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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e unknown environments
e maximize total rewards

trial-and-error

sequential and online

“Recalculating ... recalculating ...”



Recent successes in RL

At last — a computer program that
can beat achampion Go player Pt 4s4

ALL SYSTEMS 90

RL holds great promise in the next era of artificial intelligence.



Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space
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Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space

~ ——

clinical trials autonomous driving online ads

Calls for design of sample-efficient RL algorithms!



Statistical thinking in RL: non-asymptotic analysis

]

IYTIRITITIY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic
analysis

Reinforcement Learning:
Theory and Algorithms

Alekh Agarwal  NanJiang ~ Sham M. Kakade ~ Wen Sun

December 9, 2020

Non-asymptotic analyses are key to understand statistical efficiency in
modern RL.




Recent advances in statistical RL

The playground: Markov decision processes



Backgrounds: Markov decision processes



Markov decision process (MDP)
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Markov decision process (MDP)

environment (¢ — -

next state
St+1 ™~ P('|5t,at)

e S: state space e A: action space
e r(s,a) € [0,1]: immediate reward
e 7(+|s): policy (or action selection rule)

e P(:|s,a): transition probabilities

S

INEPY




Value function

reward

Sth1 P(:|st, a)

Value function of policy 7:
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VseS: VTi(s):=E thrt|30:s
t=0

Q-function of policy 7:

V(s,a) eSxA: Q7(s,a):=E Z’ytr(st,at) ‘ S0 = 8,00 = a

t=0



Value function

state s action
i (]"st) ro T T rs ra
reward I |:> S0 ‘I s1 ‘I S ‘l S3 ‘l S4 ‘|
1Ty = T(St, ag L HE S W/ U/
4--- environment — ag a1 az as as
<
s¢f1 ~ P(|st; ar)
Value function of policy 7:
o0
VseS: VTi(s):=E E Vre|so=s
t=0
Q-function of policy 7:
oo
V(s,a) eSxA: Q7(s,a):=E g vr(se, az) ‘ S0 = 8,00 = a
t=0
e v €0,1) is the discount factor; ﬁ is effective horizon

e Expectation is w.r.t. the sampled trajectory under m



Searching for the optimal policy

Reinforcement |\
Learning

A9 Introduction
Second edition

:-—a ent — Dynamic Programming
F ______ and Optimal Control
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Goal: find the optimal policy 7* that maximize V™ (s)

e optimal value / Q function: V* := V™" Q* := Q™
e optimal policy 7*(s) = argmax,c 4 @* (s, a)



Two approaches to RL

TS model | P,
«?"'\'f’ﬁf/ (ie. P € RISIAIXISIY \:?ff“s
/ wmodel-based )
samples value function
(experience) policy
N s
Te_model-free .7

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P

10



Two approaches to RL

o, model | 2,
,}\"”iﬁf’/ (ie. P € RISIAIxIS)y f‘a‘,%
model-based B

samples
(experience)

Tee_model-free .-~

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on empirical P

Model-free approach

1. learning w/o constructing model explicitly

2. memory-efficient

value function
policy
t 4

-

10



Recent advances in model-based RL

sample
complexity 4

empirical MDP

il ISIlAy
E_EHN TP
| A .
EE B | planning z
[ ] | | oracle 1114
u B o -y
[ [ e | e.g. policy iteration
m =B
empircal P 1 ISl
T
Plug-in estimators are minimax-optimal J

(Sidford et al., 2018; Agarwal et al., 2019; Wang 2019; Li et al., 2020)
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Recent advances in model-free RL

A
(s0 ac-)\
sample
complexity
foe }\g (log scale)
S <~|\ (}/— (s2/a2)
53, 013)
> I i S (log scale)
Q(s,a)
Q-learning is not minimax-optimal J

(Even-Dar and Mansour, 2013; Wainwright, 2019; Chen et al., 2020; Li et al., 2021)

12



This talk: beyond standard MDP

13



Reinforcement learning meets federated learning:
linear speedup and beyond

Jiin Woo Gauri Joshi
CcMU CcMU

“The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and
Beyond,” arXiv:2305.10697, short version at ICML 2023.



Federated learning

Machine Learning

Server coordinating
the training of a
global Al model

/TN

IBM Federated Learning
Research - Extracting

Models From Multiple

Data Pools

Kevin Krewell
Tirias Research

Devices with
local Al models

How Apple personalizes Siri without
hoovering up your data

inelearning to,
onyour phone.

By Karen Hao
IDecember

15



Federated learning

——| Server coordinating
the training of a
global Al model

JIN

Devices with
local Al models

IBM Federated Learning

. How Apple personalizes Siri without
Research - Extracting hoo‘,e,mg up your data
Machine Learning
Models From Multiple
Data Pools By KarenHao
::\:;: :::::‘m m [December 11,2019

Can we harness the power of federated learning for RL?




RL meets federated learning

Central server

Agent 1 Agent2 " Agentk T Agentk

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets.

16



Questions

Understand the sample complexity of Q-Learning in federated settings. J

Linear speedup:
Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?

17



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951
Q" =T(Q")
where

/ /
max (s ,a ).
s'~P(:|s,a) [a’eAQ( ’ )

T(Q)(Sva) = r(s,a) +

immediate reward }
next state's value

18



Asynchronous Q-learning

v Sl =8 =8
7 1 7 H 1 7
4 4 4 ’

T
~— ~ae S—e N Sae -

ag ay a2 as Qy as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[s3) mo(-[sa) mo(-|ss)

Stochastic approximation for solving Bellman equation @* = 7(Q*)
using samples collected from a behavior policy m:

Qev1(5t,a0) = (1 —n0)Qi (81, a) + nTe(Qe)(51,a0), >0

only update (s¢,a¢)-th entry

19



Asynchronous Q-learning

N SIS S S5
7 1] 7 H 1 1/
4 4 4 ’

T
~— ~ae S—e N Sae -

ag ay a2 as Qy as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[s3) mo(-[sa) mo(-|ss)

Stochastic approximation for solving Bellman equation @* = 7(Q*)
using samples collected from a behavior policy m:

Qev1(5t,a0) = (1 —n0)Qi (81, a) + nTe(Qe)(51,a0), >0

only update (s¢,a¢)-th entry

Te(Q)(st, at) = 7(se; ar) + v max Q(se1, a’)

T@(s.0) =r(ssa)+7 | & [maxQ(sa")]

s'~P(-|s,a)

19



How to federate asynchronous Q-learning?



Federated asynchronous Q-learning with local updates

e The agent k performs 7 rounds of local
Q-learning updates:

Q1 (56, ar) < (1=0)QF (st ar)+nT(QF) (5¢, ar)

and sends it to the server.

Central server

K] i w

e amlinr Gui=": suEaE =

Agent 1 Agent 2 Agentk 7 Agentk
7T|:1) 71'5 77'IbC 7T|f<
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Federated asynchronous Q-learning with local updates

Central server

e The agent k performs 7 rounds of local
Q-learning updates:

Q1 (56, ar) < (1=0)QF (st ar)+nT(QF) (5¢, ar)

and sends it to the server.

e The server averages the local updates and
communicates it back to agents:

= - RN
- T4 =8 D
. T
Qr = ? Z Qt Agent 1 Agentz 7 Agentk T Agentk
k=1 1 k K

2
Ty Th Tp Th



Federated asynchronous Q-learning with local updates

C |
e The agent k performs 7 rounds of local entral server

Q-learning updates:

Q1 (56, ar) < (1=0)QF (st ar)+nT(QF) (5¢, ar)

and sends it to the server.

e The server averages the local updates and
communicates it back to agents:

|
I

"J‘ 3 Tl 4 :..#7 ] iyl
" F 2w

K
Q; = l Qk
t K t Agent 1 Agent 2 Agent k Agent K
k=1 1 2 k K
Ty T T s

Can we achieve faster convergence with heterogeneous local behavior
policies with low communication complexity?

21



Prior art

sample

complexity o
K ptin(1 = 7)%€?

kg
e
Lmin(1 — 7)3€2 [ o Li et al. \
5 single-agent
Q-learning
K=1 1/K

Key quantity: minimum state-action occupancy probability
Pmin = Iin /‘wg(sa a)
1,S8,a

stationary distribution

The benefit of linear speedup only becomes effective K > #2_7)5 J
min 22




Prior art

sample
complexity‘ S{

1
Pmin(1 — 7)%e?

5 single-agent
Q-learning

>

K=1 1/K

Key quantity: minimum state-action occupancy probability
Hmin = mln /‘L‘I\'é(s’ a)
1,S8,a

stationary distribution

Can we improve the dependency on the salient parameters? J

22



Our theorem

Theorem (Jiin, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q — Q*||o < € with sample complexity at most

6 Ohet
Klffmin (]- - ’7)562
ignoring the burn-in cost that depends on the mixing times, where

k
Chet = K max #.
Rasia  r M (5, )

23



Our theorem

Theorem (Jiin, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q — Q*||o < € with sample complexity at most

6 Ohet _
K pimin (1 — 7)5€?
ignoring the burn-in cost that depends on the mixing times, where

k
Chet = K max #.
k.s,a Zk:1 Hy (s,a)

o 1< Chet < % measures the heterogeneity of local behavior
policies.

e Near-optimal linear speedup when the local behavior policies are
similar, Chet =~ 1.

23



Comparison with prior art

sample‘
complexity

S{

Kul, (1=

/

1

Chet

K pimin(1 = 7)%€?

N single-agent

Q-learning
K=1 1/K
Linear speedup with near-optimal parameter dependencies! )

24



Benefit of heterogeneity?

e Curse of heterogeneity? performance degenerates when local
behavior policies are heterogeneous (i.e. Cher > 1).

25



Benefit of heterogeneity?

e Curse of heterogeneity? performance degenerates when local
behavior policies are heterogeneous (i.e. Cher > 1).

o Full coverage: require full coverage of every agent over the entire
state-action space (i.e. pmin > 0).
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Benefit of heterogeneity?

e Curse of heterogeneity? performance degenerates when local
behavior policies are heterogeneous (i.e. Cher > 1).

o Full coverage: require full coverage of every agent over the entire

state-action space (i.e. pmin > 0).

= | — [ [

= }3 n,/ R * — E | gy

L L RS %
Agent 1 Agent2 7 Agentk T Agentk

Is it possible to alleviate these requirements?




Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

1

AR
+

1

1
1

26



Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights

1

LA
+

!

L - L o

1
I<-
t
I‘

Importance averaging: the server averages the local updates based on
importance via

K
k(
s, a Z af(s,a)QF (s, a),
where

k_ (1— 77)_Nt]c re(5:a) number of visits
Nf . i(s,0) = fod
Ek (=) Nf o (s0)’ ’ in the sync period

26



Our theorem

Theorem (Jiin, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning with
importance averaging yields ||Q — Q*||s < € with sample complexity at

most
~ ( 1 )
Kﬂan(l v)P €

ignoring the burn-in cost that depends on the mixing times, where

=

Havg = rrs{ian ? Mﬁ(& a) > Hmin-

e Linear speedup without requiring local behavior policies to cover the

entire state-action space, as long as they collectively cover the entire
state-action space.




Equal averaging versus importance averaging

sample
A
complexity

2
S S
& égo 1 -
’# Kpay, (1 - "/)552
e
(’@(\C $
W e(a%\“
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Equal averaging versus importance averaging

sample
A
complexity

/

Chet
K pimin(1 = 7)5¢?

2,
S/ S
& égo 1 -
’# Kpay, (1 - 7)552
e
(’@(\C $
\‘(\Q e@%\(\

»

K=1 1/K

Importance averaging does not require full coverage of individual agents! J

28



Summary

sample
complexity’

1
min(1 = 7)€

s

Kz, (-7

» Chet
K pimin(1 — )"

., single-agent
Q-learning

sample
complexity

Cher
K pimin(1 —7)%€?

& é'g" 1 -
5 Kpay(1—7)%¢
OC8
o
o
\6\‘;2@%‘“
K=1

Provable benefits of federated Q-learning: near-optimal linear speedup! )
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Summary

sample
sample‘ complexity
complexity o
Kiupya(1=)°€
Cher
K pimin(1 —7)%€?
>/ &
2/.&
Chet & & 1 -
7K pmin(1 = 7)€2 y
(11 o pim1 =)' & Kyl -7
Jemin(1 — 7)€
.y single-agent 26
Q-learning \‘(‘Qoe@?"\‘\%
K=1 1/K K=1 1/K

Provable benefits of federated Q-learning: near-optimal linear speedup! J

Ongoing and future work:
e Other problems in RL such as policy evaluation and offline RL.
e Multi-task RL: heterogeneous environments across agents.



RL meets distributional robustness:
towards minimax-optimal sample complexity

Laixi Shi Gen Li Yuxin Chen Yuting Wei Matthieu Geist
Caltech UPenn UPenn UPenn Google

“The Curious Price of Distributional Robustness in Reinforcement Learning with a
Generative Model,” arXiv:2305.16589.



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations?

31



Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}
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et %
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

——
// /\__\ /,—\>/——\\ l\\
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/i < )
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={pP: p(P,P°) <o}

——
~N —_—
in Sy T Y '\\\
| o S
i \\A/\
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/7N SEAW)
( p = \ 7/
bl }-7
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={pP: p(P,P°) <o}

——
~N —_—
in Sy T Y '\\\
| o S
i \\/\
~ ]
/7N SEAW)
( p = \ 7/
\ 1\ }-7
/>~\ - \\ ///
\ N - P\ /L—/T//
- =
<\{) N \_//‘(‘//
—_— s
~ -

e Examples of p: f-divergence (TV, x?2, KL...)
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Robust value/Q function

T4

S4

state s ay ~ (|sy)
_______ 5 agent — -I
reward |:> So I S1 I 82
X X
T = T‘(St, ag I 14 J H ) \ J H \
4-- environment — ag a1 az a3 ay
hl

Se|

Sth1 P(:|s¢,at)
Robust value/Q function of policy 7:
: ™7(s) = inf - ! =
VseS V™(s) PEZ}{I;(PO)E P [;’Y Tt | so s:|
inf ]Eﬂ—7P [Z ’YtT't | So = S,ap0 = CL:|
t=0

PEU (P°)

V(s,a) eSx A: QT(s,a) =

Measures the worst-case performance of the policy in the uncertainty set
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Distributionally robust MDP

Find the policy ™ that maximizes V'™ '

(lyengar. '05, Nilim and El Ghaoui. '05)
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Distributionally robust MDP

Robust MDP }

Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +vy inf (Ps,a, V),
Py o€l (P2,)

V*7(s) = max Q*7(s,a)
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Distributionally robust MDP

Robust MDP
Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +vy inf (Ps,a, V),
Py o€l (P2,)

V*7(s) = max Q*7(s,a)
Distributionally robust value iteration (DRVI):

Q(s,a) < r(s,a) + inf (Ps.a, V),
Py €U (P2 )

where V (s) = max, Q(s,a).

34



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowinal Transition
kernel

35



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowinal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s.)}X, from the nominal
environment PP, find an e-optimal robust policy 7 obeying

Vre Vﬁ,a <e

— in a sample-efficient manner
35



A curious question

. H . Learn the optimal policy of
.. . = ’/" the nominal MDP?
,/
| | e
HE B
H E R
. . ‘~\\
EE B S~ ,
. . . ~4 Learn the robust policy
dth inal MDP?
. . around the nomina ?
empirical MDP

MY
-
®i
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A curious question

. H . Learn the optimal policy of
.. . = /¢" the nominal MDP?
,/
| | e
HE B
H E R
. - ‘~\\
EE B S~ ,
. . - ~4 Learn the robust policy
dth inal MDP?
. - around the nomina ?
empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J




Prior art: TV uncertainty

Sample complexity 4

SA

=y ]

SA

Upper bound [Clavier et al.] s

Standard MDPs

==

SA

T= ]

upper & minimax lower bound "~~~

1

Lower bound [Yang et al.]

e Large gaps between existing upper and lower bounds

o1-» o)

e Unclear benchmarking with standard MDP
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Prior art: %2 uncertainty

Sample complexity“
Upper bound 5?Ao

S2A [Panaganti and Kalathil] (I—=7)%e?
(1 =)t

SA Standard MDPs
----------- upper & minimax lower bound =

Lower bound [Yang et al.]
(1 =7)e? 0 1 1 1 >
o-m oM o@/a-y)

o large gaps between existing upper and lower bounds

e Unclear benchmarking with standard MDP

38



Our theorem under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with radius
o € [0,1). For sufficiently small e > 0, DRVI outputs a policy 7 that
satisfies V*7 — V™7 < € with sample complexity at most

0 ((1 —)? mi/{ll - %0}62>

ignoring logarithmic factors. In addition, no algorithm can succeed if the
sample size is below

@ ((1 —V)Qmijf{ll —%0}62> '

o Establish the minimax optimality of DRVI for RMDP under the TV
uncertainty set over the full range of o.



When the uncertainty set is TV

Sample complexity 1
SA

SA
T—)e

s4
1-7)3% ]

| — Upper bound [Clavier et al.] s

i ] ____ Standard MDPs .

upper & minimax lower bound

Upper & minimax lower bound
(this work)

Lower bound [Yang et al.]

SA(1—~) |

g2 0

>
>

1

g

40



When the uncertainty set is TV

Sample complexity 4
SA
m -1 — Upper bound [Clavier et al.] s
1
|
|
SA | R &Sta.rn?ard I\IADPs bound ==
— s upper & minimax lower boun
=y
Upper & minimax lower bound
SA (this work)
(1—=7)2e?
SA(I _ "/) . Lower bound [Yang et al.]
2 >
<0 0oa-4) o) 1 9
RMDPs are easier to learn than standard MDPs. J
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Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy & that
satisfies V*7 — V™7 < € with sample complexity at most

5<SA(1+0))

(1 —)te?

ignoring logarithmic factors.

41



Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy & that
satisfies V*7 — V™7 < € with sample complexity at most

6<SA(1+0))

(1 —)te?

ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)
In addition, no algorithm succeeds when the sample size is below

SA .
min{l,(lfgy)4(1+o)4}€2) otherwise

41



When the uncertainty set is x> divergence

Sample complexity 4 i
Upper bound 5%Ac
S2A [Panaganti and Kalathil] (1 —)te?
Lower bound
(1 — 7)452 (this work)
Upper bound SAa
(this work) (1 —7y)te?
SA E
(1—n)te?
SAc SAc
T=) 1+ o) 2
SA Standard MDPs
(1— 7)382 T "7 === “ upper & minimax lower bound =
SA
-)7%%
SA _ Lower bound [Yang et al.]
(1—7)e? 1 1 1 :

O(l—v) 0O(1)
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When the uncertainty set is x> divergence

Sample complexity 4

5%A
(1=y)te?
54
(1—=m)te?
54
(1-7%e 7]
54
(1—=7)e

RMDPs can be harder to learn than standard MDPs.

Upper bound 5°Ac

[Panaganti and Kalathil] (1 —n)*e?

Lower bound
(this work)

Upper bound 5S40

(this work) (1 —7y)te?

SAc SAc
(T=m'1+0)* €2

Standard MDPs

® upper & minimax lower bound

Lower bound [Yang et al.]

O(1—7)

o(1)

42



Summary

sample complexity

sA
e [~ Upper bound [Clavier etal] ——
1
1
1
SA Standard MDPs
a3 | =777 upper & minimax lower bound =7~
(T=7)%?
s4
Upper & minimax lower bound
54 {this work)
=
SA(1—7) Lower bound [Yang et al.]
L
3
0 ou-v o 1

o

sample complexity
Upper bound / _st0
2 Ty
S2A | panagantiand kalathi) /T3 Lower bound
(1=t (this work)
Upper bound _SAe
(this work) (=7
SA 4
(1—n)te?
5o
SA Standard MDPs.
=2 T N 777" " upper & minimax lower bound =
s4
J-%%
SA Lower bound [Yang et al]
(1=7)e s s

n
01-4)  0()  0(/1-7)
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Summary

sample complexity

SA

[ Upper bound [Clavier et al] ——

Standard MDPs

s4

(this work)

== upper & minimax lower bound ==~

Upper & minimax lower bound

Lower bound [Yang etal]

The price of robustness varies: choice of the uncertainty set matters. J
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Lower bound
(this work)
SAc
="

Standard MDPs

" upper & minimax lower bound =

Lower bound [Yang et al]

o(1/(1-7)

Ongoing and future work:

o Other choices of uncertainty sets: KL divergence.

e Function approximation.
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Concluding remarks
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\. action N OpTIMIZATION
W ———— agent -
Reinforcement f\\\, Dynamic Programming 1
Learning X and Optimal Control H
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1.
1: reward P
L e .
-—¢ environment =
inext state S

Understanding non-asymptotic performances of RL algorithms sheds
light to their empirical successes (and failures)! J
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Thanks!

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and
Beyond, arXiv: 2305.10697. Short version at ICML 2023.

® The Curious Price of Distributional Robustness in Reinforcement Learning with a
Generative Model, arXiv:2305.16589.
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