Homework 1

Due date: Wednesday, Feb. 7, 2018 (in class)

1. Norms (30 points)

Recall that the $\ell_{p}(p \geq 1)$ norm of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is defined as $\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.
(a) Prove the following inequalities.

$$
\begin{aligned}
\|\boldsymbol{x}\|_{2} & \leq\|\boldsymbol{x}\|_{1} \leq \sqrt{n}\|\boldsymbol{x}\|_{2} \\
\|\boldsymbol{x}\|_{\infty} & \leq\|\boldsymbol{x}\|_{2} \leq \sqrt{n}\|\boldsymbol{x}\|_{\infty}
\end{aligned}
$$

(b) Discuss how the bounds can be improved in part (a) if we know \boldsymbol{x} is a k-sparse signal, $k \ll n$.
(c) The "dual" norm of a norm $\|\cdot\|_{\square}$ is defined as

$$
\|\boldsymbol{v}\|_{\mathrm{G}}^{*}=\sup _{\|\boldsymbol{x}\|_{\mathrm{t}} \leq 1}\langle\boldsymbol{x}, \boldsymbol{v}\rangle
$$

Find the dual norms of $\|\cdot\|_{1},\|\cdot\|_{2}$, and $\|\cdot\|_{\infty}$, respectively.

2. Mutual coherence (40 points)

Recall that for an arbitrary pair of orthonormal bases $\boldsymbol{\Psi}=\left[\boldsymbol{\psi}_{1}, \cdots, \boldsymbol{\psi}_{n}\right] \in \mathbb{R}^{n \times n}$ and $\boldsymbol{\Phi}=\left[\boldsymbol{\phi}_{1}, \cdots, \boldsymbol{\phi}_{n}\right] \in$ $\mathbb{R}^{n \times n}$, the mutual coherence $\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})$ of these two bases is defined by

$$
\begin{equation*}
\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})=\max _{1 \leq i, j \leq n}\left|\boldsymbol{\psi}_{i}^{\top} \boldsymbol{\phi}_{j}\right| \tag{1}
\end{equation*}
$$

(a) Show that

$$
\frac{1}{\sqrt{n}} \leq \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \leq 1 .
$$

(b) Let $\boldsymbol{\Psi}=\boldsymbol{I}$, and suppose that $\boldsymbol{\Phi}=\left[\phi_{i, j}\right]_{1 \leq i, j \leq n}$ is a Gaussian random matrix such that the $\phi_{i, j}$'s are i.i.d. random variables drawn from $\phi_{i, j} \sim \mathcal{N}(0,1 / n)$. Can you provide an upper estimate on $\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})$ as defined in (1)? Since $\boldsymbol{\Phi}$ is a random matrix, we expect your answer to be a function $f(n)$ such that $\mathbb{P}\{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})>f(n)\} \rightarrow 0$ as n scales.

Hint: to simplify analysis, you are allowed to use the crude approximation $\mathbb{P}\{|z|>\tau\} \approx \exp \left(-\tau^{2} / 2\right)$ for large $\tau>0$, where $z \sim \mathcal{N}(0,1)$.
(c) Set $n=100$. Generate a random matrix $\boldsymbol{\Phi}$ as in Part (b), and compute $\mu(\boldsymbol{I}, \boldsymbol{\Phi})$. Report the empirical distribution (i.e. histogram) of $\mu(\boldsymbol{I}, \boldsymbol{\Phi})$ out of 1000 simulations. How does your simulation result compare to your estimate in Part (b)?
(d) We now generalize the mutual coherence measure to accommodate a more general set of vectors beyond two bases. Specifically, for any given matrix $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{p}\right] \in \mathbb{R}^{n \times p}$ obeying $n \leq p$, define the mutual coherence of \boldsymbol{A} as

$$
\mu(\boldsymbol{A})=\max _{1 \leq i, j \leq p, i \neq j}\left|\frac{\boldsymbol{a}_{i}^{\top} \boldsymbol{a}_{j}}{\left\|\boldsymbol{a}_{i}\right\|\left\|\boldsymbol{a}_{j}\right\|}\right| .
$$

Show that

$$
\mu(\boldsymbol{A}) \geq \sqrt{\frac{p-n}{p-1} \cdot \frac{1}{n}}
$$

This is a special case of the Welch bound.
Hint: you may want to use the following inequality: for any positive semidefinite $\boldsymbol{M} \in \mathbb{R}^{n \times n},\|\boldsymbol{M}\|_{\mathrm{F}}^{2} \geq$ $\frac{1}{n}\left(\sum_{i=1}^{n} \lambda_{i}(\boldsymbol{M})\right)^{2}$.

3. Picket-fence signal (10 points)

Suppose that \sqrt{n} is an integer. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be a picket-fence signal with uniform spacing \sqrt{n} such that

$$
x_{i}=\left\{\begin{array}{ll}
1, & \text { if } \frac{i-1}{\sqrt{n}} \text { is an integer, } \\
0, & \text { else },
\end{array} \quad i=1, \cdots, n .\right.
$$

Compute

$$
\|\boldsymbol{x}\|_{0} \cdot\|\boldsymbol{F} \boldsymbol{x}\|_{0} \quad \text { and } \quad\|\boldsymbol{x}\|_{0}+\|\boldsymbol{F} \boldsymbol{x}\|_{0}
$$

where \boldsymbol{F} is the Fourier matrix such that

$$
(\boldsymbol{F})_{k, l}=\frac{1}{\sqrt{n}} \exp \left(-i \frac{2 \pi(k-1)(l-1)}{n}\right), \quad 1 \leq k, l \leq n .
$$

How do they compare to the uncertainty principles we derive in class?

4. ℓ_{1} minimization (20 points)

Suppose that \boldsymbol{A} is an $n \times 2 n$ dimensional matrix. Let $\boldsymbol{x} \in \mathbb{R}^{2 n}$ be an unknown k-sparse vector, and $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ the observed system output. This problem is concerned with ℓ_{1} minimization (or basis pursuit) in recovering \boldsymbol{x}, i.e.

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{z} \in \mathbb{R}^{2 n}}\|\boldsymbol{z}\|_{1} \quad \text { s.t. } \boldsymbol{A} \boldsymbol{z}=\boldsymbol{y} \tag{2}
\end{equation*}
$$

(a) An optimization problem is called a linear program (LP) if it has the form

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{z}} & \boldsymbol{c}^{\top} \boldsymbol{z}+\boldsymbol{d} \\
\text { s.t. } & \boldsymbol{G} \boldsymbol{z} \leq \boldsymbol{h} \\
& \boldsymbol{A} \boldsymbol{z}=\boldsymbol{b}
\end{aligned}
$$

where $\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{G}, \boldsymbol{h}, \boldsymbol{A}$, and \boldsymbol{b} are known. Here, for any two vectors \boldsymbol{r} and \boldsymbol{s}, we say $\boldsymbol{r} \leq \boldsymbol{s}$ if $r_{i} \leq s_{i}$ for all i. Show that (2) can be converted to a linear program.
(b) Set $n=256$, and let k range between 1 and 128 . For each choice of k, run 10 independent numerical experiments: in each experiment, generate $\boldsymbol{A}=\left[a_{i, j}\right]_{1 \leq i \leq n, 1 \leq j \leq 2 n}$ as a random matrix such that the $a_{i, j}$'s are i.i.d. standard Gaussian random variables, generate $\boldsymbol{x} \in \mathbb{R}^{2 n}$ as a random k-sparse signal (e.g. you may generate the support of \boldsymbol{x} uniformly at random, with each non-zero entry drawn from the standard Gaussian distribution), and solve (2) with $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$. An experiment is claimed successful if the solution \boldsymbol{z} returned by (2) obeys $\|\boldsymbol{x}-\boldsymbol{z}\|_{2} \leq 0.001\|\boldsymbol{x}\|_{2}$. Report the empirical success rates (averaged over 10 experiments) for each choice of k.

