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Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.
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“Recalculating ... recalculating ...”




More successes of RL since AlphaGo

resource management

et |
UAV and drones

nuclear plant control

strategic games



One more recent success: RLHF
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Prompts & Text Dataset

Initial Language Model

Human Augmented
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What is RLHF?

ChatGPT
RLHF stands fo[ Reinforcement Learning from Human Feedback.]lt‘s

atechnique used in machine learning and artificial intelligence
where a model learns to perform tasks or make decisions based on
feedback from human trainers, rather than solely relying on pre-

existing data sets or explicit programming. This approach allows the
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reinforcement learning.
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RL holds great promise in accelerating scientific,
engineering and societal discoveries.



RL holds great promise in accelerating scientific,
engineering and societal discoveries.

How do we build the statistical and algorithmic foundations of
RL to help realizing its potential?




Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space

i Prompt:

@ - e Should | add chorizo

' . to my paella?

1 1 T
& { Response 1: Absolutely! ...
A | Response 2: In Valencian...

Feedback (ranking):
Response 1is better than 2

~ i

clinical trials autonomous driving
LLM alignment



Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space

i Prompt:
™ - Should | add chorizo
} > ~ to my paella?

‘ 8
{ Response 1: Absolutely! ...
A | Response 2: In Valencian...
I I ! Feedback (ranking):

Response 1is better than 2
clinical trials autonomous driving

LLM alignment

Calls for design of sample-efficient RL algorithms!



Computational efficiency

Training RL algorithms might take a long time

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Training RL algorithms might take a long time

many CPUs / GPUs / TPUs + computing hours

Calls for runtime efficient RL algorithms!



Statistical thinking in RL: non-asymptotic analysis

= i
ITITLRS(INI An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

e

asymptotic
analysis

Reinforcement Learning:
Theory and Algorithms

Alekh Agarwal  Nan Jiang ~ Sham M. Kakade ~ Wen Sun

December 9, 2020

Non-asymptotic analyses are key to understand and improve
statistical efficiency in modern RL. J




Recent advances in statistical RL

The playground: Markov decision processes



This talk: from single-agent to federated Q-learning
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This talk: from single-agent to federated Q-learning

Single-agent Q-learning Federated Q-learning
sample ( G )

comploity &

(log scale) J




Backgrounds:
Markov decision processes



Markov decision process (MDP)
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® S: state space e A: action space
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Markov decision process (MDP)

action a;
-

I

I

environment (¢ — -

® S: state space e A: action space

® r(s,a) €[0,1]: immediate reward
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Markov decision process (MDP)

® S: state space e A: action space

® r(s,a) €[0,1]: immediate reward

® 7(+|s): policy (or action selection rule)
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Markov decision process (MDP)

action
a; ~ m(-|s¢)

L s

&

<

next state
st+1 ~ P(:|st,ar)

® S: state space e A: action space
® r(s,a)€[0,1]: immediate reward

® 7(+|s): policy (or action selection rule)

® P(:s,a): transition probabilities
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Value function
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Value function
T3 T4

action
state s a; ~ 7(-|s¢) r 1 o
_______ ol agent _— -I 0
|
7 riW?(g a, I :> S.O % I 8.2 % 93— S
: ¢ Lt \\_all ;\ —’I \\_4" (\ 4” (w r"
D — ag ay az as ag

(‘[st, ae)

s ~ P

Value function of policy 7:
VseS: V7(s) ZZE[Z’YLT}|8028:|
=0

Q-function of policy
V(s,0) €S x A Q“(s,co:=E[thr<st,at>|so=s,ao-a]
=0

L_ s effective horizon

® v¢€[0,1) is the discount factor; ™

® Expectation is w.r.t. the sampled trajectory under 7w



Searching for the optimal policy

Reinforcement |\
Learning

Aa Introduction

______ —_— Dynamic 'Prugramming
r and Optimal Control

fm————
1
1
A
]
1
. 1

Goal: find the optimal policy 7* that maximize V7 (s)

e optimal value / Q function: V*:= V™  Q*:= Q™
* optimal policy 7*(s) = argmax, 4 Q" (s,a)
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Bellman’s optimality principle

Bellman operator

T(Q)(s;a):= r(s,a) +v
immediate reward

® one-step look-ahead

E
s'~P(:|s,a)

[

A !
max Q(s',a’)

next state's value

)
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Bellman’s optimality principle

Bellman operator

T(Q)(& a) = L(s,_a7 a) " ,ys’~PI(E|s,a) [{III?XQ(S a )]

immediate reward ;
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to

T(@)=Q
~-contraction of Bellman operator:
”T(Ql) B T(Qz)H‘x’ S PYHQl B Q2H°° Richard Bellman

14



Is Q-learning minimax-optimal?

Changxiao Cai Yuxin Chen Yuting Wei
UMich UPenn UPenn



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951
Q" =T(Q")

where

—_— s'~P(|s,a) La'eA
immediate reward

T(Q)(s,a)= r(s,a) +v E [maxQ(s’,a')].

next state’s value

16



Synchronous Q-learning

generative moolel

Stochastic approximation for solving Bellman equation Q* = T(Q*)
using samples collected from the generative model:

Qr1(s,a) = (1-1)Q¢(s,a) + T (Q¢)(s,a), t20

draw the transition (s,a,s’) for all (s,a)

17



Synchronous Q-learning

generative moolel

Stochastic approximation for solving Bellman equation Q* = T(Q*)
using samples collected from the generative model:

Qr1(s,a) = (1-1)Q¢(s,a) + T (Q¢)(s,a), t20

draw the transition (s,a,s’) for all (s,a)

Te(Q)(s,a) =7(s,a) + ’YHL?F}XQ(S’, a)

T@(@sa) =r(sa)+y | B [maxQ(s’a)]

s/~P(|s,a)

17



Prior art: achievability

Question: How many samples are needed for [|Q — Q*||o < €7

18



Prior art: achievability

Question: How many samples are needed for [|Q — Q|| < £7?

Minimax lower bound (Azar et al., 2013): ﬁ( 1SIAl )

(1)<
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Prior art: achievability

Question: How many samples are needed for [|Q — Q|| < £7?

1_,7):352

Minimax lower bound (Azar et al., 2013): ﬁ((l‘si)

aper sample complexit N
pap P plexity sample <

complexity
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All prior results require sample size of at least %! J
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Prior art: achievability

Question: How many samples are needed for [|Q — Q|| < £7?

Minimax lower bound (Azar et al., 2013): ﬁ(( 1SIAl )
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—imax
PRl
1
Chen et al. 20 %’g% = (log scale)

. . . SlIA
All prior results require sample size of at least (J_J/%! J

Is Q-learning sub-optimal, or is it an analysis artifact?
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A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)
For any 0 < £ < 1, Q-learning yields |Q - Q* | <& with sample

complexity at most
5(_IsIA Y\
(1)
1

® Improves dependency on the effective horizon -

19



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)
For any 0 < £ < 1, Q-learning yields |Q - Q* | <& with sample

complexity at most
5(_IsIA Y\
(1)
1

® Improves dependency on the effective horizon -

® Allows both constant and rescaled linear learning rate:

1 < < 1
c1(1-9)T — e = ca(1-v)t
L+ log? T L+ log? T

19



A curious numerical example

. . S|lA
Numerical evidence: (llﬂ‘% samples seem necessary ...

— observed in Wainwright '19

a=2 = 10°
.
1-p v §
©O'——— 0O g
3
a
(<}
B
w
&
4’)/ _ 1 % ——— Q-learning
p I 5 ———- Theory: N =< ﬁ
@
3»}, 10 15 20 25 130 35 40
r(0,1)=0, r(1,1)=7r(1,2)=1 discount complexity: =
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Q-learning is not minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

Assume 3/4 <7 <1 Forany0<e<1, there exists some MDP such that
to achieve |Q — Q" | < €, Q-learning needs at least a sample complexity

o S|4
“((1—»0452)'

® Tight algorithm-dependent lower bound

® Holds for both constant and rescaled linear learning rates

a=1
a=2

21



Where we stand now
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Q-learning requires a sample size of Goyiee
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Where we stand now

S
A SR
sample Q/
complexity 5\\P‘\ 2
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> (log scale)
Q-learning is not minimax optimal! J
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

® max,e4 EX (a) tends to be
over-estimated (high positive bias)
when EX (a) is replaced by its
empirical estimates using a small
sample size;

® often gets worse with a large
number of actions (Hasselt, Guez,
Silver, 2015).

® Motivated the design of double
Q-learning (Hasselt, 2010).

error

15 — max, Q(s.a) — Vi(s)
1.0 mm Qs argmax,Q(s,a)) — V.(s)
0.5
00 J}
B AN ¢3 ;j‘ 2, %
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =

Vi (s) + €, and the errors {¢, } ™ ; are independent standard
normal random variables. The second set of action values
@)’, used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

® maxg,c4 EX (a) tends to be

over-estimated (high positive bias) 18 m-geo X0
. . 5 10 Qs argmax,Q(s,a s
when EX (a) is replaced by its £,
emplrlcall estimates using a small 00 le
sample size; v e eesgne
v
° 1 number of actions
often gets WOI’.SG with a large Figure 1: The orange bars show the bias in a single Q-
number of actions (Hasselt, Guez, learning update when the action values are Q(s,a) =
Silver, 2015). Vi (s) + €, and the errors {¢, } ™ ; are independent standard
normal random variables. The second set of action values
e Motivated the design of double @)’, used for the blue bars, was generated identically and in-

i dependently. All bars are the average of 100 repetitions.
Q-learning (Hasselt, 2010).

Our work provides theoretical footings regarding the over-estimation issue
of vanilla Q-learning. J
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Asynchronous Q-learning

50— 81582533\84535‘
4 4

v H v ‘ T H ' ' H
‘\_f’ \ \\_ri ‘\_—, ‘\ - \ 4

ag \di ag as a'4 215’
m(-[s0) m(:|s1) Tb(|s2) mb(-Is3) mu(-[s4) mb(:|ss)

Stochastic approximation for solving Bellman equation Q* = T(Q™)
using samples collected from a behavior policy m:

Qir1(st,at) = (1 =n)Qu(s1,a1) +nTi(Qe)(51,ar), 120

only update (s¢,a)-th entry
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Asynchronous Q-learning

50— 81582333\84535‘
’ ’ ’

v H v v T H v ' H
‘\_f’ \ \\_f ‘\_—, ‘\ - \ 4

ag \di ag as a'4 Zl5’
m(-[s0) m(:|s1) Tb(|s2) mb(-Is3) mu(-[s4) mb(:|ss)

Stochastic approximation for solving Bellman equation Q* = T(Q™)
using samples collected from a behavior policy m:

Qir1(st,at) = (1 =n)Qu(s1,a1) +nTi(Qe)(51,ar), 120

only update (s¢,a)-th entry

|
|
SI | (s2,a2) Te(Q)(st,at) =r(se,a0) + ’YIIZ?}XQ(Stﬂ,a')
EW TG =r(sa)+y | B [maxQ(sa)]
[ A S ! #/~P(ls,a) " a
[ I

@(s,a)
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Sample complexity of asynchronous Q-learning

S0
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\,

% S1—
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mo(-[s0) m(-|s1) m([s2) b(-[s3) mb(-[sa) mo(-|s)
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Sample complexity of asynchronous Q-learning

S0

S1
\

S2— S4

% X : 2N S5
/’ 1’ \ 1’ \, ’ \, J !

(\ _’
Qa,
T

mo(-[s0) m(-|s1) m([s2) b(-[s3) mb(-[sa) mo(-|s)

T
\,
~—— '~ - '~ '~

N
ag ay a2 as ay

Key quantities:
® minimum state-action occupancy probability
Hmin = Mmin Mm)(& a)

N——
stationary distribution

® mixing time: tnix
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Sample complexity of asynchronous Q-learning

S0~ B~ 8= 8= 8=
(v [ (v A A (s

o oo
ag ay a2 as Qy as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[s3) o(-[sa) mo(|ss)

Key quantities:
® minimum state-action occupancy probability

Hmin = 11111 /’Lﬂb(87 a)
—_—
stationary distribution

® mixing time: tmix
Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

For any 0 < € < 1, sample complexity of async Q-learning to yield
|Q - Q" | s < & with high prob is at most

1 i tmix
,UJmin(1 - 7)452 ,Ltmin(l - /7)

(up to log factor)




Sample complexity of asynchronous Q-learning

S0~ B~ 8= 8= 8=
(v [ (v A A (s

o oo
ag ay a2 as Qy as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[s3) o(-[sa) mo(|ss)

Key quantities:
® minimum state-action occupancy probability

Hmin = 11111 /’Lﬂb(87 a)
—_—
stationary distribution

® mixing time: tmix
Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

For any 0 < € < 1, sample complexity of async Q-learning to yield
|Q - Q" | < & with high prob is at most
1 i tmix
Nmin(1 - 7)452 ,umin(1 - ’Y)

(up to log factor)




Federated Q-learning: linear speedup and beyond

Jiin Woo Gauri Joshi
CcMU CcMU



Can we harness the power of federated learning?

S
AN
A.

IBM Federated Learning
Research - Extracting
Machine Learning te ac achinelearingto
Models From Multiple your data onyour phone.
Data Pools By KarenHao
N m December 11,2019

Federated supervised learning is deployed nowadays by companies in
many areas, e.g., on-device inference.



RL meets federated learning

Central server

:?: L1y = :&: :#?:

Agent 1 Agent2 " Agentk T Agentk

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets. J

28



Federated asynchronous Q-learning

® Local Q-update: agent k performs 7
rounds of local Q-learning updates:

Q1 (st,a0) < (1-0)QF (s¢, @) +nTe (QF) (st

and sends it to the server.

with local updates

Central server

Q¢ )
= = ‘
pIE
- :ﬁ% E~$ ] :%:
Agent 1 Agent2 " Agentk " Agentk
k K
Ty T m s

29



Federated asynchronous Q-learning with local updates

Central server

® Local Q-update: agent k performs 7
rounds of local Q-learning updates:

Q1 (st,ar) < (1-0)QF (s¢,a) +nTe(QF ) (s¢, ar)

and sends it to the server.

® Periodic averaging: the server averages the

local updates and communicates it back to s ==
puk ) ¥ !
agents: PN :"“ﬁ, Eé: B =
& 1 K ha ¥ ﬁ”\ - 7%—
Qt — Qt Agent 1 Agent 2 Agent k Agent K
K Z: 1 2 k K

Th Th Ty Th



Federated asynchronous Q-learning with local updates

Central server

® Local Q-update: agent k performs 7
rounds of local Q-learning updates:

Qf 1 (s1:a0) < (1-n)QF (st, a)+n T (QF) (s¢, ar)
and sends it to the server.

® Periodic averaging: the server averages the

local updates and communicates it back to s == I I
puk ) ¥ !
agents: 2 Eﬁ: :%:
1 K ] L = E
Qi = — Z Qf Agent1  Agent2 T Agentk T Agentk
K _ 1 2 k K
B T T b T,

Can we achieve faster convergence with heterogeneous local behavior
policies with low communication complexity? J
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Prior art

sample
complexity“ S{

R, (e

7

1

Pemin(1 — 7)3€2 | Li et al: \ )
- Y single-agent
Q-learning
K=1 l/K

Key quantity: minimum state-action occupancy probability
Hmin = Min Mo (s,a)
1,S8,a

N———
stationary distribution

Linear speedup only when K > —(—2—— Mm.n(l e J
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Prior art

sample .
complexi
plexity S{

Kus, (1 — )%

7
Y
;‘;-

1

Pmin(1 — 7)3€2 Li et al: \ )
.y single-agent
Q-learning
K=1 1/K

Key quantity: minimum state-action occupancy probability
fimin = min fi7i (s, a)
1,8,a

———
stationary distribution

But more curiously... )
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The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space (i.e., fimin > 0)...

A

—) | a\ LN

I e W

Agent 1 Agent2 7 Agentk 7 Agentk




The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space (i.e., fimin > 0)...

4+ | N [y
Agent 1 Agent2 7 Agentk 7 Agentk

However, the power of collaboration really shines if we only need...

=1 [ ] —|"i [ [
= k61 ﬁﬁ T gy

4 = [
Agent 1 Agent2 7 Agentk 7 AgentK
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The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space (i.e., fimin > 0)...

4+ | N [y
Agent 1 Agent2 7 Agentk 7 Agentk

However, the power of collaboration really shines if we only need...

== =P | |

= ~mlllan o g
4 = [
Agent 1 Agent2 7 Agentk 7 AgentK

Can we enable collaborative coverage while improve the
dependency on salient parameters?

31



Key metrics

Collaborative coverage: minimum entry of the average stationary

distribution
K

Havg = s Z (3 a 2 [min-

32



Key metrics
Collaborative coverage: minimum entry of the average stationary

distribution
1 E
Havg = M K Z i (8,@) 2 fimin-
s,a k:l

Heterogeneity of local behavior policies: density ratio of individual /

average behavior policies
5 (s, )

k
pip (s, a)
Chet = K max Kb(k’ = .
kosia 3 ket My (57 a) k,s,a ”avg(s’ a)
2 o A I A [N == | = I T
Nlgd | (@l j: :—'-,F [t HPE |
K< 7 j —y
3 "% A i 0. *%
Agent 1 Agent2 " Agentk © AgentK Agent 1 Agent2 " Agentk T Agentk
Chet = K

C’het =1
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Our theorem

Theorem (Jiin, Joshi, Chi, 2023+)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q - Q" | < € with sample complexity at most

-~ Chet
o (Kvﬂavg(1 ~7)°e? )

ignoring the burn-in cost that depends on the mixing times.
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Our theorem

Theorem (Jiin, Joshi, Chi, 2023+)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q - Q" | < € with sample complexity at most

-~ Chet
o (Kvﬂavg(1 ~7)°e? )

ignoring the burn-in cost that depends on the mixing times.

® The sync period obeys 7 < o mm{ 1 ,K} communication
complexity is almost mdependent of e.

® Near-optimal linear speedup when the local behavior policies are
similar, Chet ~ 1.

® Key idea: leave-one-out type arguments to decouple complicated
statistical dependencies due to Markovian sampling and local
updates.

33



Comparison with prior art

sample

. A
complexit
plexity o
Kl?n(l — )%
5
&
<
,,,,,,,,,,,,,,,,, I
”””””””” ébb""“““““”"‘““““““ Chet
1 ' > K pravg(1 — 7)°€?
A~ [ % Lietal //
Hmin( 7)4e - \ .
- N single-agent
Q-learning
— >
K=1 1/K
Linear speedup with near-optimal parameter dependencies! )
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Curse of heterogeneity?

sample
. A
complexity /{

K ptpin(1 = 7)%€2

/

Chet

1 7 - : //Kﬂavz(l —7)%¢?

Bmin(1 — 7)%e?

5 single-agent
Q-learning

>

K=1 1/K

Still not good enough! Performance degenerates when local behavior
policies are heterogeneous (i.e. 1 < Chet). ®
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Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

1

LR
+

!

1
1
-
t
Il
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Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights

1

T
+

t

v
] T I:>

1
1
-
t
I‘

Importance averaging: the server averages the local updates based on
importance via

1 X k k
Qt(saa) = ? kz: A (S,G)Qt (S7a)7
=1

where
(1- U)_N’i”(s’a) number of visits

af =
in the sync period °

t _ s.a)’
R

Ntk—T,t(S7 a) =

36



Our theorem

Theorem (Jiin, Joshi, Chi, 2023+)

For sufficiently small € > 0, federated asynchronous Q-learning with

importance averaging yields |Q — Q* | <& with sample complexity at
most

~ 1
K Nan(l -7)%e
ignoring the burn-in cost that depends on the mixing times.
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Our theorem

Theorem (Jiin, Joshi, Chi, 2023+)

For sufficiently small € > 0, federated asynchronous Q-learning with

importance averaging yields |Q — Q* | <& with sample complexity at
most

~ 1
K Nan(l -7)%e
ignoring the burn-in cost that depends on the mixing times.

*

sample /
complexity Chet

Kpayg (1 — 7)€

1 -
z,§°a K prayg (1 — 7)5€?
&
AQ/
3

59"-9/

<
@
oS
\6\‘; e(a%\“

>

K=1 1/K




Summary

Federated Q-learning
&

Linear speedup even with

Vanilla Q-learning is
heterogenous behavior polices!

not minimax»q:timu[!
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Summary

Federated Q-learning
&

Linear speedup even with

Vanilla Q;[earning is
heterogenous behavior polices!

not minimax»qptimu[!

Ongoing work:
® Federated offline RL: how should we inject pessimism?

® Multi-task RL: heterogeneous environments across agents.

38



Bonus track: .
robustness-statistical trade-offs in RL

Laixi Shi Matthieu Geist Yuxin Chen Yuting Wei
CMU—Caltech Google UPenn UPenn



Safety and robustness in RL

Training environment

+

Test environment

40



Safety and robustness in RL

Training environment * Test environment

Can we learn optimal policies that are robust to model
perturbations and sim-to-real gaps?

40



A curious question

empirical MDP

Learn the optimal policy of
/" the nominal MDP?

Planning using standard MDPs

~
\~* Learn the robust policy

around the nominal MDP?

Planning using robust MDPs

41



A curious question

. . . Learn the optimal policy of
. . N the nominal MDP?
| e -
td
.-. = - Planning using standard MDPs
.- = @
S
.- - ~~~‘s~ .
. . - ~4 Learn the robust policy
. - around the nominal MDP?
empirical MDP Planning using robust MDPs

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness?

J
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Surprising

message

® Large gaps between existing upper and lower bounds
® Unclear benchmarking with standard MDP

sample complexity

SA

SA(1-7)

[ Upper bound [Clavier et al] ——

Standard MDPs
upper & minimax lower bound =™~

Upper & minimax lower bound
(this work)

Lower bound [Yang et al]

0 o1-7 o) 1

RMDP is simpler

under TV uncertainty

o

sample complexity
S2A
==

54 4

SA

T

SA
(1=7)e?

Upper bound §*Ao
[Panaganti and Kalathil] L—n)ie
Upper bound

(this work)

SAo
[T

Lower bound
(this work)

=y

A0

Standard MDPs
upper & minimax lower bound =

Lower bound [Yang et al]

o(1-7)

o()

0(1/(1-7)

RMDP can be much harder
under x? uncertainty

The statistical price of robustness depends on the choice of the

uncertainty set! (NeurlPS 2023)




Thanks!

Statistical RL is a fruitful playground and still going strong!

® |s Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis,
Operations Research, 2024.

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup
and Beyond, short version at /ICML 2023.

® The Curious Price of Distributional Robustness in Reinforcement Learning
with a Generative Model, short version at NeurlPS 2023.

43



Thanks!

https://users.ece.cmu.edu/~yuejiec/

a4


https://users.ece.cmu.edu/~yuejiec/

