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Empirical risk minimization
Given data z, estimate parameters x € R™:

minimize, f(x) := %Zﬁ(zi;m)
i=1
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Empirical risk minimization

Given data z, estimate parameters x € R™:

minimize, f(x) := %iﬁ(zl,w)
i=1




Exponentially many local minima

Given training data {x;,y;}7",,
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Exponentially many local minima

Given training data {x;,y; }",,
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Theorem (Auer et al., 1996)

Let o(-) be sigmoid and ((-) be the quadratic loss function. There
exists a sequence of training samples {x;,y;}" | such that {,,(w)
has | |" distinct local minima.

Auer et al, “Exponentially many local minima for single neurons,” NIPS 1996.



Nonconvex problems are hard!




But they're solved on a daily basis in practice

Using simple algorithms such as gradient descent, e.g., “back
propagation” for training deep neural networks...
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Recent developments: provable nonconvex optimization
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Phase retrieval: Gerchberg-Saxton '72, Netrapalli et
al.’'13, Candgs, Li, Soltanolkotabi’14, Chen, Candés'15,
Cai, Li, Ma'15, Zhang et al. 16, Wang et al. 16, Sun et
al.’16, Ma et al.’'17, Chen et al.'18, ...

Matrix completion: Keshavan et al.'09, Jain et al.'09,
Hardt 13, Sun, Luo'15, Chen, Wainwright '15, Zheng,
Lafferty '16, Ge et al.'16, Jin et al.'16, Ma et al.'17, ...

Matrix sensing: Jain et al.'13, Tu et al.'15, Zheng,
Lafferty '15, Bhojanapalli et al. 16, Li, Zhu, Tang'18, ...

Blind deconvolution / demixing: Li et al.’16, Lee et
al.’16, Ling, Strohmer'16, Huang, Hand '16, Ma et
al.’17, Zhang et al.'18, Li, Bresler'18, Dong, Shi’18, ...

Dictionary learning: Arora et al.'14, Sun et al.'15,
Chatterji, Bartlett '17, ...

Robust principal component analysis: Netrapalli et
al.’14, Yi et al.'16, Gu et al.’'16, Ge et al.’17,
Cherapanamjeri et al.'17, ...



Statistical thinking in nonconvex optimization

Data/measurements follow certain statistical models and hence
are not worst-case instances.

minimize, f(x) = ;Zﬂ(yz,m)

empirical loss
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Statistical thinking in nonconvex optimization

Data/measurements follow certain statistical models and hence
are not worst-case instances.

minimize, f(x) = %Zﬁ(yz,w) = E[(y; x)]
i=1

population loss is often nice!

empirical loss

When m — oo, empirical risk ~ population risk!



From population risk to empirical risk

Sample-starved / finite-sample regime:
sample size m &~ O(n), the number of parameters.
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f(x) may lack curvatures in certain regions/directions!



From population risk to empirical risk

Sample-starved / finite-sample regime:
sample size m ~ O(n), the number of parameters.

Even when E[f(z)] is (locally) strongly convex and smooth,
the empirical loss f(x) may not be when m =~ O(n).

population loss is often nice!

empirical loss

f(x) may lack curvatures in certain regions/directions!
Will this be problematic?



a case study with low-rank matrix estimation



Rethinking PCA for modern datasets

Classical PCA (Pearson 1901):

Proceedings-IEEE

Rethinking Principal Component Analysis
(PCA) for Modern Data Se
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Revisiting PCA: in search of low-rank representation
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Given M > 0 € R™*"™ (e.g. sample covariance matrix), find its
best rank-r approximation:

M = argming ||Z — M|% st. rank(Z) <r

nonconvex optimization!
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Revisiting PCA: in search of low-rank representation
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This problem admits a closed-form solution:

o let M ="  Nu;u/ be eigen-decomposition of M
(AL > - > \y), then

T
M=) Nuu
=1

— nonconvex, but tractable
11



An optimization viewpoint

Burer-Monteiro factorization: if we factorize Z = X X | with
X € R™ ", then it leads to a nonconvex problem:

1
minimizex cgnxr  f(X) = Z||XXT — M|}
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An optimization viewpoint

Burer-Monteiro factorization: if we factorize Z = X X | with
X € R™ ", then it leads to a nonconvex problem:

1
minimizex cgnxr  f(X) = Z||XXT — M|}

e Pro: reduce parameter space from O(n?) to O(n);
e Con: nonconvex and susceptible to local optima.
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An optimization viewpoint

Burer-Monteiro factorization: if we factorize Z = X X | with
X € R™ ", then it leads to a nonconvex problem:

1
minimizex cgnxr  f(X) = ZHXXT — M|}

e Pro: reduce parameter space from O(n?) to O(n);
e Con: nonconvex and susceptible to local optima.

Theorem (PCA doesn’t have spurious local minima, Baldi
and Hornik, 1989)

Suppose M has a strict eigen-gap between )\, and .11, the
critical points of f(X) can be categorized into
e global minima;
e strict saddle points, from which there exist directions to
strictly decrease f(X).

12



Benign landscape of PCA

For example, for 2-dimensional case f(x) =

Fx) = [ex” — 1173

1]; strict saddles: © = [g] and £ {_11}

global minima: x =+ [1

— No “spurious” local minima!
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Parameter recovery via gradient descent

¢ Initialization by spectral method

{; ¢ Gradient iterations:

Xt+1 Xt

fort=0,1,...

nV (X"
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Parameter recovery via gradient descent

¢ Initialization by spectral method
¢ Gradient iterations:
Xt = Xt - V(XY
fort=0,1,...

e The initial point falls into a "basin of attraction”;

e Low-complexity local refinements via gradient descent.

14



Low-rank matrix completion: dealing with missing data
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Given partial samples of a low-rank matrix M in an index set €2,
fill in missing entries.

find low-rank M s.t. Po(M) = Po(M)

Applications: recommendation systems, ...



A natural least-squares formulation

given: Pqo(M)

4

minimizex cgnxr  f(X) = HPQ(XXT B M)H2

F
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A natural least-squares formulation

given: Pqo(M)
\

minimizex cgnxr  f(X) = HPQ(XXT — M)Hi

e Bernoulli sampling: Assume every entry is observed i.i.d.

with 0 < p < 1:

Bl = p | X X7 - M

does not imply optimization efficiency!

16



Incoherence
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Incoherence

1 0 0 0 1 1 1 1
0 00 0 1 1 1 1
VS.

000 ---0 T 11 .- 1

hard easy

Definition (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = USiU"T is
said to be p-incoherent if

o, . = el =
2,00 n F n

Note: [|U], ., = max; lel Ul

Lower bound [Candés and Tao]: p = urlogn/n.
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Incoherence

1 00 0 1 11 1
0 00 0 1 11 1
VS.

000 ---0 111 .1
hard p=n easy p=1

Definition (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = USiU"T is
said to be p-incoherent if

o, . = el =
2,00 n F n

Note: [|U], ., = max; lel Ul

Lower bound [Candés and Tao]: p = urlogn/n.
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What does the population level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

FX)= 3 (ef XX ey — M)’
(5,k)eQ

18



What does the population level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

FX)= 3 (ef XX ey — M)’
(43,k)eQ

Population level (p = 1): this is PCA.
vee (V)T E[V2f (X)] vec (V)
_ 1 HVXT n XVTH2 + <XXT _ XXt VVT>
2 F

locally restricted strongly convex and smooth

along descent direction V' when X is close to X 1.

Consequence: GD converges within O(log 1) iterations if p = 1. J

18



What does the finite-sample level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

JX)= Y (ef XX ey — M)
(4,k)eQ

19



What does the finite-sample level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

2
x)=3 (ejTXXTek — M)
(k)R
. . — polyl
Finite-sample level (p =< BY2ER)
V2f(X) strongly convex and smooth
along descent direction V only when X is incoherent:

1X = XF 2,00 < 11X |20

19



Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?
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Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?

e X is not far away from X'
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Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?

€1

leg (X — X*) |2 < e XF 2,00

e X is not far away from X'

e X is incoherent w.r.t. sampling vectors (incoherence region)

20



Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?

(%)) e

les (X = X5)[o < el X o llef (X = XF)]lz < €l X*[l2.00

e X is not far away from X'

e X is incoherent w.r.t. sampling vectors (incoherence region)
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Vanilla gradient descent is at risk

region of local strong convexity 4+ smoothness

GD on the pop. loss
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness
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GD on the pop. loss
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness

GD on the pop. loss GD on the emp. loss

e Generic optimization theory only ensures that iterates remain
in ¢ ball but not incoherence region

e Existing algorithms enforce regularization, or apply sample
splitting to promote incoherence

21



Our findings: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Our findings: GD is implicitly regularized

NN . .
@ region of local strong convexity 4+ smoothness

22



Matrix completion via vanilla GD

JX)= Y (ef XX ey — M)’
(3,k)€Q

Relative error

,_‘
<
5

relative || - || error
relateive || - || error
relative || - || error

1015

50 100 150 200 250 300 350 400 450 500
Iteration count

Vanilla GD converges fast without regularization!
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Matrix completion via vanilla GD

minimizeXeRnw f(X): Z (e;‘rXXTek_Mj7k)2
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Our finding: GD is implicitly regularized to stay incoherent! J




Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen)

Suppose M = X' X" js rank-r, incoherent and well-conditioned.

Vanilla GD (with spectral initialization) achieves
o |X'Q" — XF|lp < plpr | X
o |X'Q" - XF|| S plr

Fy

\/%HXh . (spectral)

e [ X'Q" - Xh”2,oo < plur 1‘;%HXUHZOO, (incoherence)

where p =1 — Z=ixll < 1, if step size 1) X 1/0max and sample
complexity n*p > p3nrd log® n.
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Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen)

Suppose M = X' X" js rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

o |X'Q" — XF|lp < plpr | X
o [|X'Q" = XF|| < plur

Fy

\/%HXh . (spectral)

e [ X'Q" - Xh”2,oo < plur 1‘;%HXUHZOO, (incoherence)

where p =1 — Z=ixll < 1, if step size 1) X 1/0max and sample
complexity n*p > p3nrd log® n.

e A recent follow-up by Xiaodong Li improves the sample
complexity to O(u?nr?logn).



Noisy matrix completion via vanilla GD
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Key ingredient: leave-one-out analysis
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Technical difficulty: X* is statistically dependent with €;
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Key ingredient: leave-one-out analysis

Technical difficulty: X* is statistically dependent with €;
Leave-one-out trick: For each 1 <[ < n, introduce leave-one-out
iterates X*(!) by replacing lth row and column with true values

N =

w

xt0

—

I—I—I—I—I—I—I— I—
\

S

MO
26



Key ingredient: leave-one-out analysis

{Xt’(l)}/ "~ N
/ @
l R ‘\

— = 7 incoherence region

w.r.t. e

o Leave-one-out iterates {X*()} contains more information of
Ith row of X indep. of randomness in [th row
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Key ingredient: leave-one-out analysis

= — 7 incoherence region

w.r.t. e

o Leave-one-out iterates {X*()} contains more information of
Ith row of X indep. of randomness in [th row

e Leave-one-out iterates X5 ~ true iterates X'

27



Key ingredient: leave-one-out analysis

{Xt’(l)}/ ="
Z
{(x}

— = 7 incoherence region

w.r.t. e

o Leave-one-out iterates {X*()} contains more information of
Ith row of X indep. of randomness in [th row

o Leave-one-out iterates X*() a true iterates X*
o HelT(Xt—X“)H2 < Hel (X560 — X1 Hg"‘He (Xt xt0) Hz

27



The phenomenon is quite general



Shallow neural network with quadratic activation

Xh
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\\" \ Y
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a O< 3@ v+
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.A///’ \') P output layer
./« hidden layer

input layer

., &y|, then

,
y=2 ola’=)
i=1
Identifiability up to orthonormal transform of X"

Set X = [:1:1,.’132,
Y T = o
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Generalized phase retrieval

A X AX yi = lla) X3
(HNE NE IE HEN [ |
B N [ [ ] [ ]
EE R Il — HER [ |
H = EEp > &
BB 1 | [ [ ] | [ |
m < BEEE [izn
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. H EH B [ |

3

Recover X% € R™ " from m “random” quadratic measurements

yi = ‘ TXhH (a;a; XhXhT> i=1,...,m

Applications: optical imaging, phase space tomography ...
30



Implicit regularization for generalized phase retrieval

m 9 2
minimizex cgnxr  f(X) = Z (HagXH —yk>
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Implicit regularization for generalized phase retrieval

2
minimize x crnxr  f(X) = <H XH —yk>

region of local strong convexity 4+ smoothness
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Implicit regularization for generalized phase retrieval

2
minimize x crnxr  f(X) = (H XH —yk>

region of local strong convexity 4+ smoothness
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Implicit regularization for generalized phase retrieval

2
minimizex cgnxr  f(X) = (H XH —yk>

region of local strong convexity 4+ smoothness

O(1) 2 V*f(z) < O(logn)

31



Theoretical guarantees

Theorem (Li, Ma, Chen, Chi)

Under i.i.d. Gaussian design, GD achieves linear convergence

o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁg(”i) (incoherence)
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Theoretical guarantees

Theorem (Li, Ma, Chen, Chi)

Under i.i.d. Gaussian design, GD achieves linear convergence

o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁ?g{”? (incoherence)

t
o |IX'Qt—XIp < (1 - JE(TXh)”> | XY\ (linear convergence)

provided that n =< and m > nr*logn.

1
(lognvr)202(X1Y)
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Theoretical guarantees

Theorem (Li, Ma, Chen, Chi)

Under i.i.d. Gaussian design, GD achieves linear convergence

o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁigfni) (incoherence)

t
o |IX'Qt—XIp < (1 — JE(TXH)Q | XY\ (linear convergence)

provided that n =< and m > nr*logn.

1
(lognvr)202(X1Y)

Big computational saving: GD attains e-accuracy within
O((logn vV r)?log %) iterations if m =< nr*logn . J




Incoherence region in high dimensions
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incoherence region is vanishingly small
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Conclusions

From population loss from empirical loss: vanilla gradient
descent exploits local hidden convexity as if it almost runs on the
population loss!

Computational: Statistical:
near dimension-free near-optimal
iteration complexity sample complexity

Analytical toolkits: leave-one-out perturbation argument to
establish near-independence. Useful in other problems!
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https://users.ece.cmu.edu/~yuejiec/
Thank you!
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