically detecting or predicting whether a tumor is present in

an image without exterior knowledge from a doctor or human in general. While these problems

are also important and interesting, they are beyond the scope of this thesis.

1.5 Thesis Organization and Notation

The thesis begins by demonstrating how to design effective spectral methods for estimating

an image from phaseless measurements given approximate knowledge of the structure of the

noise effecting the system in Chapter 2. Next, in Chapter 3, an amplitude-based loss function is

proposed for solving a generalized matrix phaseless sensing problem and algorithms are derived

which reach a critical point of such a loss function. Continuing, stochastic variance-reduction

gradient techniques are applied to an algorithmic framework for reconstructing an image known

as Plug-and-Play (PnP) is presented in Chapter 4 to achieve faster computation times while

maintaining high accuracy. The thesis closes by analyzing how to reconstruct a large set of images

when there exists a global structure relating the images to each other in Chapter 5. The methods

presented in this thesis are applied to phase retrieval, compressive sensing magnetic resonance

imaging, and electron back-scattered diffraction microscopy.
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Throughout the thesis, we use boldfaced symbols to represent vectors and matrices. The

symbols R and C denote the set of real and complex numbers, respectively. For any vector v, we

let ‖v‖2 denote the `2 norm, and let vH indicate the conjugate transpose. For any matrixM , we

let ‖M‖F denote the Frobenius norm. In addition, we useMH andM † to indicate the conjugate

transpose and the pseudo-inverse of M , respectively. The diagonal matrix with the diagonal

entries given by the vector v is denoted as diag(v). We use Q(x) to represent the tail distribution

function of the standard normal distribution, i.e. Q(x) =
∫∞
x

1√
2π

exp(−z2/2)dz. Given two

vectors x,y ∈ Cn, 〈x,y〉 =
∑n

i=1 xiy
∗
i . We let Ex{·} denote taking the expectation with respect

to a random variable x. We use � to denote the Hadamard product.
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Chapter 2

Spectral Methods for Noisy Phase Retrieval

The spectral method is an important approach for signal estimation that is often used as an

initialization to iterative methods as well as a stand-alone estimator, where the signal is estimated

by the top eigenvector of certain carefully-constructed data matrix. A recent line of work has

characterized the asymptotic behavior of such data matrices used in spectral methods, which

reveals an interesting phase transition phenomenon: there exists a critical sampling threshold below

which the estimate of the spectral method is uninformative. Furthermore, optimal preprocessing

functions are developed to minimize this critical sampling threshold. In particular, most of the

existing work is focused on the noiseless phase retrieval problem. In this chapter, our goal is to

examine the sensitivity of such optimal preprocessing functions in noisy phase retrieval, when

there is a mismatch between the noise model used in deriving the optimal preprocessing function

and the actual noise model in practice. Our results provide important insights into the choice of

preprocessing functions in spectral methods.
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2.1 Introduction

Consider the problem of estimating an n-dimensional vector x? ∈ Cn from a set of m generalized

linear measurements of the form

yi ∼ p(y | 〈ai,x?〉), i = 1, 2, ...,m, (2.1)

where p(· | ·) is a known conditional probability density that describes how the measurements are

obtained, {ai}mi=1 is an ensemble of sensing vectors, and 〈·, ·〉 is the inner product. The spectral

method [22, 28, 62] is a popular approach for estimating x?, where it is estimated via the top

eigenvector (up to scaling) of a carefully constructed data matrix that is a sum of rank-one matrices

aia
H
i , each weighted by the corresponding measurement yi, or a function T (yi) of it. The spectral

method can either be used as a stand-alone estimator or as the initialization of a more sophisticated

method. For example, for the celebrated phase retrieval problem, the spectral method can be used

to initialize a nonconvex iterative method such as gradient descent or alternating minimization

[15, 20, 68, 78, 105, 109, 110] or provide an anchor vector to a convex linear program such as the

Phasemax [4, 46].

Recently, a few works [66, 76] studied the asymptotic performance of the spectral method

under the Gaussian design, where the sensing vectors are generated with i.i.d. standard complex

Gaussian entries, in the regime where both m and n go to infinity with a fixed sampling ratio,

α =
m

n
. (2.2)

It not only provides a precise characterization of the performance of the spectral method, but also

reveals an interesting phase transition phenomenon: there exists a critical sampling ratio threshold

such that below which the estimate of the spectral method is uninformative, i.e., it is orthogonal

to the ground truth signal. Moreover, [76] provides formula for an optimal preprocessing function

T (yi) to minimize this critical sampling threshold.

The goal of this chapter is to study the sensitivity of spectral initialization under model

mismatch, when the actual signal model in practice is different from the one used to derive the
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optimal preprocessing function. This is of great relevance in practice, since typically the model is

only imperfectly known, and may change during deployment. Therefore, it is necessary to see if

the performance of the preprocessing functions are robust to model mismatch.

The work presented in Chapter 2 was published in IEEE ICASSP 2019 [73]. We demonstrate

the impact of model mismatch on the performance of preprocessing functions that are derived

for specific noise models. In order to reach this goal, we consider the problem of recovering

an n-dimensional complex signal from m quadratic measurements, known as phase retrieval,

which is also studied in [66, 76] for the noiseless setting. In contrast, we consider the noisy

setting, where the measurements are corrupted by either additive white Gaussian noise (AWGN)

or Poisson noise. We first derive optimal preprocessing functions using the formula provided

in [76], and characterize how the critical sampling threshold varies as a function of the noise

level. Furthermore, through both empirical experiments and theoretical analyses, we examine

the performance of the preprocessing functions when the noise level of the measurements are

different from the one used in the derivation, which suggest some preprocessing functions are

more sensitive to model perturbations.

2.1.1 Related Works

Though we use phase retrieval as an example, the spectral method has been applied to many statis-

tical estimation problems such as low-rank matrix estimation [27, 56, 99], blind deconvolution

[68], subspace estimation [26], to name a few. Many regularized variants of the spectral method

have been proposed to improve its performance, which typically apply truncation or trimming

to remove measurements that have high leverage [19, 20]. The asymptotic performance of the

spectral method is analyzed first in [66] and then [76] for generalized linear models.

Before continuing, it is worth emphasizing the critical role of initialization in nonconvex

statistical estimation. For several problems such as phase retrieval [91], low-rank matrix sensing

[10] and completion [44], it is shown that with high probability, there are no spurious local

minima in the landscape of the loss function except strict saddle points. Therefore, gradient
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descent with random initialization converge to the global optima almost surely for such problems

[60], however the iteration complexity can be very high. In contrast, an optimally designed

spectral initialization can provably land in a local basin of attraction near the ground truth [15],

leading to faster convergence.

2.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 2.2 presents the signal model, and provides

key metrics and backgrounds. Section 2.3 presents the optimal preprocessing functions derived

for different noise models in phase retrieval. Section 2.5 provides numerical experiments to study

the noise sensitivity of different preprocessing functions. Finally, we conclude in Section 2.6.

2.2 Backgrounds

In this section, we present the signal model for noisy phase retrieval, define key metrics and

review the phase transition phenomenon as well as the design of optimal preprocessing functions

in [66, 76] for the spectral method.

2.2.1 Signal Model and Important Definitions

We consider the problem of recovering an n-dimensional signal x? ∈ Cn from m intensity

(quadratic) measurements in the presence of noise, where each measurement yi is collected

according to

yi ∼ p(y | |〈ai,x?〉|2), i = 1, 2, ...,m. (2.3)

The set of known sensing vectors ai is independently drawn from a complex Gaussian distribution,

namely ai
i.i.d.∼ N (0, 1

2
In) + jN (0, 1

2
In), where In is the identity matrix of size n. Let α = m/n

be defined as the sampling ratio. Furthermore, p(·) specifies some noise distribution such as

additive white Gaussian noise (AWGN), or Poisson noise.
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The spectral method first constructs a data matrix

D =
1

m

m∑
i=1

T (yi)aia
H
i , (2.4)

where T : R −→ R is a deterministic function which we refer to as a preprocessing function.

With spectral initialization, we take the top eigenvector x̂ ∈ Cn ofD as the initialization1. The

intuition behind the spectral initialization is that, if we let m → ∞, the top eigenvector of D

perfectly recovers x? up to scaling. In practice, it is desirable to carefully design the preprocessing

function so that x̂ is as close as possible to x? when it is calculated using a finite number of

measurements. Thus, we wish to carefully design preprocessing functions that leverage our

knowledge of the measurement model (2.3) in order to obtain a desirable initialization.

We study the regime wherem→∞ and n→∞, but their ratio tends to a positive constant, i.e.

m/n→ α. The two metrics we will consider to determine the success of a preprocessing function

are the cosine-squared similarity between the ground truth vector x? and the top eigenvector x̂ of

the data matrixD:

ρ(x̂,x?) =
|〈x̂,x?〉|2
‖x̂‖2

2 ‖x?‖
2
2

, (2.5)

and the sampling threshold,

αu = argmin
α∗

{
∀α > α∗, lim inf

m→∞
Ey {ρ(x̂,x?)} > 0

}
, (2.6)

the minimum sampling threshold required to have a non-zero cosine-squared similarity.

By analyzing the asymptotic characterization of the spectral method, one can derive the

behavior of the cosine-squared similarity as a function of the sampling ratio. The cosine-squared

similarity 0 ≤ ρ(x̂,x?) ≤ 1 gives us a measure of how aligned our estimate is with the ground

truth, by specifying the correlations between these two vectors. In [66], Lu and Li provided

precise asymptotic predictions of the cosine-squared similarity as a function of the sampling

threshold α and the distribution p(·). These predictions highlight the existence of a phase transition

phenomenon, such that there exists a sampling threshold αu that determines the effectiveness of
1The norm ‖x?‖2 can be estimated easily, for example using the average of the measurements, which is not the

focus here.
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the spectral method. When the sampling ratio α is below the threshold α < αu, we have ρ = 0

and the spectral method is uninformative; and when α > αu, we have ρ bounded away from 0,

and the spectral estimate can be computed efficiently via the power method. The precise form

of ρ(x̂,x?) with respect to α is derived in [66] for generalized linear models including phase

retrieval.

2.2.2 Optimal Preprocessing Functions

The results in [66] suggest that the performance of spectral initialization can be drastically different

using different preprocessing functions. In [76], an optimal preprocessing function was proposed

to optimize the sampling threshold, so that it obtains the minimum sampling threshold and the

best cosine-squared similarity for all sampling ratios. In [67], Luo et. al. constructed an optimal

design of spectral methods that is uniformly optimal for all sampling ratios. We present Theorem

1 from [67] below.

Theorem 1 (Theorem 1 from [67]). Let x? ∈ Cn, {ai}mi=1 be a known sensing vector ensemble,

and yi ∼ p(y | |〈ai,x?〉|2). Define s = 〈ai,x?〉. Then the optimal preprocessing function for a

pair of sensing vectors and noise distribution is given by

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

. (2.7)

Furthermore, the sampling threshold can be derived as

αu =

(∫
R

Es {p(y | |s|)(1− |s|2)}
Es {p(y | |s|)}

)−1

. (2.8)

This theorem is very useful for obtaining optimal preprocessing functions for a given measure-

ment ensemble (2.3). In [76], an optimal preprocessing function was derived for the noiseless

phase retrieval problem, given as T (y) = 1 − 1/y, with a corresponding sampling threshold

αu = 1.
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2.3 Optimal Preprocessing Functions for Noisy Phase Re-

trieval

We proceed to present the optimal preprocessing functions for the cases where the measurements

are contaminated by AWGN and Poisson noise in phase retrieval (2.3), as well as the corresponding

theoretical sampling threshold, which were not considered in [76]. All proofs and derivations

can be found in Appendix A. In Propositions 1 and 2, the preprocessing functions and sampling

thresholds are obtained using (2.7) and (2.8), respectively, by plugging in the relevant probability

distribution and sensing vector model.

Proposition 1 (AWGN, Complex Gaussian Sensing Vectors). Consider the set up described in

Theorem 1, where ai
i.i.d.∼ N (0, 1

2
In) + jN (0, 1

2
In) and p(y | |〈ai,x?〉|2) ∼ N (|〈ai,x?〉|2, σ2).

Then the optimal preprocessing function is given as

Tσ(y) = 1−

y − σ2 +

√
σ2

2π

exp
(
− (y−σ2)2

2σ2

)
Q
(
− (y−σ2)

σ

)
−1

, (2.9)

and the corresponding sampling threshold is

αu =

(
1− σ2 − σ4 +

σ3e−σ
2/2

2π

∫ ∞
−∞

exp (−σu− u2)

Q(−u)
du

)−1

. (2.10)

It is evident that both the optimal preprocessing function and the sampling threshold depends

on the noise level σ2 in a nonlinear manner. Figure 2.1 shows the optimal preprocessing function

Tσ(y) with respect to y for varied noise levels. For smaller measurements, i.e. 0 < y < 1,

the preprocessing function maps the measurements to a wide range of negative values; as the

value of the measurement continues to increase yi > 1, the preprocessing functions maps the

measurements to the range (0, 1). When there is no noise σ2 = 0, this recovers the optimal

preprocessing function introduced in [76], that is T0(y) = 1− 1/y. At we increase the noise level,

the dynamic range of the Tσ(y) also decreases.

Proposition 2 (Poisson Noise, Complex Gaussian Sensing). Consider the set up described in

Theorem 1, where ai
i.i.d.∼ N (0, 1

2
In) + jN (0, 1

2
In) and p(y | |〈ai,x?〉|2) follows a Poisson
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Figure 2.1: The optimal preprocessing function Tσ(y) with respect to the measurement value y

for noisy phase retrieval with AWGN under different noise levels σ2 = 0, 0.2, 1, and 5.

distribution with rate |〈ai,x?〉|2. Then the optimal preprocessing function is given as

T (y) =
y − 1

y + 1
. (2.11)

The sampling threshold is αu = 2.

Similar to the AWGN case, the optimal preprocessing function for Poisson noise maps

smaller measurements to a wider range of values (in a relative sense), while mapping larger

measurements to values approaching 1 as y → ∞, similar to a simple truncation scheme. For

example, y ∈ {0, 1, ..., 5} maps to a range of −1 ≤ T (y) ≤ 2
3
, while for yi ≥ 6, 5

7
≤ T (y) < 1.

Additionally, notice that the sampling threshold for Poisson noise is 2, in contrast to the sampling

threshold in the AWGN case, which can approach 1 when the noise goes to zero. In comparison,

to achieve the same sampling threshold, processing the Poisson noise is about the same as AWGN

at σ2 ≈ 1.34.
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Figure 2.2: We visualize the effect that noisy measurements have on the quality of the spectral

estimate when preprocessing functions are not used. On the far left is the original image. In the

middle is the spectral estimate when there is no noise added to the phaseless measurements. In

the last column is the spectral estimate when additive white Gaussian noise with variance σ2 = 5

is added to each phaseless measurement.

2.4 Qualitative Effect of Preprocessing Functions

In this section, we visualize the effects of utilizing preprocessing functions in generating spectral

estimates of a 64× 64 pixel image from phaseless measurements. For each experiment, let the

total dimensions n = 4096, and the number of measurements m = 10n. Measurements are then

drawn according to (2.3). When preprocessing functions are used, they are derived with respect to

the definition presented in (2.7).

In the first experiment, we analyze the effect that additive white Gaussian noise has on the

fidelity of the spectral estimate in the case when no preprocessing functions are used. Referring

to Figure 2.2, we visualize the accuracy of the spectral estimate in the case where no additive

noise is present in the phaseless measurements, and the case when additive white Gaussian noise

with variance σ2 = 5 has been added to each of the m measurements. Since this experiment is

in a regime where the number of measurements is relatively small, one should not expect the

spectral estimate to be particularly accurate–it is meant to be used as an initial point or as an

anchor, after all. However, one can make out basic features within the image such as the outline

of the cameraman. These details within the image are less prevalent when noise is added to
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Figure 2.3: We visualize the effect that preprocessing functions have on improving the recon-

struction of the image in case of noisy, phaseless measurements. On the far left is the original

image. In the middle is the spectral estimate when a preprocessing fucntion is not used. In the last

column is the spectral estimate when the optimal preprocessing function, T5(·), is used given the

noise model.

the measurements. This demonstrates the necessity of using preprocessing functions when the

phaseless measurements are corrupted by noise.

As shown in Figure 2.3, we demonstrate the effectiveness that utilizing preprocessing functions

has in the case when the phaseless measurements are noisy. The middle image of Figure 2.3 is the

same as the final image in Figure 2.2, i.e. the spectral estimate without the use of preprocessing

functions. In comparison with the final image of Figure 2.3, one can see that when the optimal

preprocessing function with respect to the noise model, i.e., T5(·), is used, we are once again able

to recover some key features of the cameraman within the image. Indeed, this visual improvement

is reflected in the spectral estimate having higher correlation with the ground truth image.

Finally, we visualize the scenario where there is a mismatch between the true noise model and

the preprocessing function used. In Figure 2.4 we compare the quality of the spectral estimate

when the matching optimal preprocessing function, T5(·), is used, to the quality when using T1(·).
In this case, the noise level has been underestimated, leading to a model-mismatch. Evidentally,

utilizing the incorrect preprocessing function can lead to more harm than good. When comparing

the final images in Figure 2.2 and Figure 2.4, the spectral estimate when using the incorrect

preprocesing function as poor as the spectral estimate when no preprocessing function is used.
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Figure 2.4: We visualize the effect of using the wrong preprocessing function. On the far left is

the original image. In the middle is the spectral estimate when the optimal preprocessing function,

T5(·), is used, while the last column is the spectral estimate when incorrect preprocessing function,

T1(·), is used.

2.5 Sensitivity Studies via Numerical Experiments

In this section, we provide numerical experiments that demonstrate the sensitivity to model

mismatch of the preprocessing function performance, focusing on the cases of AWGN and

Poisson noise for noisy phase retrieval. Imagine one applies the optimal preprocessing function

designed for a postulated measurement model, while the actual measurement noise is different

from the postulated one. This situation is highly relevant in practice, since we either do not have

perfect knowledge of the model. We will examine the sensitivity of both the sampling threshold

and the cosine-squared similarity under model mismatch.

For all experiments, the sensing vectors ai are identically and independently distributed as

complex Gaussian vectors, i.e. ai
i.i.d.∼ N (0, 1

2
In) + jN (0, 1

2
In), for i = 1, ...,m. For the cosine-

squared similarity curves, we refer to “trimming” as the preprocessing function where T (y) =

min(y,K) for some constant K. For testing the empirical performance of each preprocessing

function, we run 8 Monte Carlo experiments, where the signal dimensions are fixed to n =

1024. We note that as the signal dimension increases, the empirical curve becomes closer to the

theoretical curve. The theoretical curves for the cosine-squared similarity are obtained following

the derivations from [66].
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Figure 2.5: The sampling threshold αu with respect to the true AWGN noise level σ2
r for a pre-

processing function designed to be optimal for a postulated noise level σ2
f = 0.2, 0.5, 1, 2, 3, 5, 7,

respectively. The sampling threshold of the adaptive preprocessing function corresponds to (2.10)

when σ2
f = σ2

r .

2.5.1 Sensitivity of Sampling Thresholds

We start by investigating the sampling threshold of the optimal preprocessing functions in AWGN

for noisy phase retrieval. We assume that a fixed preprocessing function is used to process the

measurements, designed for a postulated noise level σ2
f , while the true noise level is set at σ2

r .

Figure 2.5 plots the sampling threshold of the preprocessing function with respect to the true noise

level, when it is designed with respect to different postulated noise level σ2
f = 0.2, 0.5, 1, 2, 3, 5,

and 7. In addition, Figure 2.5 also plots the sampling threshold in (2.10) corresponds to the

case when the postulated noise level in the preprocessing function matches with the true noise

level, dubbed as the adaptive AWGN preprocessing function. Clearly, the adaptive AWGN

preprocessing function where σ2
f = σ2

r serves as a lower bound of the minimal sampling threshold.
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ity of each preprocessing function with respect to the sampling ratio under AWGN with σ2
r = 0.5.

The Optimal AWGN curve postulates σ2
f = σ2

r = 0.5, whereas the Mismatch AWGN curve

assume σ2
f = 5.

It is interesting to observe that when the mismatch level is small, the deviation in the sampling

threshold is also relatively small. However, the performance can be drastically worse when the

mismatch level is high.

2.5.2 Sensitivity of Cosine-Squared Similarities

Next, we examine the sensitivity of cosine-squared similarities over a wide range of the sampling

ratio in both AWGN and Poisson noise. In Figure 2.6, we examine the empirical and theoretical

performance of the optimal AWGN preprocessing function in the presence of AWGN with true

noise level σ2
r = 0.5 as the sampling ratio increases. The AWGN preprocessing function where

σ2
f = σ2

r outperforms the other in terms of achieving the theoretical sampling ratio threshold
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as well as the overall cosine-squared similarity performance. Compared with the mismatched

AWGN preprocessing function where σ2
f = 5, the trimming preprocessing function obtains a

smaller sampling ratio threshold, but the overall cosine-squared similarity does not increase at the

same rate as the mismatched AWGN preprocessing function. Therefore, one may not determine

the performance of the spectral method based only on the sampling threshold. The performance

of the vanilla spectral initialization without preprocessing is much worse with more variability.

Lastly, we test the performance of preprocessing functions derived for different noise models in

the presence of Poisson noise in Figure 2.7. The optimal preprocessing function for Poisson noise

obtains the optimal sampling ratio threshold and outperforms the other preprocessing functions

also in terms of the cosine-squared similarity. The AWGN preprocessing function with σ2
f = 0.5

performs nearly as well as the sampling ratio increases, but does not obtain the optimal sampling

ratio threshold.
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2.6 Conclusion

We studied the sensitivity of optimal preprocessing functions in spectral methods when there is a

mismatch between the theoretical model and the practical model. Using noisy phase retrieval as a

case study, we derived the optimal preprocessing functions under both Gaussian noise and Poisson

noise, and further compared their performances under model mismatch. In the future, it would be

interesting to analyze the benefits of preprocessing functions for more noise models and for other

sensing vector formulations beyond the random Gaussian design. Additionally, investigating the

generalization of preprocessing functions to vector signals to matrix signals would be beneficial.
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Chapter 3

Solving Quadratic Equations via

Amplitude-Based Nonconvex Optimization

In many signal processing tasks, one seeks to recover an r-column matrix objectX ∈ Cn×r from

a set of nonnegative quadratic measurements up to orthonormal transforms. Example applications

include coherence retrieval in optical imaging and covariance sketching for high-dimensional

streaming data. To this end, efficient nonconvex optimization methods are quite appealing, due to

their computational efficiency and scalability to large-scale problems. There is a recent surge of

activities in designing nonconvex methods for the special case r = 1, known as phase retrieval;

however, very little work has studied the general rank-r setting. Motivated by the success of phase

retrieval, in this chapte we derive several algorithms which utilize the quadratic loss function based

on amplitude measurements, including (stochastic) gradient descent and alternating minimization.

Numerical experiments demonstrate their computational and statistical performances, highlighting

the superior performance of stochastic gradient descent with appropriate mini-batch sizes.
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3.1 Introduction

In this chapter, we are interested in recovering an r-column matrix objectX ∈ Cn×r from a set

of non-negative quadratic measurements, given as

yi = ‖aHi X‖2
2, i = 1, . . . ,m, (3.1)

where ai ∈ Cn is the ith sensing vector, and m is the number of measurements. In the Gaussian

design, the sensing vectors are generated i.i.d. from a complex-valued Gaussian distribution,

i.e. ai
i.i.d.∼ N (0, 1

2
In) + jN (0, 1

2
In). Equivalently, this problem amounts to recovering a rank-r

positive semi-definite matrixM = XXH ∈ Cn×n from a set of linear measurements

yi = aHi Mai = 〈M ,aia
H
i 〉, (3.2)

where the sensing matrix aiaHi is rank-one. Since the measurements y = {yi}mi=1 are non-

negative, they are dubbed phaseless measurements. The goal is to recover M , or equivalently

the factorX up to orthonormal transforms from as few measurements m� n2 as possible. This

problem arises in many applications, ranging from coherence retrieval in optical imaging [5],

covariance sketching of high-dimensional streaming data [13, 23] for the general rank-r case, to

phase retrieval [16, 39, 87, 104] for the rank-1 case. The measurements y are quadratic in both

ai’s andX , and we therefore also refer to this sensing model as quadratic sensing.

There are two lines of approaches to solve this problem. The first one is based on convex

relaxations to solve for the low-rank matrixM [16, 65]. These algorithms perfectly recover the

underlying matrixM at a near-optimal sample complexity under the Gaussian design. However,

the computational complexity of the resulting semi-definite programs scale at least cubically with

the dimension ofM , and therefore is prohibitive when the problem size is large.

This leads to the second line of approaches, which are iterative algorithms based on non-

convex optimization that directly estimate the factorX [15, 20, 28, 68]. In [64, 86], it is proposed

to recoverX directly by minimizing the following loss function that is the squared error of the
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Figure 3.1: A geometric interpretation of estimating a matrix,X, from phaseless measurements.

The measurements can be understood as back-projections formed by queryingX with sensing

vectors {ai}mi=1. Evidently, the problem at hand is related to the subspace retrieval problem.

intensity measurements yi:

`in(U) :=
1

m

m∑
i=1

(
yi − ‖aHi U‖2

2

)2
, (3.3)

where U ∈ Cn×r. The algorithm proposed in [64, 86] is gradient descent with spectral initializa-

tion, and its efficiency is proved in [64] for the Gaussian design.

The work presented in Chapter 3 was published in part at IEEE ICASSP 2019 [75]. This work

proposes to solve forX by minimizing the squared error of the amplitude measurements, that is,

zi =
√
yi for i = 1, ...,m. The goal is to minimize the following loss function:

`(U) =
1

m

m∑
i=1

(
zi − ‖aHi U‖2

)2
, (3.4)

which is both non-convex and non-smooth. To the best of our knowledge, this loss function

has not been considered to solve the general rank-r quadratic sensing problem considered here.

Compared with the intensity-based loss function (3.3), the amplitude-based loss function (3.4)

is a lower-order polynomial with respect to aHi U , and therefore is expected to have better

curvatures around the global optimum, and more amenable to fast computation. We developed
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three algorithms to optimize (3.4): gradient descent (GD), mini-batch stochastic gradient descent

(SGD), and alternating minimization, which are initialized by the spectral method based on

amplitude measurements. All of these algorithms converge to a critical point of `(U), and

empirically achieve stronger statistical and computational performances than optimizing the

intensity-based loss function (3.3) via gradient descent [64].

3.1.1 Related Work

This work is motivated by the successful adoption of the amplitude-based loss function in phase

retrieval [69, 105, 110], where it achieves near-optimal computational and statistical complexities

without requiring sophisticated truncation or regularization procedures as using the intensity-based

loss function [20]. Besides [64, 86], an exponential-type gradient descent algorithm is proposed

in [52] to minimize (3.3), which is similar to the truncation rule in [20] to suppress samples

that heavily influence the search direction. A few papers proposed other algorithms to solve the

quadratic sensing problem, including but not limited to [88, 113], but they are applied to either

the lifted formulation (3.2) or the intensity-based based loss function (3.3).

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 3.2 presents the proposed algorithms

using the amplitude-based loss function, including (stochastic) gradient descent and alternating

minimization. Section 3.3 examines and provides numerical comparisons of the proposed algo-

rithms with existing approaches. Section 3.4 provides additional insight on the benefits of using

Scaled gradient descent (ScaledGD) methods for estimating ill-conditioned matrices. Finally, we

conclude in Section 3.5.
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3.2 Amplitude-Based Non-convex Optimization

We start by providing the intuition behind using the amplitude-based loss function (3.4) and then

introduce three different algorithms to minimize it: gradient descent, stochastic gradient descent

which also utilizes mini-batches, and alternating minimization. Finally, we propose a spectral

initialization based on the amplitude measurements.

3.2.1 Making Sense of the Amplitude-Based Loss Function

We start by defining a generalized “phase” vector

bHi =
aHi X

‖aHi X‖2

∈ Cr (3.5)

corresponding to each phaseless measurement. Then with the amplitude measurements zi =

‖aHi X‖2, we can write a set of linear measurements ofX as

aHi X = bHi zi, i = 1, ...,m.

Furthermore, define

A =


aH1

aH2
...

aHm


, B =


bH1

bH2
...

bHm


, z =


z1

z2

...

zm


. (3.6)

Then we can compactly write

AX = diag(z)B. (3.7)

Indeed, if the matrixB is known, thenX can be solved via standard least-squares. The challenge

is that the phase termB is unknown, and we cannot apply least-squares directly. To this end, we

aim to find the phase matrixB andX that minimize the loss function:

min
U ,‖pi‖2=1

`(U ,P ) =
1

m
‖AU − diag(z)P ‖2

F , (3.8)
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under the constraint that the rows of P are unit-norm. Interestingly, when fixing U (the estimate

ofX), the phase vector that minimizes the right-hand side of (3.8) can be found in a closed-form

as

pHi = aHi U/‖aHi U‖2. (3.9)

Plugging (3.9) into `(U ,P ) lead to the amplitude-based loss function in (3.4):

`(U) = min
‖pi‖2=1

`(U ,P ).

In words, the amplitude-based loss function can be regarded as an attempt to approximate the

least-squares loss in the absence of the phase information.

3.2.2 Gradient Descent

A first approach is to apply gradient descent to minimize (3.4), which may proceed at each

iteration k ≥ 0 as

Uk+1 = Uk − µk∇`(Uk) (3.10)

for some step size µk, and U0 is a properly chosen initialization that will be discussed later. Due

to the non-smoothness of the loss function, the generalized gradient [57] of `(U) with respect to

U is used:

∇`(U) =
2

m

m∑
i=1

(
‖aHi U‖2 − zi

) aiaHi U
‖aHi U‖2

The details of gradient descent with the amplitude loss function is given in Algorithm 3.1.

Comparing with the least-squares case when the generalized phase matrixB is known, here at

each iteration, the phase vector is estimated via the current iterate.

3.2.3 Mini-Batch Stochastic Gradient Descent

Next, we implement a stochastic version of gradient descent using mini-batches, which is found in

practice to be compelling both statistically and computationally. By utilizing a stochastic method
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Algorithm 3.1 Gradient Descent with Amplitude Loss

Input: {zi}mi=1, {ai}mi=1, step size µk.

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 3.4).

Gradient Updates:

for k = 0, 1, 2, ..., K − 1 do

Wk = diag
([
‖aH1 Uk‖2−z1
‖aH1 Uk‖2

, ..., ‖a
H
mUk‖2−zm
‖aHmUk‖2

])
.

Uk+1 = Uk − 2µk
m
AHWkAUk.

end for

return UK .

with an appropriate mini-batch size, we significantly decrease the computation cost per iteration

while still converging at a moderate number of iterations. The details of the mini-batch stochastic

gradient descent (SGD) is given in Algorithm 3.2.

3.2.4 Alternating Minimization

Last but not least, we propose alternating minimization (AltMin) to update the phase matrix and

the signal sequentially to minimize `(U ,P ) in (3.8), which leads to a direct generalization of

the well-known Gerchberg-Saxton algorithm for phase retrieval [45] to the general quadratic

sensing problem. In words, at each iteration k ≥ 0, we update each row of the phase matrix

Pk = [pk1, . . . ,p
k
m]H as

(pki )
H = aHi Uk/‖aHi Uk‖2, i = 1, . . . ,m, (3.11)

Then, we update Uk+1 by fixing Pk and solving a least-squares problem:

Uk+1 = argminU∈Cn×r ‖AU − diag(z)Pk‖2
2 (3.12)

= A† diag(z)Pk

= A† diag

([
z1

‖aH1 Uk‖2

, ...,
zm

‖aHmUk‖2

])
AUk.
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Algorithm 3.2 Mini-Batch SGD with Amplitude Loss

Input: {zi}mi=1, {ai}mi=1, mini-batch size B, step size µk.

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 3.4).

Gradient Updates:

for k = 0, 1, 2, ..., K − 1 do

Choose Γk uniformly at random from {1, 2, ...,m} with cardinality B and update.

WΓk = diag
({

‖aHi Uk‖2−zi
‖aHi Uk‖2

∣∣∣ i ∈ Γk

})
,

Uk+1 = Uk − 2µk
m
AH

Γk
WΓkAΓkUk.

whereAΓk is a matrix stacking of aHi for i ∈ Γk as its rows.

end for

return UK .

The details of the alternating minimization algorithm are shown in Algorithm 3.3. It is easy

to check that this update rule is guaranteed to not increase the amplitude loss function at every

iteration:

`(Uk+1) = min
‖pi‖=1

1

m

m∑
i=1

‖aHi Uk+1 − yipi‖2
2

≤ 1

m
‖AUk+1 − diag(y)Pk‖2

2

≤ 1

m
‖AUk − diag(y)Pk‖2

2

= `(Uk),

where the second inequality follows from (3.12).

3.2.5 Spectral Initialization

So far, all the algorithms require an initialization U0, which hopefully is close to the ground

truth X that we wish to recover. The spectral method is a popular method to provide a high-

quality initial guess in non-convex optimization, where we construct a data matrix based on the
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Algorithm 3.3 Alternating Minimization

Input: {zi}mi=1, and {ai}mi=1.

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 3.4).

Alternating Updates:

for k = 0, 1, 2, ..., K − 1 do

Uk+1 = A†diag
([

z1
‖aH1 Uk‖2

, ..., zm
‖aHmUk‖2

])
AUk.

end for

return UK .

measurements and sensing vectors and use its principal subspace to provide an initial guess. In this

chapter, we advocate the use of amplitude measurements to construct the data matrix, as detailed

in Algorithm 3.4. The method is inspired by [64], except for the use of amplitude measurements.

Numerical experiments in the later section will verify the advantage of this approach.

Algorithm 3.4 Spectral Initialization with Amplitude Measurements

Input: {zi}mi=1, and {ai}mi=1

Define the data matrixD = 1
2m

∑m
i=1 ziaia

H
i .

Obtain the r normalized eigenvectors Z0 ∈ Cn×r corresponding to the r largest eigenvalues of

D.

Obtain the diagonal matrix Λ0 ∈ Cr×r, with entries on the diagonal given by

[Λ0]i = λi(D)− λ, i = 1, ..., r,

where λ = 1
m

∑m
i=1 zi and λi(D) is the ith largest eigenvalue ofD.

return U0 = Z0Λ
1/2
0 .
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3.3 Numerical Experiments

In this section, we provide the empirical performance of various amplitude-based algorithms that

we consider, with comparisons to gradient descent based on the intensity-based loss function

[64]. We will first compare their statistical performance in terms of sample complexities, and

then compare their computational performance in terms of wall-clock time taken to achieve a

desired accuracy. Extensive experiments are conducted over a wide range of settings of problem

dimensions; here we report the most representative results that we find are consistent over different

problem instances.

For each run, the entries of the sensing vectors ai are generated i.i.d. using complex-valued

Gaussian variablesN (0, 1
2
In) + jN (0, 1

2
In). The performance is measured using the Normalized

Mean Squared Error (NMSE), defined as

NMSE =
‖UUH −XXH‖F
‖XXH‖F

, (3.13)

where U is the estimate of an algorithm. For GD and mini-batch SGD with the amplitude loss

function, we use a constant step size of µ = 0.8, whereas for GD with the intensity loss function,

we use a constant step size of µ = 0.13, which are optimized for convergence consistency.

Additionally, we pick a mini-batch size of B = dn
3
e for SGD, which performs the best in terms of

convergence time.

3.3.1 Comparisons of Spectral Initialization Methods

We start by comparing the performance of spectral initialization using amplitude and intensity

measurements. In order to justify the use of amplitude measurements with spectral initialization,

we ran an experiment of 10, 000 trials to compare the empirical distribution of NMSE using

the amplitude-based and intensity-based spectral initialization, as shown in Figure 3.2. The

amplitude-based spectral initialization provides a lower NMSE and has a much lower variance

than the intensity-based spectral initialization. For the rest of the simulations, we will use the

amplitude-based spectral initialization.
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Figure 3.2: The empirical distribution of NMSE for spectral initialization constructed using

amplitude and intensity measurements.

3.3.2 Comparisons of Statistical Performance

An important metric for the proposed algorithms is the minimum number of measurements

required in order to recover the ground truth. Fix n = 50 and r = 4. We vary the number of

measurements and measure the empirical success rate of each algorithm over 50 Monte Carlo

simulations. A trial is labeled as a success when NMSE ≤ 10−5. Figure 3.3 shows the empirical

success rate with respect to the sampling ratio m/(nr) using the same spectral initialization, for

GD using the amplitude-based loss, GD using the intensity-based loss, mini-batch SGD using the

amplitude-based loss, and alternating minimization. All the algorithms achieve perfect recovery as

long as the sampling ratio is large enough; moreover, all of three proposed algorithms experience

a phase transition using fewer measurements than GD using the intensity-based loss, indicating

the benefit of the amplitude-based loss. Finally, the mini-batch SGD outperforms the rest of the

algorithms, which is consistent with the observation in the phase retrieval case [110].
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Figure 3.3: The empirical success rate with respect to the sampling ratio m/(nr) for various

algorithms, when n = 50 and r = 4.

3.3.3 Comparisons of Computational Performance

We next compare the computational performance of each algorithm, by demonstrating the decrease

in NMSE as time passes. We track the convergence in terms of wall-clock time as opposed to

the number of iterations to avoid the confounding variable of time-per-iteration. All experiments

were run on a MacBook Air with a 2.2 GHz Intel Core i7 and 8 GB of 1600 MHz DDR3 RAM.

Figure 3.4 shows the NMSE with respect to the wall-clock time when n = 50, r = 4, and

m = 800 using the same spectral initialization for the same set of algorithms as in Figure 3.3.

Again, to achieve the same accuracy in terms of NMSE, GD using the intensity-based loss requires

more time than all three algorithms using the amplitude-based loss. In particular, the mini-batch

SGD requires significantly less time than GD or alternating minimization, due to its much faster

execution per iteration.
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Figure 3.4: The NMSE with respect to wall-clock time for various algorithms, when n = 50,

r = 4 and m = 800.

3.4 Scaled Gradient Methods for Estimating Ill-Conditioned

Matrices

Not all r-column matrices are created equal. Indeed, recallingM = XXH , denote the eigenvalue

decomposition ofM asM = V ΣV H , where V ∈ Rn×r is the matrix of eigenvectors ofM , and

Σ ∈ Rr×r is a diagonal matrix consisting of the r eigenvalues ofM organized in non-increasing

order, i.e., Σ1,1 ≥ Σ2,2 ≥ · · · ≥ Σr,r > 0. Let the condition number of the matrixM be defined

as,

κ = Σ1,1/Σr,r. (3.14)
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Algorithm 3.5 Scaled Gradient Descent (ScaledGD) with Amplitude Loss

Input: {zi}mi=1, {ai}mi=1, step size µk

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 3.4).

Gradient Updates:

for k = 0, 1, 2, ..., K − 1 do

Wk = diag
([
‖aH1 Uk‖2−z1
‖aH1 Uk‖2

, ..., ‖a
H
mUk‖2−zm
‖aHmUk‖2

])
.

Uk+1 = Uk − 2µk
m
AHWkAUk

(
UH
k Uk

)−1
.

end for

return UK .

Generally speaking, the greater the value of κ, the more “ill-conditioned” a matrix is. It is

well-known that the iteration complexity of an iterative algorithm such as GD grows proportionally

with the condition number of a matrix. As it turns out, the algorithms proposed within this chapter

suffer from the same relationship between the condition number and the convergence speed.

Recently, a nascent idea in the matrix factorization literature called Scaled Gradient Methods

have been proposed to accelerate ill-conditioned low-rank matrix estimation [95, 96, 97]. The

authors introduce the notion of preconditioning the gradient update by scaling the update rule as

in quasi-Newton type algorithms. In a nutshell, the preconditioners are computed by inverting an

r × r matrix and back-multiplying the gradient by the preconditioner.

Algorithm 3.5 outlines how to incorporate pre-conditioning into the GD algorithm with

the amplitude-based loss function. We demonstrate the improved performance of ScaledGD

with amplitude-based loss function for estimating ill-conditioned matrices in Figure 3.5. The

experimental set up mirrors that of Section 3.3.3. It is immediately apparent that the condition

number has a large impact on the number of iterations required in order for the vanilla GD

algorithm to converge. However, the ScaledGD algorithm converges in roughly the same number

of iterations independent of the condition number of the matrix, in line with its performance in

[95, 96, 97]. The computational overhead incurred from inverting an r × r matrix is dominated
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Figure 3.5: The NMSE with respect to iteration count for comparing GD (with Amp. Loss) with

its Scaled version. Here, n = 50, r = 4 and m = 800. It can be seen that ScaledGD converges

much faster than GD, especially for large condition numbers.

by the complexity of computing the gradient, and is easily outweighed by the improvement in the

number of iterations required to converge. Generalization of the other algorithms proposed in this

chapter to use preconditioning in the update rule in order to estimate ill-conditioned matrices is

omitted for brevity.

3.5 Conclusion

We propose new non-convex approaches for solving quadratic sensing, or equivalently, low-rank

matrix recovery from rank-one measurements, which all utilize an amplitude-based loss function

as opposed to an intensity-based loss function. Additionally, we demonstrate how to include

preconditioners to recover ill-conditioned matrices. Numerical experiments are provided to
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demonstrate their advantages over using the intensity-based loss function in terms of both sample

complexity and computational complexity. In the future, we would like to provide theoretical

analysis to guarantee the convergence of each of these algorithms to the global optimum solution

as long as the sample size is sufficiently large. Another interesting venue of research would be

to demonstrate the stability of these algorithms to noise and/or the presence of outliers in the

measurements [109] using random initialization [21].

46



Chapter 4

Plug-and-Play Image Reconstruction

Meets Stochastic Variance-Reduced

Gradient Methods

Plug-and-play (PnP) methods have recently emerged as a powerful framework for image recon-

struction that can flexibly combine different physics-based observation models with data-driven

image priors in the form of denoisers, and achieve state-of-the-art image reconstruction quality in

many applications. In this chapter, we aim to further improve the computational efficacy of PnP

methods by designing a new algorithm that makes use of stochastic variance-reduced gradients

(SVRG), a nascent idea to accelerate runtime in stochastic optimization. Compared with existing

PnP methods using batch gradients or stochastic gradients, the new algorithm, called PnP-SVRG,

achieves comparable or better accuracy of image reconstruction at a much faster computational

speed. Extensive numerical experiments are provided to demonstrate the benefits of the proposed

algorithm through the application of compressive imaging using partial Fourier measurements

and phase retrieval, in conjunction with a wide variety of popular image denoisers.
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4.1 Introduction

We consider the reconstruction of an image x? ∈ Rn from a set of noisy measurements y ∈ Cm,

formulated as

y = A (x?) + ε, (4.1)

where A : Rn 7→ Cm characterizes the forward model of the imaging system known a priori,

y = {yi}1≤i≤m is the set of measurements, and ε = {εi}1≤i≤m is additive (random) noise present

in the system. In many applications, the forward model is ill-posed with more unknowns than

the number of measurements, i.e. m � n, due to limited sampling budget or acquisition time.

Without prior knowledge about the structure of the ground truth image, the problem is generally

impossible to solve. Therefore, one would like to derive image reconstruction algorithms that

exploit prior knowledge in the image in order to generate a proper estimate, x̂, of the image.

Image denoising and reconstruction algorithms have been thoroughly studied. While clas-

sically image priors are designed using hand-crafted features such as wavelets, many data-

driven image priors based on deep learning and neural networks have been proposed in recent

years [2, 18, 30, 50]. A number of techniques have been proposed, such as algorithm unrolling, us-

ing neural networks as generative models of images, end-to-end training, and so on; see [3, 77, 81]

for recent overviews.

This chapter focuses on the plug-and-play (PnP) methods for image reconstruction, first

proposed in [103]. PnP methods have recently emerged as a powerful framework for image

reconstruction that can flexibly combine different physics-based observation models with data-

driven image priors in the form of denoisers, and achieve state-of-the-art image reconstruction

quality in many applications [89, 90]. To motivate the methodology of PnP, note that many

classical approaches can be viewed as solving an optimization problem that is composed of a data-

fidelity term that incorporates the observation model and a regularization term that incorporates

image priors. Proximal algorithms such as proximal gradient methods and alternating direction

method of multipliers are popular solvers, where the proximal map avoids the need to find

derivatives of complicated image regularizers which may be non-differentiable. In [103], the

48



authors made the keen observation that the proximal map is equivalent to finding the maximum

a posteriori (MAP) image denoising estimate upon a suitable probability prior. Bearing this

perspective, PnP methods replace this proximal update by “plugging in” an image denoiser of the

user’s choice, such as non-local means (NLM) [12], block matching 3D filtering (BM3D) [29],

or of particular interest, a state-of-the-art convolutional neural network (CNN) based image

denoiser [85].

Generally, the PnP framework allows the injection of sophisticated denoisers into iterative

reconstruction algorithms, where first-order algorithms are particularly appealing due to their

scalability to large-scale problem instances and amenability to computing advances. When

combined with gradient descent (GD), this leads to the PnP-GD algorithm which alternates

between taking a GD step with respect to the data-fidelity term, followed by a denoising step

using the plugged-in denoiser of choice [55]. Moreover, the data-fidelity term is often given as a

finite sum of sample losses over each observation, e.g. when the observations are collected in an

independently and identically distributed manner. Consequently, one can leverage the finite sum

structure to design PnP methods that take advantage of stochastic algorithms such as Stochastic

Gradient Descent (SGD), which was done in [92] to derive the PnP-SGD algorithm for image

reconstruction. In [92], the authors demonstrated that PnP-SGD achieves a considerable speed up

in computation time, while achieving the same reconstruction quality as PnP-GD.

The work presented in Chapter 4 was published in part at IEEE ICIP 2021 [74]. The main

contribution of this chapter is to introduce the use of stochastic variance-reduced gradient (SVRG)

methods [53] into the PnP framework. It is well-known from the optimization literature that SGD

tends to converge with a much larger number of iterations compared with GD, due to the higher

variability in its search direction, while the per-iteration cost of GD is expensive when the data

size is large. The crux of SVRG [53] is a carefully-designed stochastic gradient with reduced

variance by using a reference batch gradient that is periodically updated to save computation.

Therefore, it is of great interest to investigate whether SVRG brings additional benefits to the

PnP framework. We propose a new algorithm called PnP-SVRG, which can be regarded as
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replacing the proximal map in the proximal SVRG algorithm [107] by a wide variety of popular

image denoisers including NLM, CNN and BM3D. We demonstrate through extensive numerical

experiments that compared with PnP-SGD and PnP-GD, PnP-SVRG achieves comparable or

better accuracy of image reconstruction at a faster computational speed.

The rest of this chapter is organized as follows. First, we provide backgrounds on GD-

based algorithms for PnP in Section 4.2. We develop the stochastic variance-reduction based

PnP algorithm, called PnP-SVRG, in Section 4.3. We then evaluate the performance of the

proposed PnP-SVRG algorithm in the context of compressive image reconstruction using partial

2D Fourier measurements as well as phase retrieval in Section 4.4, with comparisons to PnP-GD

and PnP-SGD. In Section 4.5, we conclude our findings and discuss future directions.

4.2 Backgrounds

In this section, we first introduce the PnP-GD and PnP-SGD algorithms, and then discuss the use

of stochastic variance-reduced gradient methods in finite-sum stochastic optimization.

4.2.1 Plug-and-Play with GD and SGD

To solve for the image from the observations (4.1), we start with a data-fidelity loss function that

takes the following finite-sum form:

`(x) =
1

m

m∑
i=1

`i(x), (4.2)

where `i(x) = `i(x; yi) depends on the ith measurement. A popular choice is minimizing the

least-squares difference between the observed measurements and those produced by the current

image estimate. A common approach to incorporate image priors is to solve the regularized

optimization problem:

min
x

`(x) + λg(x), (4.3)
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where g(·) is the regularizer and λ > 0 is some regularization parameter. The above optimization

problem can be solved by proximal gradient methods, which update the image estimate as

xt = proxλg(xt−1 − η∇`(xt−1)), (4.4)

where proxg is the proximal map of g(·), ∇`(x) is the gradient of `(x) and η > 0 is a proper

learning rate. The key step of PnP methods is to replace the proximal map with respect to some

choice of regularization function g(·) by an image denoising routine of choice. More specifically,

we define an image denoiser

denoiseσ̂(x) : Rn 7→ Rn,

which is parameterized by some estimate of the noise level present in the image σ̂ > 0. Plugging

the above denoiser into (4.4) leads directly to the PnP-GD algorithm in Algorithm 4.1. Similarly,

leveraging the finite-sum form of the data-fidelity term leads to the PnP-SGD algorithm [92]

in Algorithm 4.2, where a mini-batch of B measurements can be used to construct the search

direction to balance the convergence speed and per-iteration computational cost.

While the PnP method yields a simple form, its theoretical performance is still largely

unknown and remains an active field of study. The authors of [90] proposed a set of conditions

such that a denoising routine can be handled similarly to a Moreau proximal mapping. In [85], the

authors borrowed from operator theory to prove convergence for strongly convex loss functions

with properly trained CNN-based image denoisers. In a related approach, regularization by

denoising [82] can be used to prove convergence of a slightly broader class of algorithms including

PnP methods.

4.2.2 Stochastic Variance-Reduced Gradient Methods

SVRG [53], together with many variants and offsprings, has become a popular algorithmic

approach in finite-sum optimization to achieve a better runtime complexity than both GD and

SGD. In a nutshell, to optimize `(x) in (4.2), it updates the parameter along the direction of the
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Algorithm 4.1 PnP-GD
Input: x0, η, T, σ̂.

1: Initialize: x0.

2: for t = 1, 2, . . . , T do

3: zt = xt−1 − η∇`(xt−1);

4: xt = denoiseσ̂(zt).

5: end for

Output: x̂ = xT .

Algorithm 4.2 PnP-SGD
Input: x0, η, T, B, σ̂.

1: Initialize: x0.

2: for t = 1, 2, . . . , T do

3: pick a set It ⊂ {1, . . . ,m} of cardinality B uniformly at random;

4: zt = xk−1 − η
B

∑
i∈It ∇`i(xt−1);

5: xt = denoiseσ̂(zt).

6: end for

Output: x̂ = xT .

stochastic gradient given below,

vt = ∇`it(xt−1)−∇`it(x̃) +∇`(x̃), (4.5)

where x̃ is a reference point stored during the beginning of each epoch of the algorithm. On the

one end, this ensures the stochastic gradient vt is unbiased, since E[vt] = ∇`(xt−1), when it is

selected uniformly at random from {1, . . . ,m}. On the other end, the inclusion of the reference

helps reduce the variance of vt especially when the current iterate is not too far from the reference

point. Thus, by periodically updating the reference point, SVRG accelerates the convergence

speed; in fact, SVRG achieves linear convergence when `(x) is strongly convex [53]. The SVRG

algorithm can be extended to the proximal setting when minimizing the sum of a finite-sum
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Figure 4.1: A visual summary of the SVRG algorithm. In each outer loop, a reference point is

chosen, and one full gradient is computed with respect to the reference point. Then, within each

inner loop, only stochastic gradients are computed to determine the descent direction. The full

gradient computation is used within each inner loop calculation.

term and a regularization term [107]. The resulting algorithm alternates between a stochastic

variance-reduced gradient step and a proximal map at each iteration, and achieves a similar

runtime speed-up.

4.3 Plug-and-Play with Variance Reduction

Motivated by the success of SVRG in accelerating finite-sum optimization, we propose a novel

algorithm that combines SVRG with PnP methods to solve image reconstruction. The proposed

algorithm, dubbed PnP-SVRG, is presented in Algorithm 4.3. Specifically, the algorithm contains

two loops. The outer loop, sometimes referred to as an epoch, is used to update the reference point

x̃ as well as its full gradient w = `(x̃) in a periodic manner. The inner loop, on the other end,

performs stochastic gradient updates using the variance-reduced stochastic gradient vt, which can

be computed in mini-batches to further reduce variance and improve performance.

The proposed PnP-SVRG algorithm can be regarded as replacing the proximal map in the
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proximal SVRG algorithm [107] by a wide variety of popular image denoisers such as CNN,

BM3D, NLM, and so on, which will be examined in detail in Section 4.4.

Algorithm 4.3 PnP-SVRG
Input: x0, η, T1, T2, B, σ̂.

1: Initialize: x0.

2: for s = 1, 2, . . . , T1 do

3: x̃ = xs−1;

4: w = ∇`(x̃);

5: z0 = x̃.

6: for t = 1, 2, . . . , T2 do

7: pick a set It ⊂ {1, . . . ,m} of cardinality B uniformly at random;

8: vt = 1
B

∑
i∈It(∇`i(zt−1)−∇`i(x̃)) +w;

9: zt = denoiseσ̂(zt−1 − ηvt).

10: end for

11: xs = zT2 .

12: end for

Output: x̂ = xT1 .

It is worth emphasizing that Algorithm 4.3 is composed of T1 epochs (outer loops) which

each contains T2 stochastic gradient and denoising updates. Within each epoch, we compute

the full gradient of a reference point once which is used within the inner loop for stochastic

gradient updates. Overall, we perform T1 full gradient computations and 2T1T2 stochastic gradient

computations and T1T2 denoising operations. It is critical to leverage a parameter configuration

such that the benefit of the SVRG methods outweighs the computation cost of calculating a full

gradient in each epoch, particularly when the denoising operation is expensive. We include a

visual summary of the SVRG algorithm in Figure 4.1.
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4.4 Numerical Experiments

In this section, we examine the performance of the proposed PnP-SVRG algorithm for two

different sensing models. First, we investigate compressive image reconstruction using partial 2D

Fourier measurements, a common setting used in compressive magnetic resonance imaging (MRI).

Second, we explore reconstructing an image from under-sampled, phaseless measurements. In

each of these experiments, the number of measurements is less than the dimensions of the image;

this leads to a regime where image priors are necessary.

We evaluate the reconstruction quality using the standard metric Peak Signal-to-Noise Ratio

(PSNR), measured in decibels, between the original image X? and the recovered image X̂ .

Suppose that the images of interest are of size n1 × n2 pixels. Then, the PSNR is calculated as,

PSNR = −10 log10

(
1

n1n2

n1∑
i=1

n2∑
j=1

(X?
i,j − X̂i,j)

2

)
dB, (4.6)

assuming that each image is normalized such that values are within the range of [0, 1].

We consider a few choices of image denoisers, including NLM, BM3D, TV-norm based

wavelet denoising, and our own trained CNN. We implement a decay on the learning rate and the

noise level estimate to improve stability. For CNN, we use a denoising CNN (DnCNN) [111],

which follows a U-Net structure composed of a series of successive convolutions that first increase

then decrease the input image’s channels in order to separate the additive noise from the noisy

image. The DnCNN denoiser we train is based off of the “realSN-DnCNN” introduced in [85],

which uses a variation of layer-wise spectral norm to train a DnCNN. We train our denoiser on a

truncated version of the Flickr30k dataset [108], using only 1000 images to train and 600 images

to validate our results, where all RGB images are first converted to grayscale before training. We

train the DnCNN on a variety of noise levels: σ ∈ [ 10
255
, 20

255
, 30

255
, 40

255
, 50

255
] and find that σ = 40

255

produces the best results when denoising. Each network is trained on a Titan RTX for 20 epochs,

taking no more than 5 minutes to train.
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Original PnP-GD, PSNR 24.33 PnP-SGD, PSNR 24.96 PnP-SVRG, PSNR 25.42

Initialization, PSNR 17.78 PnP-GD, PSNR 22.23 PnP-SGD, PSNR 22.24 PnP-SVRG, PSNR 23.87

Figure 4.2: Performance of the proposed PnP-SVRG algorithm in comparison with PnP-GD

and PnP-SGD for image reconstruction using partial 2D DFT measurements at a sampling rate

p = 0.5. After the first column, the first row uses the NLM denoiser and the second row uses the

CNN denoiser. The PSNR values are reported in dB.

4.4.1 Compressive Sensing Magnetic Resonance Imaging

Consider the problem where our goal is to recover an image from bilinear measurements of an

orthonormal matrix and its matrix transpose. This captures examples using the discrete Fourier

matrix, discrete cosine matrix, discrete wavelet matrix, and many more. We will assume that

images are square, but the process can be easily generalized. Within the context of this section,

the image X? ∈ Rn×n will be treated as a matrix, and the measurements Y ∈ Rn×n will be

zero-padded to correspond with the image size. The matrix F ∈ Cn×n is the discrete Fourier

transform (DFT) matrix,M ∈ {0, 1}n×n is a binary mask which determines the measurements

that are sampled, and ε represents the noise in the system. We define the sampling rate p to be

equal to the ratio of the number of observed measurements to the size of the image. We arrive at

the following measurement model:

Y = M � (FX?F> + ε). (4.7)
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Figure 4.3: The PSNR of image reconstruction via the proposed PnP-SVRG algorithm with the

NLM denoiser in comparison to PnP-GD and PnP-SGD. (a) The reconstructed PSNR with respect

to runtime at a sampling rate of 50%. (b) The reconstructed PSNR of the final image estimate

with respect to the sampling rate after running each algorithm for 200 seconds.

We formulate a natural squared loss function based on the Frobenius norm difference between the

observed measurement matrix and the 2-D Fourier transform of the image, as

`(X) =
1

2m
‖Y −M � FXF>‖2

F . (4.8)

Clearly, this loss function can be written as a finite sum over the observed measurements, and thus

fits the algorithmic framework of PnP-SVRG. Throughout the experiments, we take an image of

size 256×256, and the noise in (4.7) is generated as additive white Gaussian noise with a standard

deviation of σ = 5. For PnP-SVRG and PnP-SGD, we utilize a mini-batch size of B = 2000.
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Original Initial Estimate, PSNR 17.74

NLM, PSNR 29.04 Wavelet, PSNR 22.52

BM3D, PSNR 26.65CNN, PSNR 26.24

Figure 4.4: The reconstructed PSNR using the proposed PnP-SVRG algorithm with different

denoising routines for an RGB image with a sampling rate p = 0.5.

In Figure 4.2, we evaluate the performance of the proposed PnP-SVRG algorithm in com-

parison with PnP-GD and PnP-SGD for image reconstruction at a sampling rate p = 0.5, using

the NLM denoiser and the CNN denoiser. It can be seen that PnP-SVRG achieves slightly

higher PSNR than PnP-GD and PnP-SGD. Figure 4.3 further examines the performance of image

reconstruction via the proposed PnP- SVRG algorithm with the NLM denoiser in comparison to

PnP-GD and PnP-SGD in terms of the runtime in (a), and sampling rate in (b). It can be seen that
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the proposed PnP-SVRG achieves a significantly improved runtime compared to its competitors,

as well as slightly better reconstruction quality when the sampling rate is larger than 0.5. Similar

trends are also observed for other denoisers. Lastly, Figure 4.4 demonstrates the reconstruction

quality of PnP-SVRG with various image denoisers for an RGB image when p = 0.5. Each

RGB channel is processed separately and then combined for rendering. Here, the CNN, NLM,

and BM3D based denoisers all achieve high visual quality. In conclusion, PnP-SVRG can be

successfully implemented with a wide range of denoising routines.

4.4.2 Phase Retrieval

Consider the problem of reconstructing an n-pixel image, x? ∈ Rn, from m phaseless measure-

ments, {yi}mi=1. The measurements are obtained through an ensemble of sensing vectors, {ai}mi=1,

according to the model,

yi = |〈ai,x?〉|2 + εi, i = 1, · · · ,m, (4.9)

where, {εi}mi=1, is additive white Gaussian noise with zero mean and standard deviation, σ > 0.

Define zi =
√
yi, ∀i = 1, · · · ,m. We adopt an amplitude-based loss function—see Chapter 3 for

more details—based on the squared difference between the observed phaseless measurements and

the image estimate as observed through the measurement model, i.e.,

`(x) =
1

2m

m∑
i=1

(zi − |〈ai,x〉|)2 . (4.10)

Throughout these experiments, the image is made up of 128× 128 pixels. The sensing vectors

ai are drawn independently, from a Gaussian distribution, ai ∼ N (0, In). The noise in (4.9)

is generated as additive white Gaussian noise with a standard deviation of σ = 0.5. There is

undersampling in the measurements, with m = 0.5n measurements. For PnP-SVRG and PnP-

SGD, we utilize a mini-batch size of B = 512. We employ a wavelet-based estimator of the

Gaussian noise standard deviation [36], from the Scikit-image Python package [11], to be used as

the noise-strength parameter of the BM3D image denoising routine [29]. The spectral method is

used to generate an initial estimate; see Chapter 2 for more intuition. Since we are operating in
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Original Initialization, PSNR=10.46

PnP-GD, PSNR=23.40 PnP-SGD, PSNR=25.44 PnP-SVRG, PSNR=26.51

Figure 4.5: Performance of the proposed PnP-SVRG algorithm in comparison with PnP-GD

and PnP-SGD for image reconstruction using phaseless measurements with m = .5n. All of the

reconstructed images use the BM3D image denoiser.

an undersampled regime, the initial estimate is, visually, not particularly accurate. We run each

algorithm for 30 seconds and report the results in terms of PSNR.

In Figure 4.5, we visualize the output of each of the algorithms using the BM3D image

denoiser. With respect to the foreground, the PnP-SVRG algorithm is able to reconstruct finer

details in the starfish in comparison to the other two algorithms. While the shadow of the starfish

is generally recovered well, the rest of the background is not reconstructed particularly well. The

improved computation speed of PnP-SVRG is again demonstrated when plotting the PSNR over

runtime, in Figure 4.6.
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Figure 4.6: The PSNR of image reconstruction via the proposed PnP-SVRG algorithm with the

BM3D denoiser in comparison to PnP-GD and PnP-SGD for phase retrieval. The reconstructed

PSNR with respect to runtime at an undersampling rate of 50%.

4.5 Conclusion

This work proposes a new algorithm, dubbed PnP-SVRG, for image reconstruction, which

carefully employs stochastic variance reduction techniques within the PnP framework. We demon-

strated that substantially improved computational efficiency can be obtained without sacrificing

image reconstruction quality. In the future, we plan to further investigate the performance of

PnP-SVRG for other imaging tasks such as deblurring, super-resolution, and inpainting. In

addition, other stochastic variance reduction algorithms such as SARAH [80] and SAGA [33] will

also be examined within the PnP framework. Last but not least, we are interested in evaluating

the performance of the proposed PnP-SVRG algorithm for real data applications such as electron

microscopy imaging [90]. In the future we look to prove the convergence of PnP-SVRG to a fixed

point, following similar lines of work such as [93].
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Chapter 5

Joint Dictionary Indexing with Graph

Regularization for Electron Back-Scattered

Diffraction Patterns

Suppose that we are given a dictionary of known signals and a measured signal. Ideally, the

observed measurements would be perfectly defined by a single signal in our dictionary. In practice,

dictionaries are limited and there exists noise in the observation system, which leads to defining

suboptimal measurements. In dictionary indexing, the goal is to reconstruct the coefficients of a

linear combination of signals in our dictionary which accurately define the observed measurement.

Some applications require indexing a set of measurements by our dictionary. While one could

index each measurement individually, we are interested in scenarios where the set of ground-truth

signals which define the measurements share some relationship with each other that we wish to

exploit. In pursuit of this goal, we demonstrate the applicability of leveraging graph structures

for jointly dictionary indexing. We propose an ADMM-based algorithm for indexing the set of

measurements in a joint fashion while exploiting both signal- and graph-based regularization. We

apply our methodology to scanning electron microscopy and the process of indexing electron

back-scattered diffraction patterns.
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5.1 Introduction

In dictionary indexing (DI), measurements are constructed using a linear combination of basis

vectors which make up the dictionary [112]. Let the set of p-dimensional signals {xi}di=1 define

our dictionary of d entries. Then a (noiseless) measurement, y ∈ Rp, takes the form,

y =
d∑
i=1

βixi, (5.1)

where the set of coefficients, {βi}di=1, define the linear combination of dictionary elements. The

underlying assumption in DI is that the number of dictionary elements necessary to accurately

represent a measurement is small, i.e., any measurement can be represented by only a few

elements in the dictionary. For this reason, DI is also often referred to as sparse coding in the

signal processing literature.1 This allows for regularization in the form of adding a sparsity-

promoting penalty function to the optimization problem. For example, one popular choice of a

sparsity-promoting penalty function is the `1 norm of the estimated coefficients.

Often, we are not only interested in indexing a single measurement, but rather, a set of

measurements. For example, if measurements are captured from a network of sensors, one may

expect the captured measurements at two closely placed sensors to be related. We consider a

framework where there exists an underlying relationship between the signals of interest within a

set of DI instances. While it is reasonable to process each instance individually and then aggregate

the results, we develop a method which indexes the entire set of DI instances in a joint manner

which also leverages the assumed intra-measurement relationship. To this end, we pose the set

of indexing problems on a graph structure and look towards graph regularization techniques for

creating tractable solutions to the joint indexing problem.

Two main contributions are outlined. First, we demonstrate how to implement graph reg-

ularization for the joint DI problem. When the signal defined on the graph has a piece-wise

constant structure, we demonstrate how to effectively exploit it with graph regularization dur-

ing the signal estimation algorithm. In particular, we demonstrate the improvements gained

1We adopt the name, “dictionary indexing,” to be consistent with the EBSD pattern indexing nomenclature.
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from graph regularization in comparison to not leveraging graph structures. We demonstrate

the effectiveness of the algorithm for multiple types of graph structures. Secondly, we apply

the graph regularization framework to the problem of indexing a set of electron back-scattered

diffraction patterns in scanning electron microscopy. We demonstrate that joint indexing with

graph regularization can accurately index highly corrupted, low-resolution diffraction patterns.

Additionally, we demonstrate that the proposed algorithm can index individual pattern orientations

from a mixture of patterns, which may be useful in accurately indexing patterns that are measured

at the border of two grains.

5.1.1 Related Work

Many algorithms have been proposed to solve the dictionary indexing problem. In computing

the sparse coefficients in the linear combination as in (5.1), one seeks to find an accurate set

of coefficients that remains sufficiently sparse. To name a few strategies, one can consider

greedy strategies of approximation such as the matching pursuit algorithm [71], or the orthogonal

matching pursuit algorithm [98]; constrained optimization strategies such as gradient projection

sparse reconstruction [40]; or proximal algorithms such as iterative soft- or shrinkage-thresholding

algorithms [7]. The latter of these strategies, iterative shrinkage-threshold algorithms, dubbed

ISTA, has sparked a line of research interested in optimizing the computation speed of solving DI

while maintaining a desired level of accuracy. Notably, ISTA has recently been used in tandem

with deep learning to create a class of algorithms known as Learned ISTA, or LISTA [42, 43, 47].

Other works have studied the DI problem formulations within the context of exploiting

intra-signal structures. For example, works have analyzed the sparse, multiple measurement

vector model for multichannel signal processing [31, 37], as well as spectrum estimation and

denoising [63]. One extension of the famous LASSO algorithm, group LASSO, groups the

elements in the estimated signal to regularize each group individually [72]. Additionally, for graph

structures specifically, a line of work known as Graph Trend Filtering (GTF) [106] has been fruitful

in applying graph regularization in the context of vector-valued graph signal denoising [101] as
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well as recovering a graph signal from a subsampled set of the nodes [102]. The notion of graph

structures in joint dictionary indexing was discussed in [83].

For Electron Back-Scattered Diffraction (EBSD) pattern indexing, a pure dictionary indexing

based method has been proposed and is shown to be quite robust to system noise [24]. In the

context of this existing dictionary indexing method, the observed measurement is assumed to

be defined by a single dictionary element. In this chapter, we demonstrate how to generalize

this notion to reconstructing a sparse, linear combination of dictionary elements. A follow-up

using a technique known as Spherical Indexing (SphInx) has been shown to be much more

computationally efficient for indexing patterns [61]. More on EBSD is discussed in Section 5.5.

5.1.2 Chapter Organization

The rest of this chapter is organized as follows. We provide further background on single-instance

dictionary indexing and then define the joint dictionary indexing signal model and relevant graph

structures in Section 5.2. Next, we formalize the optimization problem for solving joint dictionary

indexing in Section 5.3 and then provide experimental results in Section 5.4. Then, we introduce

electron back-scattered diffraction patterns and connect EBSD pattern indexing to the proposed

joint dictionary indexing algorithm in Section 5.5. Some preliminary experimental results are

provided in Section 5.6. Finally, we conclude and discuss our findings in Section 5.7.

5.2 Problem Formulation and Important Definitions

In this section, we introduce the signal models for both single instance and joint dictionary

indexing. Along the way, we introduce important concepts from graph theory that will be

referenced throughout the chapter.
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5.2.1 Single Instance Dictionary Indexing

From the set of d signals {xi}di=1, construct the dictionary matrix X = [x1 · · ·xd] ∈ Rp×d.

Suppose that one wishes to estimate the coefficients of the linear combination of dictionary

elements β? ∈ Rd which define a given (noisy) measurement y ∈ Rp, according to,

y = Xβ? + ε. (5.2)

Here, we assume that the measurements at each node are effected by additive white Gaussian

noise, i.e., ε ∼ N (0, σ2I), σ > 0. As the dimension of the measurement is often much smaller

than the number of elements in the dictionary, i.e., p� d, our goal is to solve an under-determined

linear system of equations. In the context of dictionary indexing, one assumption that we are

making is that the observed measurement is a linear combination of only a few dictionary entries.

Such an assumption is familiarly known as sparsity, and a long range of work has been put forth

to study this problem of estimating a sparse signal from an under-determined linear system [41].

From an optimization perspective, we can introduce regularization to our loss function formulation

to penalize estimates which are not sparse.

One may calculate an estimate β̂ of β by solving the optimization problem,

β̂ = arg min
β∈Rd

{
1

2
‖y −Xβ‖2

2 + g(β; ζ)

}
. (5.3)

The function g : Rd 7→ R denotes our choice of regularization, and ζ is the set parameter

choices necessary for calculating certain penalty functions. Depending on the choice of g, a

different set of parameters may be necessary for computation. Penalty functions take the form,

g(β; ζ) :=
∑d

i=1 k(βi; ζ), where an element-wise operation is taken to promote an element in

the vector to be zero. Two sparsity-promoting penalty functions are considered in this work: the

`1-norm and the Smoothly Clipped Absolute Deviation (SCAD) function [38].

• For the `1-norm, only one parameter is necessary; assign ζ = λ, where λ > 0 is a non-

negative, real scalar. Then, for any element β ∈ β, define k(β;λ) = λ|β|, such that,

g`1(β;λ) = λ
∑d

i=1 |βi| := λ‖β‖1. With the `1-norm as a penalty function, we arrive at the

famous LASSO estimate [94].
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• For SCAD, two parameters are necessary; assign ζ = {λ, ξ}, where both parameters are

non-negative, real scalars. For any element β ∈ β, the kSCAD(β;λ, ξ) penalty function is

defined as,

kSCAD(β;λ, ξ) = λ

∫ |x|
0

min

{
1,

max{0, (ξ − u/λ)}
ξ − 1

}
du, ξ ≥ 2, (5.4)

and gSCAD(β;λ, ξ) :=
∑d

i=1 kSCAD(βi;λ, ξ). This non-convex, sparsity promoting penalty

functions has been shown to avoid some implicit bias inherent to the `1-norm [101].

5.2.2 Joint Dictionary Indexing

We aim to solve a set of n related dictionary indexing problems, {yi,β?i }ni=1, as introduced

in (5.2). We assume that the same dictionaryX is used for each (yi,β
?
i ) pair. Each measurement

is affected, independently, by noise εi ∼ N (0, σ2I). Construct matrices Y = [y1 · · ·yn] ,

B? = [β?1 · · ·β?n] , E = [ε1 · · · εn], i.e., each column Y:,i,B
?
:,i of Y ,B? correspond, respectively,

to their own dictionary indexing problem instance {yi,β?i }. We define the observation model as,

Y = XB? +E. (5.5)

Indeed, each dictionary indexing instance can be solved individually using the estimate

provided in (5.3). However, we are interested in the scenario where there exists some relationship

between the different signals {β?i }ni=1. We formalize this relationship using graph structures. Let

G = {V , E} be a graph such that each dictionary indexing instance lives on one of the |V| = n

nodes. The set of edges, E ⊆ V × V , represents the set of |E| = m underlying relationships

between any two ground truth signals. For simplicity, we will assume that the graph G is an

undirected graph.

Let ∆ ∈ Rm×n be the oriented incidence matrix of G (see [101]), where each row in the

oriented incidence matrix corresponds to an edge in the graph. We will assume that when the

ground truth signal is defined on the graph, there exist sets of adjacent nodes which all have

identical signals. Such a signal is said to have piece-wise constant structure. Note that we are

not assuming that we know which nodes are identical—only that there exists such a relationship
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where the ground truth signal on adjacent nodes have a higher likelihood of being identical. With

this structure, consider the quantity ∆B?>, which is the set of piece-wise differences between the

signals at each node in the graph. Similar to our intuition about sparsity existing in the underlying

signal, one can see that there exists underling sparsity in the ∆B?> object: if there are large

patches of piece-wise constant signal, then the pairwise differences between many pairs of nodes

will be 0. Formally, if B? defines a piece-wise constant signal on the graph G with oriented

incidence matrix ∆, then for each row ofB?,B?
i,:, i = 1, · · · , n, the quantity

∑n
i=1 ‖∆B?>

:,i ‖2

is small, as the number of non-zero elements pairwise differences will be small.

What remains is understanding how to properly apply regularization on both the signal

structure and the graph structure. In either case, k(·) is the desired sparsity-promoting penalty

function introduced in Section 5.2.1. For simplicity, we omit the additional parameters necessary

(e.g. λ, ξ). At each node, the reconstructed signal should have a sparse structure, based on our

domain knowledge of the dictionary indexing problem. For any matrix V ∈ Rn1×n2 the following

matrix-valued penalty function, h1 : Rn1×n2 7→ R, is defined as,

h1(V ) =

n1∑
i=1

k(‖V:,i‖1; ζ). (5.6)

The signal regularizer promotes sparsity on each column of the matrix. For signal regularization,

the input to the function h1 is the current estimate, B. This way, we can exploit our prior

knowledge that the ground truth signal living at each node is sparse.

Similarly, we wish to couple the signals reconstructed on different nodes to have the same

sparsity pattern if they are learned to be in the same region within the graph. For any matrix

V ∈ Rn1×n2 , define the function h2 : Rn1×n2 7→ R as,

h2(V ) =

n2∑
j=1

k(‖Vj,:‖2; ζ). (5.7)

For graph regularization, the input to h2 is the quantity ∆B>, for the current estimate,B. The

sparsity pattern in each row ofB is enforced to be similar. In other words, the graph regularizer

promotes sparsity on the differences of the rows of the matrixB according to the graph incidence

matrix ∆. This regularization function is closely related to group selection models [51].
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5.3 Joint Dictionary Indexing with Graph Regularization

We look to generalize the estimate presented in (5.3) to estimate matrix objects which also satisfy

our underlying assumptions regarding graph structures. Consider solving the follow optimization

problem,

B̂ = argminB∈Rd×n

{
1

2
‖Y −XB‖2

F + h1(B) + h2(Z)

}
(5.8)

s.t. Z = ∆B>.

Here, h1, h2 are realizations of two forms of regularization following the definition presented

in (5.6), and (5.7), respectively. Note that each penalty function choice will come with some set

of real-valued, non-zero, scalar, parameter choices, which is omitted for simplicity. We introduce

the variable Z = ∆B> in order to derive an ADMM-based algorithm for obtaining the estimate

as defined in (5.8). The augmented Lagrangian function is formulated as,

L (B,Z,U) =
1

2
‖Y −XB‖2

F + h1(B) + h2(Z) (5.9)

+
τ

2
‖∆B> −Z +U‖2

F −
τ

2
‖U‖2

F .

The dual variableU is introduced to quantify the difference between ∆B> andZ. Additionally, τ

is a parameter which regularizes the Frobenius norm of theU variable. Algorithm 5.1 summarizes

the ADMM updates, and its derivation is included in Appendix B.

Recall that for any vector-valued function f , the proximal operator is defined as,

proxαf (v) = arg min
x

{
1

2
‖x− v‖2

2 + αf(x)

}
. (5.10)

The `1-norm and SCAD penalty function both admit closed-form proximal operators [51]. In order

to update the estimate of the ground truth signal during each pass, we need to solve the famous

Sylvester’s Equation. For any set of compatible matrices {A◦,B◦,Q◦} , solving Sylvester’s

equation amounts to finding a matrixR such that,

A◦R+RB◦ = Q◦. (5.11)
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Many computationally efficient implementations for solving Sylvester’s equation exist, and a

unique solution is guaranteed to exist if and only ifA◦ and −B◦ do not share any eigenvalue [6].

For our experiments written in Python, we utilize the Sylvester’s equation solver provided by

Scipy’s linear algebra toolbox [54].

Algorithm 5.1 ADMM for Graph-Regularized Joint Dictionary Indexing
Input: Data: measurements Y , dictionary matrixX , graph incidence matrix ∆.

Parameters: τ, T, and choice of h1, h2, (see discussion in 5.2.1).

1: Initialize:

B = X>Y , Z = ∆B>, U = 0,

D = ∆>∆,V = X>X,W = X>Y .

2: for t = 1, · · · , T do

3: Q←W + τ (Z −U)>∆.

4: B ← SolveSylvesters
(
A◦ ← V ,B◦ ← τD,Q◦ ← Q

)
{See (5.11)}.

5: for i = 1, · · · , n do

6: B:,i ← proxh1(B:.i)

7: end for

8: for j = 1, · · · ,m do

9: Zj,: ← proxh2/τ (∆j,:B
> +Uj,:)

10: end for

11: U ← U +
(
∆B> −Z

)
.

12: end for

Output: B̂ = B.
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Figure 5.1: Left: The ground truth 2D-grid graph. The ground truth signal is identical within

each of the regions with the same coloration. Right: The ground truth signal. At the top, we

visualize it such that each column corresponds to one of the nodes in the 2D-grid graph. To see

the correspondence, start at the top left, then go top to bottom, left to right. On the bottom, the

columns have been grouped according to the class of the ground truth signal. The sorted ground

truth is used for visualization only.

5.4 Joint Dictionary Indexing Experimental Results

In this section, we provide the empirical performance of ADMM for solving (5.8) as outlined in

Algorithm 5.1. The performance is measured using the Normalized Mean Squared Error (NMSE),

NMSE =
‖B̂ −B‖2

F

‖B‖2
F

, (5.12)

where B̂ is the output estimate of the algorithm. For each experiment, we tuned the parameters

using the Hyperopt toolbox [8]. The Python packages NetworkX [48] and PyGSP [34] were used

to construct and plot graphs. Both `1-norm and SCAD based penalty functions are considered in

the 2D grid graph experiments. Following the grid graph experiments, only the SCAD penalty

function is used with the random geometric graph experiments.
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Figure 5.2: The output of the algorithm with four choices of regularization combinations. For these

experiments, the SCAD penalty function has been used for both signal and graph regularization.

Each of the recovered signals have their columns sorted according to the same order as presented

in the bottom-right plot of Figure 5.1 for visualization only.

5.4.1 2D Grid Graph

For this set of experiments, a square, 2D-grid graph is generated with n = 15 × 15 = 225

nodes. The ground truth graph is plotted in the left pane of Figure 5.1. Labels are assigned to

each node according to this graph, i.e., there are three different signals and each βi,∀i ∈ [n]

is determined according to the piece-wise constant structure. Each measurement yi is obtained

according to (5.2), where d = 40 and p = 30. Each element of the dictionary matrix,X, is drawn

i.i.d. at random according to, Xi,j ∼ N (0, 1/d). The ground truth signal is plotted in the right

pane of Figure 5.1. Each of the three ground truth signal representations have entries generated

according to βk · ηi, ∀k ∈ {1, 2, 3},∀i ∈ [n], where, βk ∈ {20, 10,−10} and ηi ∼ Bernoulli(0.2),

i.e., the probability of ηi being 1 is 0.2.

In order to demonstrate the effectiveness of graph regularization for solving the joint dictionary

indexing problem, we compare four different algorithm configurations. First, we consider the

estimate where neither graph regularization nor signal sparsity are enforced, i.e., h1, h2 are absent,

which is equivalent to B̂LS = X†Y . Next, we compute the estimate when graph regularization is

not enforced, and only signal regularization is used on the ground truth signal itself, i.e., h2 is

not considered. Then, we enforce graph regularization, but no signal regularization, i.e. h1 is not
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Figure 5.3: The NMSE of the estimate at each iteration for the four scenarios when the SCAD

penalty function has been used for both regularizer functions. Here, zero-mean, additive white

Gaussian noise with variance σ2 = 1.0 has been added to each measurement.

included. Finally, we compute the estimate when both forms of regularization are enforced. In

any case, all relevant parameters are tuned accordingly.

We first examine the accuracy of the final estimate provided from each algorithm scenario in

Figure 5.2. For these experiments, the additive Gaussian noise is drawn according to a variance

of σ2 = 1.0. For a qualitative evaluation of each estimate, we refer to the colorbar—due to the

choice of a relatively divergent colorbar, small errors are qualitatively emphasized. In Figure 5.2,

the upper-left, upper-right, lower-left, and lower-right correspond to the reconstructed signal

when both forms of regularization, only signal regularization, only graph regularization, and no

regularization are used, respectively. These results corroborate the intuition that both forms of

regularization would be the most effective for recovering a piece-wise constant, sparse signal.

Next, we look towards the quantitative performance of the proposed algorithm. We plot the

NMSE of the estimate at each iterate for each of the four configurations in Figure 5.3. As an

ADMM algorithm is used with proper parameter choices, the algorithm is guaranteed to converge
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Figure 5.4: The NMSE of the output for the four scenarios with respect to different noise variance

levels of additive Gaussian noise.

to some solution; see [70]. However, when both forms of regularization are used, the algorithm

converges to a more accurate reconstructed signal. Finally, we analyze how robust the algorithm

is to differing levels of noise in Figure 5.4. Hyperparameters are tuned for each noise level.

Interestingly, both configurations which utilize graph regularization are more robust to noise.

Next, we mimic the previously presented experiments with `1 regularizers. We visualize the

output of each algorithm configuration in Figure 5.5 along with the NMSE of the output. The `1

penalty function is unable to reconstruct as accurate of a signal as the SCAD penalty function.

The same performance hierarchy exists with the `1 regularizers as with the SCAD regularizers;

both forms of regularization performs the best, while only signal regularization outperforms only

graph regularization. We can additionally examine the convergence plots for the `1 regularization

choice in Figure 5.6. Again, similar conclusions can be made as with the SCAD penalty function.
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Figure 5.5: The output of the algorithm with four choices of regularization combinations. For

these experiments, the `1 penalty function has been used for both signal and graph regularization.

Each of the recovered signals have their columns sorted according to the same order as presented

in the bottom-right plot of Figure 5.1 for visualization only.
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Figure 5.6: The NMSE of the estimate at each iteration for the four scenarios when the `1 penalty

function is used for both regularizer functions with σ2 = 1.
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Figure 5.7: Left: The random geometric graph. The unit square has been divided into four

quadrants, where the ground truth signal within each quadrant is identical. At the top, we visualize

it such that each column corresponds to one of the nodes in the graph. On the bottom, the columns

have been grouped according to the class of the ground truth signal. The sorted ground truth is

used for visualization only.

5.4.2 Random Geometric Graph

For this set of experiments, a random geometric graph, which is often used to model distributed

sensor networks, is generated with n = 100 nodes. The graph is plotted in the left pane of

Figure 5.7. The coordinates of each sensor are distributed randomly in a unit square plane. Edges

are drawn between two nodes when the distance between two nodes is less than or equal to 0.2—in

this graph, there are 526 edges. Labels are assigned to each node according to which quadrant

the node is located in, i.e., there are four different signals and each βi, ∀i ∈ [n] is determined

according to the piece-wise constant structure. Each measurement yi is obtained according

to (5.2), where d = 40 and p = 30. Each element of the dictionary matrix,X, is drawn i.i.d. at

random according to, Xi,j ∼ N (0, 1/d). The ground truth signal is shown in the right pane of

Figure 5.7. Each of the four ground truth signal representations have entries generated according

77



0 20 40 60 80

0

10

20

30

Both, NMSE = 0.032

0 20 40 60 80

0

10

20

30

Signal Only, NMSE = 0.214

0 20 40 60 80

0

10

20

30

Graph Only, NMSE = 0.279

0 20 40 60 80

0

10

20

30

None, NMSE = 0.387

20

10

0

10

20

Figure 5.8: The output of the algorithm with four choices of regularization combinations. For these

experiments, the SCAD penalty function has been used for both signal and graph regularization.

Each of the recovered signals have their columns sorted according to the same order as presented

in the bottom-right pane of Figure 5.7 for visualization only.

to βk · ηi,∀k ∈ {1, 2, 3, 4},∀i ∈ [n], where, βk ∈ {20, 10,−10,−20} and ηi ∼ Bernoulli(0.1).

For each of these experiments, the SCAD penalty function is used with Algorithm 5.1.

A similar narrative is formed for the random geometric graph as with the 2D grid graph. While

any form of regularization helps the ADMM-based algorithm to outperform the least squares

estimate, exploiting the additional knowledge of the piece-wise constant signal structure improves

the accuracy of the reconstructed signal. The reconstructed signals are shown in Figure 5.8. One

noticeable difference in the reconstruction quality can be seen in the recovery of the first two

signal classes, i.e., the light brown and dark brown. Values corresponding to the proper ground

truth signal are recovered when both forms of regularization are used, but, this is not the case

when only signal regularization is employed. Convergence for each algorithm configuration is

plotted in Figure 5.9. One interesting difference between the convergence plot for the 2D-grid

graph and the distributed sensor network graph is that the algorithm which only utilizes signal

regularization converges marginally faster that using both forms of regularization.
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Figure 5.9: The NMSE of the estimate at each iteration for the four scenarios when the SCAD

penalty function has been used for both regularizer functions.

5.5 Indexing Electron Back-Scattered Diffraction Patterns

In this section, we provide an overview of the Electron Back-Scattered Diffraction (EBSD)

technique. The data created and figures visualized derive from the use of the EMSoft public

repository [32].

We are interested in the problem of indexing a set of electron back-scattered diffraction (EBSD)

patterns of some sample. In this context, indexing refers to estimating the orientation of the crystal

structure in 3D space in terms of the Euler angles of the rotation. In a nutshell, a scanning electron

microscope (SEM) is used to collect diffraction patterns of the sample in a raster-scan fashion.

From knowledge of the microscope geometry, the physical and chemical makeup of the sample,

and the time spent with the electron beam focused at a certain point, physics-based forward

models have been derived which can accurately synthetically generate the diffraction patterns

via Monte Carlo simulations [14]. The goal of this work is to—in post-processing—improve the

accuracy of indexing each pattern individually as well as the set of diffraction patterns contained

from the entire experiment.

Traditionally, diffraction patterns have been indexed using the Hough transform to extract the
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Figure 5.10: The effect of Poisson noise on the diffraction pattern quality.

positions and orientations of the characteristic Kikuchi bands [1, 58, 59]. Other approaches have

been proposed, including a technique based on dictionary indexing [24]. While the dictionary

indexing method was shown to be exceptionally robust to noisy diffraction patterns, its use is

computationally heavy due to the incredibly large size of the dictionary. More recently, a technique

known as Spherical Indexing (SphInx) has been proposed [61], which is based upon spherical

harmonic transforms. In the following sections, we look to improve upon the dictionary indexing

technique by enforcing global structures with graph regularization.

Diffraction patterns are visualizations of the number of electrons measured at the detector

plane in the SEM. The quality of the diffraction patterns is dependent on the physical properties

of the system. The combination of sources of noise in the observed diffraction pattern can be

approximated by Poisson noise. Let y? = Xβ? be the (vectorized) ground truth diffraction

pattern. Assume that each pixel values falls within the range y?i ∈ [0, 1]. The noisy observed

diffraction pattern y is then modeled by,

zi
i.i.d.∼ Poisson(Ky?i ), (5.13)

yi =
zi
K
. (5.14)

Here, K > 0 is a positive integer which determines the amount of noise present in the system.

Example diffraction patterns at various noise levels for the same orientation are visualized in

Figure 5.10. Larger values of K correspond with less noise being present in the observed

diffraction pattern.
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Figure 5.11: The graph structure used for the EBSD experiments, where the nodes have been

labeled according to the different ground truth diffraction patterns.

5.6 EBSD Experimental Results

First, we must elucidate the process of performing joint dictionary indexing for EBSD diffraction

patterns with graph regularization. We obtain d diffraction patterns, {xi}di=1, and construct the

dictionary matrixX = [x1 · · ·xd]. Each diffraction pattern is made up of p pixels. This dictionary

can be produced using the EMsoft public repository [32]. Let {yi}ni=1 be the set of n diffraction

patterns obtained in a raster-scan of the desired sample alloy, where each pattern is made up of p

pixels. Then for each diffraction pattern, the vector βi is the (1-sparse) vector which determines

the linear combination of dictionary items of X that define the observed pattern. In order to

estimate the set of vectors {βi}ni=1, one can create matrix objects according to (5.5) and run

Algorithm 5.1.

In this section, we provide preliminary results for joint pattern dictionary indexing as described

in the previous section. The patterns are generated using the EMsoft software package [32]. The

simulated dataset considered consists of EBSD scans of a Nickel sample at 20 keV. Individual

8-bit patterns were binned to 320 × 320 pixels, and then resized to be 40 × 40 pixels. After

resizing, the experimental patterns are corrupted by various amounts of noise according to the
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Figure 5.12: Example noisy patterns are visualized, where the patterns are resized to lower

dimensions. With the smaller patterns being used, the impact of noise is much more prevalent, in

comparison to the patterns presented in Figure 5.10

.

noise model described in (5.13). Visualizations of the noisy patterns considered within the

experiments are in Figure 5.12. We create a dictionary comprised of d = 3000 patterns and the

observed, noisy experimental patterns exist within this (relatively small) dictionary. This differs

from the traditional notion of dictionary indexing in the EBSD literature, where a more granular

dictionary is created of ground truth patterns, and then the full experimental pattern (without

resizing) is compared with every dictionary pattern to find the dictionary element which has the

highest correlation with the experimental pattern. We leave the process of dictionary indexing a set

of unknown experimental patterns against a full dictionary to future work. Results are quantified

based on the classification rate, which is defined as the ratio of correctly indexed experimental

patterns to the total number of experimental patterns. Algorithm 5.1 is run with both forms of

regularization with the SCAD penalty function, where the relevant parameters have been properly

tuned using the Hyperopt package.

5.6.1 Joint Diffraction Pattern Indexing

For this set of experiments, we vary the amount of corruption added to the experimental patterns

and measure the classification rate. The graph configuration used for the experiments is shown in
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Figure 5.13: The classification rate as the scaling factor of Poisson noise, K, is modified. Recall

that a smaller K corresponds to more corruption; see Figure 5.12. 100% classification accuracy is

obtained as soon as K = 5.

Figure 5.11, where each region corresponds to a different ground truth experimental diffraction

pattern. From an optimization perspective, this amounts to recovering a 1-sparse signal from

a noisy measurement, as the experimental pattern is in the dictionary of known patterns. As is

expected, Algorithm 5.1 is able to successfully index patterns. Referring to Figure 5.12, one can

conclude that it is possible to index incredibly corrupted experimental patterns with the usage of

signal- and graph-regularization. As is seen in Figure 5.13, the algorithm is robust to the presence

of Poisson noise.

5.6.2 Joint Pattern Demixing Model

In order to make the pattern indexing problem even more challenging, we propose a new exper-

imental setting where experimental patterns have been added together, and now the goal is to

recover the orientations of each of the summed experimental patterns. Figure 5.14 visualizes

what the sum of 4 patterns looks like to the human eye. Each region in the graph in Figure 5.11
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Pattern Mixture Model

Vincent Monardo

43

Figure 5.14: An example of four different diffraction patterns being added together to form a

mixture of patterns. Algorithm 5.1 is then used to recover each of the ground truth orientations

simultaneously.

corresponds to a different mixture of experimental patterns. For these experiments, Poisson noise

has not been added to the observed mixture of experimental patterns. Algorithm 5.1 is again run

with the SCAD penalty function used for both forms of regularization. Figure 5.15 catalogs the

effectiveness of the algorithm to classifying a mixture of diffraction patterns. One can expect

near-perfect classification rates for indexing a mixture of up to 40 patterns. Even at a mixture of

100 patterns, the algorithm is able to accurately classify over 94% of the experimental patterns

included within the mixed pattern signal observed at each node of the graph.

5.7 Conclusion

We empirically demonstrate the utility of graph regularization in solving joint dictionary indexing

problems. The proposed ADMM-based algorithm for signal- and graph-regularization is applied

to the problem of indexing the orientations of electron back-scattered diffraction patterns from a
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Figure 5.15: The classification rate as the number of diffraction patterns mixed together increases.

The classification checks that all patterns are correctly indexed. A decline in performance is

observed when more than 40 patterns are mixed together.

scanning electron microscope. In both cases, graph regularization is demonstrated to improve

the global conformity with the structure assumed to exist a priori in the signal model. In both

cases, we would like to investigate the performance of graph regularization in more scenarios:

different noise levels, types of noise, forward models, etc. Furthermore, we are interested to see

graph regularization can be applied to the spherical indexing process. Additionally, it would be

interesting to prove the theoretical performance in both cases, similarly as in [101].
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Appendix A

Derivations for Chapter 2

In the appendix, we provide the derivations of the optimal preprocessing functions in AWGN and

Poisson noise using the formula in [76]. For the derivations, suppose that x ∈ Cn is uniformly

distributed over the n-dimensional complex sphere with radius
√
n, i.e., x ∼ Unif(

√
nSn−1

C ), and

{ai}mi=1

i.i.d.∼ N (0, 1
2n
In) + jN (0, 1

2n
In). Let si = 〈x,ai〉, the optimal preprocessing function can

be derived as

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

. (A.1)

Furthermore, the sampling threshold can be derived as

αu =

(∫
R

Es {p(y | |s|)(1− |s|2)}
Es {p(y | |s|)}

)−1

. (A.2)

A.1 Derivations for the AWGN case

In the presence of AWGN, the measurement yi follows the distribution yi ∼ p(y | |si|), where

p(y | |si|) =
1

σ
√

2π
exp

(
−(y − |si|2)2

2σ2

)
. (A.3)

Furthermore, we can rewrite si = <(si) + j=(si), where (<(si),=(si)) ∼ N (0, 1
2
I2). Let

R = |si| =
√
<(si)2 + =(si)2. Then R follows a Rayleigh distribution with scale parameter 1√

2
.
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A.1.1 Optimal Preprocessing Function for AWGN

By the calculations in A.1.1, we have,

Es{p(y | |s|)} = exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ). (A.4)

By the calculations in A.1.1, we have,

Es{|s|2p(y | |s|)} = (y − σ2) exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ)+

σ√
2π

exp

(
− y2

2σ2

)
. (A.5)

Therefore, plugging (A.4) and (A.5) into (A.1), we obtain the optimal preprocessing function

as,

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

(A.6)

= 1−
exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

(y − σ2) exp
(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ) + σ√

2π
exp

(
− y2

2σ2

) (A.7)

= 1−

y − σ2 +

√
σ2

2π

exp
(
− (y−σ2)2

2σ2

)
Q
(
− (y−σ2)

σ

)
−1

. (A.8)

Calculations for Es{p(y | |s|)} in AWGN

We have

Es{p(y | |s|)} = ER{p(y | R)}

=

∫ ∞
0

1

σ
√

2π
exp

(
−(y − z)2

2σ2

)
exp(−z)dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − 2yz + z2

2σ2

)
exp(−z)dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − 2yz + z2 + 2σ2z

2σ2

)
dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − (2y − 2σ2)z + z2

2σ2

)
dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−(z − (y − σ2))2 + σ2(2y − σ2)

2σ2

)
dz
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= exp

(
−(2y − σ2)

2

)∫ ∞
0

1

σ
√

2π
exp

(
−(z − (y − σ2))2

2σ2

)
dz

= exp

(
−(2y − σ2)

2

)∫ ∞
−(y−σ2)

1

σ
√

2π
exp

(
− z2

2σ2

)
dz

= exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ).

Calculations for Es{|s|2p(y | |s|)} in AWGN

Similarly,

Es{|s|2p(y | |s|)} =

∫ ∞
0

z

σ
√

2π
exp

(
−(y − z)2

2σ2

)
exp(−z)dz

= exp

(
−(2y − σ2)

2

)∫ ∞
0

z

σ
√

2π
exp

(
−(z − (y − σ2))2

2σ2

)
dz

= exp

(
−(2y − σ2)

2

)∫ ∞
−(y−σ2)

z + (y − σ2)

σ
√

2π
exp

(
− z2

2σ2

)
dz

= exp

(
−(2y − σ2)

2

)[∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz

+

∫ ∞
−(y−σ2)

(y − σ2)

σ
√

2π
exp

(
− z2

2σ2

)
dz

]
= exp

(
−(2y − σ2)

2

)∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz

+ (y − σ2) exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ).

Note that the first term can be further simplified as

∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz =

1√
π

∫ ∞
−(y−σ2)

z

σ
√

2
exp

(
−
(

z

σ
√

2

)2
)
dz

=
σ
√

2√
π

∫ ∞
− (y−σ2)

σ
√
2

u exp
(
−u2

)
du

=
σ
√

2√
π

[
−1

2
exp(−u2)

]∞
− (y−σ2)

σ
√
2

=
σ√
2π

exp

(
−(y − σ2)2

2σ2

)
,

leading to the expression in (A.5).

89



A.1.2 Sampling Ratio Threshold for AWGN

Plugging (A.4) and (A.5) into (A.2), we tackle the calculation of the sampling threshold as

α−1
u =

∫
R

(Es{p(y | |s|)(|s|2 − 1)})2

Es{p(y | |s|)}
dy

=

∫
R

[Es{|s|2p(y | |s|)} − Es{p(y | |s|)}]2
Es{p(y | |s|)}

dy

=

∫
R

[
(y − σ2 − 1) exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ) + σ√

2π
exp

(
− y2

2σ2

)]2

exp
(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

dy

=

∫
R
(y − σ2 − 1)2 exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ)dy︸ ︷︷ ︸

T1

(A.9)

+

∫
R

2σ(y − σ2 − 1)√
2π

exp

(
− y2

2σ2

)
dy︸ ︷︷ ︸

T2

(A.10)

+
σ2

2π

∫
R

exp(− y2

2σ2 ) exp(− (y−σ2)2

2σ2 )

Q(−(y − σ2)/σ)
dy︸ ︷︷ ︸

T3

. (A.11)

We separately handle the calculation of the three terms, T1, T2, and T3 in equations (A.9), (A.10),

and (A.11), respectively.

Calculation of T1

T1 =

∫
R
(y − σ2 − 1)2 exp

(
−(2y − σ2)

2

)
Q(−(y − σ2)/σ)dy

=

∫
R
(y − σ2 − 1)2 exp

(
−(2y − σ2)

2

)[∫ ∞
−(y−σ2)

1

σ
√

2π
exp

(
− z2

2σ2

)
dz

]
dy

=

∫
R

[∫ ∞
−(y−σ2)

(y − σ2 − 1)2 exp

(
−(2y − σ2)

2

)
1

σ
√

2π
exp

(
− z2

2σ2

)
dz

]
dy

=

∫ ∞
−∞

[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp

(
−(2y − σ2)

2

)
1

σ
√

2π
exp

(
− z2

2σ2

)
dy

]
dz

=
1

σ
√

2π
exp

(
σ2

2

)∫ ∞
−∞

exp

(
− z2

2σ2

)[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp(−y)dy

]
︸ ︷︷ ︸

S

dz.

We handle the integral within the brackets, S, first.
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S =

[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp(−y)dy

]
=

∫ ∞
−(z−σ2)

(y2 − y(2σ2 + 2) + (2σ2 + σ4 + 1)) exp(−y)dy

=

∫ ∞
−(z−σ2)

(y2) exp(−y)dy︸ ︷︷ ︸
S1

−
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy︸ ︷︷ ︸
S2

+

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy︸ ︷︷ ︸
S3

.

The first of these integrals, S1, is

S1 =

∫ ∞
−(z−σ2)

(y2) exp(−y)dy = −(y2 + 2y + 2) exp(−y)
∣∣∞
−(z−σ2)

= [(z − σ2)2 − 2(z − σ2) + 2] exp(z − σ2)

= [(z − σ2 − 2)(z − σ2) + 2] exp(z − σ2)

= [z2 − zσ2 − 2z − zσ2 + σ4 + 2σ2 + 2] exp(z − σ2)

= [z2 − (2σ2 + 2)z + σ4 + 2σ2 + 2] exp(z − σ2).

The second of these integrals, S2, is

S2 = −
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy

= (2σ2 + 2) (y + 1) exp(−y)|∞−(z−σ2)

= −(2σ2 + 2)(−(z − σ2) + 1) exp(z − σ2)

= (2σ2 + 2)(z − σ2 − 1) exp(z − σ2)

= (2σ2z + 2z − 2σ4 − 2σ2 − 2σ2 − 2) exp(z − σ2)

= [z(2σ2 + 2)− 2σ4 − 4σ2 − 2] exp(z − σ2).

The third of these integrals, S3, is

S3 =

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy
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= −(2σ2 + σ4 + 1) exp(−y)|∞−(z−σ2)

= (2σ2 + σ4 + 1) exp(z − σ2)

Therefore,

S =

∫ ∞
−(z−σ2)

(y2) exp(−y)dy −
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy

+

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy

= [z2 − (2σ2 + 2)z + σ4 + 2σ2 + 2] exp(z − σ2) + [z(2σ2 + 2)− 2σ4 − 4σ2 − 2] exp(z − σ2)

+ (2σ2 + σ4 + 1) exp(z − σ2)

= (z2 + 1) exp(z − σ2)

Using this result above, we substitute S back into the equation for T1, and obtain

T1 =
1

σ
√

2π
exp

(
σ2

2

)∫ ∞
−∞

exp

(
− z2

2σ2

)
(z2 + 1) exp(z − σ2)dz

= exp

(
σ2

2

)∫ ∞
−∞

z2

σ
√

2π
exp

(
−(z2 − 2σ2z + 2σ4)

2σ2

)
dz

+ exp

(
σ2

2

)∫ ∞
−∞

1

σ
√

2π
exp

(
−(z2 − 2σ2z + 2σ4)

2σ2

)
dz

=

∫ ∞
−∞

z2

σ
√

2π
exp

(
−(z − σ2)2

2σ2

)
dz +

∫ ∞
−∞

1

σ
√

2π
exp

(
−(z − σ2)2

2σ2

)
dz

= σ4 + σ2 + 1.

Calculation of T2

T2 =

∫
R

2σ(y − σ2 − 1)√
2π

exp

(
− y2

2σ2

)
dy

= 2σ2

∫
R

y

σ
√

2π
exp

(
− y2

2σ2

)
dy −

∫
R

2σ4 + 2σ2

σ
√

2π
exp

(
− y2

2σ2

)
dy

= −2σ4 − 2σ2.

Calculation of T3

T3 =
σ2

2π

∫
R

exp(− y2

2σ2 ) exp(− (y−σ2)2

2σ2 )

Q(−(y − σ2)/σ)
dy
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=
σ3

2π

∫ ∞
−∞

exp
(
− (u+σ)2

2

)
exp

(
−u2

2

)
Q(−u)

du

=
σ3 exp (−σ2/2)

2π

∫ ∞
−∞

exp (−σu) exp (−u2)

Q(−u)
du.

Putting it all together, we finally obtain

αu = (T1 + T2 + T3)−1

=

(
1− σ2 − σ4 +

σ3 exp (−σ2/2)

2π

∫ ∞
−∞

exp (−σu) exp (−u2)

Q(−u)
du

)−1

.

A.2 Derivations for the Poisson Case

Let si = 〈x,ai〉. In the presence of Poisson noise with rate |si|2, the measurement yi follows the

distribution yi ∼ p(y | |si|), where

p(y | |si|) =
|si|2ye−|si|2

y!
. (A.12)

A.2.1 Optimal Preprocessing Function for Poisson noise

First, since |s| follows a Rayleigh distribution with scale parameter 1√
2
, we have

Es{p(y | |s|)} =
1

y!

∫ +∞

0

zy exp(−2z)dz

=
1

y!

∫ +∞

0

1

2
(
1

2
x)y exp(−x)dx

=
1

y!

1

2y+1

∫ ∞
0

xy exp(−x)dx

=
1

y!

1

2y+1
Γ(y + 1). (A.13)

Furthermore,

Es{|s|2p(y | |s|)} =

∫ +∞

0

zy+1

y!
exp(−2z)dz

=
1

y!

∫ +∞

0

zy+1 exp(−2z)dz
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=
1

y!

∫ +∞

0

1

2
(
1

2
x)y+1 exp(−x)dx

=
1

y!

1

2y+2

∫ ∞
0

xy+1 exp(−x)dx

=
1

y!

1

2y+2
Γ(y + 2)

=
y + 1

y!2y+2
Γ(y + 1) (A.14)

Then, plugging (A.13) and (A.14) into (A.1), we can obtain

T (y) = 1−
1
y!

1
2y+1 Γ(y + 1)
y+1
y!2y+2 Γ(y + 1)

= 1− 2

y + 1
=
y − 1

y + 1
. (A.15)

A.2.2 Optimal Sampling Threshold for Poisson noise

Plugging (A.13) and (A.14) into (A.2), we have that

α−1
u =

∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
1

2y+1 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

(A.16)

=
∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
1

2y+1 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

(A.17)

=
∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
2

2y+2 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

=
∑
y∈R

[
y−1
y!2y+2 Γ(y + 1)

]2

1
y!

1
2y+1 Γ(y + 1)

=
∑
y∈R

[
y−1
y!2y+2

]2

Γ(y + 1)

1
y!

1
2y+1

=
∑
y∈R

(y − 1)2

y!22y+3
Γ(y + 1)

=
1

8

∑
y∈R

y2 − 2y + 1

y!2y

[∫ +∞

0

xy exp(−x)dx

]

=
1

8

∫ +∞

0

∑
y∈R

[(x
2

)y exp
(
−x

2

)
y!

(y2 − 2y + 1)

]
exp

(
−x

2

)
dx
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=
1

8

∫ +∞

0

Ey∼Poisson(x
2

)

[
y2 − 2y + 1

]
exp

(
−x

2

)
dx

=
1

8

∫ +∞

0

[(x
2

)
+
(x

2

)2

− 2
(x

2

)
+ 1

]
exp

(
−x

2

)
dx

=
1

8

∫ +∞

0

(x
2

)2

exp
(
−x

2

)
dx− 1

8

∫ +∞

0

(x
2

)
exp

(
−x

2

)
dx+

1

8

∫ +∞

0

exp
(
−x

2

)
dx

=
1

4

∫ +∞

0

u2 exp(−u)du− 1

4

∫ +∞

0

u exp(−u)du+
1

4

∫ +∞

0

exp(−u)du

=
1

4
[2− 1 + 1] =

1

2
(A.18)

Therefore, αu = 2.
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Appendix B

Derivations for Chapter 5

In this appendix, we provide the derivation of Algorithm 5.1. Recall thatB? is the ground truth

signal defined on the graph, to be estimated by B̂. The dictionary matrix isX , and Y are the noisy

measurements. The matrix ∆ is the oriented incidence matrix given from the graph structure. We

look to solve an optimization problem of the form,

B̂ = argminB∈Rd×n
1

2
‖Y −XB‖2

F + h1(B) + h2(Z), s.t. Z = ∆B>. (B.1)

Here, h1, h2 are the signal- and graph-regularization functions, respectively, where the parameters

for computing the penalty functions are omitted here. The penalty function definitions can be

found in Section 5.2.1.

We derive the augmented Lagrangian function for the above optimization problem as,

L (B,Z,U) =
1

2
‖Y −XB‖2

F + h1(B) + h2(Z) (B.2)

+
τ

2
‖∆B> −Z +U‖2

F −
τ

2
‖U‖2

F ,

where τ is a tuning parameter, and the dual variable U is introduced to quantify the difference

between ∆B> and Z. Then, we can consider the following update rules according to alternating

direction method of multipliers (ADMM):

B+ ← arg min
B
L (B,Z,U) , (B.3)
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Z+ ← arg min
Z
L
(
B+,Z,U

)
, (B.4)

U+ ← U + (∆B+> −Z+). (B.5)

With regard to updatingB, we aim to solve the problem,

B+ = arg min
B


1

2
‖Y −XB‖2

F +
τ

2
‖∆B> −Z +U‖2

F︸ ︷︷ ︸
:=f(B)

+h1(B)

 . (B.6)

However, the above problem (B.6) does not admit a closed-form solution. One could use an

iterative algorithm such as proximal gradient descent to obtain an exact solution. To reduce

computational complexity, we use an inexact solver, which first finds the gradient calculation

of f(B) and then applies a proximal map to the minimizer. In this sense, Algorithm 5.1 is an

”inexact” ADMM algorithm [49]. Now, we return to deriving the inexact solution to (B.6) as

follows. The gradient calculation is derived as,

0 ∈ ∇Bf (B)|B=B+ (B.7)

⇒ 0 = X>(XB+ − Y ) + τ(B+∆> +U> −Z>)∆ (B.8)

⇒X>XB+ + τB+∆>∆ = X>Y + τZ>∆− τU>∆. (B.9)

The last line of the update rule for B shows that we need to solve Sylvester’s equation, ÃX̃ +

X̃B̃ = Q̃, where

X̃ = B+, Ã = X>X, B̃ = τ∆>∆, (B.10)

Q̃ = X>Y + τZ>∆− τU>∆. (B.11)

Then, the proximal update is clear:

B+ = arg min
D

{
1

2
‖D −B‖2

F + h1(D)

}
, (B.12)

:= proxh1 (B) , (B.13)

where the proxh(·) is the matrix-valued definition of the proximal operator.
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With regard to updating Z,

Z+ = arg min
Z
L
(
B+,Z,U

)
(B.14)

= arg min
Z

{
1

2
‖∆B> −Z +U‖2

F +
1

τ
h2(Z)

}
(B.15)

= proxh2/τ
(
∆B+> +U

)
, (B.16)

In the main text, each column is denoted to be updated in parallel to remain consistent with the

typical vector-valued proximal operator that is presented.
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