Range Sidelobe Suppression in a Desired Doppler Interval

Yuejie Chi, Ali Pezeshki, Robert Calderbank, Stephen Howard

Dept. of Electrical Engineering
Princeton University

Supported by AFOSR MURI
Feb. 12, 2009
Advances in Radar Hardware

Multiple degrees of freedom: New generation of radar transmitters allows for transmission of different waveforms across

- Time
- Space
- Frequency
- Polarization

Question: How to utilize new hardware capabilities to sense more accurately and with less complexity?

Today: Clearing out range sidelobes in a desired Doppler interval by sequencing Golay complementary waveforms in time.
Outline

1. Phase-coded Golay Complementary Waveforms
 - Sensitivity to Doppler shifts

2. PTM Pulse Trains
 - Resilience to Modest Doppler Shifts
 - Resilience to High Doppler Shifts

3. Conclusion
Golay Complementary Pair

Golay pair \((x, y)\) of length \(L\) has perfect autocorrelation property:

\[
C_x(k) + C_y(k) = 2L\delta(k)
\]
Phase-coded Waveforms

- Baseband waveforms phase coded by Golay pair \((x, y)\):

\[
s_x(t) = \sum_{\ell=0}^{L-1} x(\ell) \Omega(t - \ell T_c), \quad s_y(t) = \sum_{\ell=0}^{L-1} y(\ell) \Omega(t - \ell T_c)
\]

\(\Omega(t)\) is a unit energy pulse shape of duration \(T_c\).

- Ambiguity function of \(S(t) = s_x(t) + s_y(t - T)\):

\[
\chi_S(\tau, \nu) = \chi_{s_x}(\tau, \nu) + e^{j\nu T} \chi_{s_y}(\tau, \nu)
\]

\(T\) is the PRI duration.

- For zero Doppler it is free of range sidelobes:

\[
\chi_S(\tau, 0) = 2L\chi_{\Omega}(\tau, 0)
\]

But very sensitive to Doppler shifts!
Sensitivity to Doppler Shifts
Five Targets Scenario - Conventional Approach
Five Targets Scenario - PTM in action
P-Pulse Train

- Transmit phase coded Golay pairs in accordance to \mathcal{P}:

$$ Z_{\mathcal{P}}(t) = \frac{1}{2} \sum_{n=0}^{N-1} \left[(1 + p_n) s_x(t - nT) + (1 - p_n) s_y(t - nT) \right] $$

- Ambiguity function of the \mathcal{P}-pulse train:

$$ \chi_{Z_{\mathcal{P}}}(k, \theta) = \frac{1}{2} \left[C_x(k) + C_y(k) \right] \sum_{n=0}^{N-1} e^{jn\theta} + \frac{1}{2} \left[C_x(k) - C_y(k) \right] \sum_{n=0}^{N-1} p_n e^{jn\theta} $$

- Sidelobe free:

- Range sidelobes

- Shape the spectrum of \mathcal{P}:

$$ S_\mathcal{P}(\theta) = \sum_{n=0}^{N-1} p_n e^{jn\theta} $$

Goal: design high order spectral nulls around the desired Doppler!
Resilience to Modest Doppler Shifts

- Zero-force the Taylor expansions around $\theta = 0$ up to order M:

$$f_{P}^{(t)}(\theta_0) = j^{t} \sum_{n=0}^{N-1} n^{t} p_n = 0, \quad t = 0, \cdots, M$$

Theorem (Pezeshki et al., 2007)

To zero-force up to M Taylor moments, coordinate the transmission of a Golay pair (x, y) according to the length $N = 2^{M+1}$ PTM sequence, with 1 locations corresponding to x and -1 locations corresponding to y.
PTM Sequences

Definition (Prouhet-Thue-Morse)

The Prouhet-Thue-Morse (PTM) sequence \(\mathcal{P} = (p_k)_{k \geq 0} \) over \(\{-1, 1\} \) is defined by the following recursions:

1. \(p_0 = 1 \)
2. \(p_{2k} = p_k \)
3. \(p_{2k+1} = \overline{p}_k = -p_k \)

for all \(k > 0 \).

- 2nd order: PTM sequence of length \(8 = 2^{2+1} \)

\[
\begin{array}{cccccccc}
 x & y & y & x & y & x & x & y \\
 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\end{array}
\]
PTM pulse trains in action
Resilience to High Doppler Shifts

- Zero-force the Taylor expansions around $\theta = \theta_0$ up to order M:

$$f^{(t)}_P(\theta_0) = j^t \sum_{n=0}^{N-1} n^t p_n e^{j\theta_0} = 0, \quad t = 0, \cdots, M$$

- Focus on Rational Doppler shifts:

$$\theta_0 = \frac{2\pi l}{m}, \quad m \neq 1, \text{ and } m, l \text{ coprime.}$$

- Let $\{b_r\}_{r=0}^{s-1} = \{p_{rm+i}\}_{r=0}^{s-1}$ satisfy the PTM condition

$$\sum_{r=0}^{s-1} r^u b_r = 0, \text{ for all } 0 \leq u \leq t - 1$$
Oversampled PTM Sequences

Theorem (Oversampled PTM Sequences)

Let \(P = \{p_n\}_{n=0}^{2^M m - 1} \) be the \((2^M, m)\)-PTM sequence, that is to say that \(\{p_{rm+i}\}_{r=0}^{2^M-1}, i = 0, \cdots, m - 1 \) is a PTM sequence of length \(2^M \). Then the spectrum \(S_P(\theta) \) of \(P \) has \(M \)th-order nulls at all \(\theta_0 = 2\pi l / m \) where \(l \) and \(m \neq 1 \) are co-prime integers.

Example: \(M = 3, m = 3 \rightarrow \{p_n\} = 000111111000 \cdots \)

Corollary (Simultaneous Nulls)

Let \(P \) be the \((2^M, m)\)-PTM sequence. Then the spectrum \(S_P(\theta) \) of \(P \) has

1. an \((M - 1)\)th-order null at \(\theta_0 = 0 \).
2. \((M - h - 1)\)th-order nulls at all \(\theta_0 = 2\pi l / (2^h m) \), where \(l \) and \(m \neq 1 \) are co-prime, and \(1 \leq h \leq M - 1 \).
The spectral of \((2^3, 2)\)- and \((2^2, 2)\)-PTM sequences
Oversampled PTM pulse trains in action
Conclusion

- Doppler resilient pulse train of Golay complementary waveforms are constructed by coordinating the transmission of a Golay pair of phase coded waveforms in time according to the 1's and −1's in a PTM sequence or its oversampled versions.

- The magnitude of the range sidelobes of the pulse train ambiguity function of the constructed pulse trains are proportional to the magnitude spectra of \((2^M, m)\)-PTM sequences, which have high-order nulls in a desired Doppler band.

- Numerical examples demonstrate the annihilation of range sidelobes in the ambiguity functions of \((2^M, m)\)-PTM pulse trains.
Thank you!
Why PTM Sequence?

- Look at the calculations for zero-forcing the 1st and 2nd order moments.
- Key is partitioning of $\mathcal{S} = \{0, 1, \ldots, 7\}$ into disjoint subsets
 $\mathcal{S}_0 = \{0, 3, 5, 6\}$ and $\mathcal{S}_1 = \{1, 2, 4, 7\}$ that satisfy

 $$(0^m + 3^m + 5^m + 6^m) - (1^m + 2^m + 4^m + 7^m) = 0, \quad \text{for } m = 1, 2.$$

- **Prouhet’s Problem:** Let $\mathcal{S} = \{0, 1, \ldots, N - 1\}$. Given M, is it possible to partition \mathcal{S} into two disjoint subsets \mathcal{S}_0 and \mathcal{S}_1 such that

 $$\sum_{r \in \mathcal{S}_0} r^m = \sum_{q \in \mathcal{S}_1} q^m$$

 for all $0 \leq m \leq M$?

Solution: Possible when $N = 2^{M+1}$. The partitions are identified by the PTM sequence.
Reed-Müller Pulse Trains: Sidelobe Suppression

Question: Can we clear out range sidelobes in other Doppler intervals?

First order Reed-Müller code $RM(1, M)$ consists of 2^M code words of the form

$$r_b(n) = \sum_{m=0}^{2^M-1} b_m n_m \quad \text{for } n = 0, \ldots, 2^M - 1$$

where n_m denotes the mth binary digit of n.

Walsh functions are the exponentiated Reed-Müller codes

$$w_b(n) = (-1)^{r_b(n)} \quad \text{for } n = 0, \ldots, 2^M - 1$$

PTM sequence is equal to $r_b(n)$ with $b = (1, 1, \ldots, 1)$, and $(-1)^{r_b(n)}$ is its corresponding Walsh function.