## ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

Super resolution, atomic norms and structured matrix completion

Yuejie Chi<br>Department of Electrical and Computer Engineering

## Carnegie Mellon University

Spring 2018

## Outline

- Parameter estimation, super resolution
- Classical parametric approach
- Prony's method
- MUSIC
- Matrix pencil
- Optimization-based methods
- Basis mismatch
- Atomic norm minimization
- Connections to low-rank matrix completion


## Parameter estimation

Model: a signal is mixture of $r$ modes

$$
x[t]=\sum_{i=1}^{r} d_{i} \psi\left(t ; \nu_{i}\right), \quad t \in \mathbb{Z}
$$

- $d_{i}$ : amplitudes
- $\nu_{i}$ : modal parameter
- $\psi$ : (known) modal function, e.g. point spread function
- $r$ : model order
- $2 r$ unknown parameters: $\left\{d_{i}\right\}$ and $\left\{\nu_{i}\right\}$


## High-resolution source localization

Consider a time signal

$$
z(t)=\sum_{i=1}^{r} d_{i} \delta\left(t-t_{i}\right)
$$

- Resolution is limited by point spread function $h(t)$ of imaging system

$$
x(t)=z(t) * h(t)
$$


point spread function $h(t)$

$z(t)$

$x(t)$

## Single-molecule fluorescence microscopy

How do we break the diffraction limit of optical microscopy?

ABBE S DIFFRACTION LIMIT $\{0.2 \mu \mathrm{~m})$


The Nobel Prize in Chemistry 2014 "for the development of super-resolved fluorescence microscopy".

E. Betzig

S. W. Hell

W. E. Moerner

## Single-molecule fluorescence microscopy

Single-molecule based superresolution techniques achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters).

Figure 4
The principle of single-molecule microscopy
activates a fraction of all activates a fraction of all The distance between them is greater than Abbe's diffraction Limit of 0.2 micrometres. They glow until bleached, at which point the procedure is repeated on a new subgroup of proteins.


2 The blurred images are processed using probabicty the
much sharper.

High density implies better time resolution.

Figure credit: "The Nobel Prize in Chemistry 2014 - Popular Information".

## Spectral-domain viewpoint

time domain: $\quad x(t)=z(t) * h(t)=\sum_{i=1}^{r} d_{i} h\left(t-t_{i}\right)$
spectral domain: $\quad \hat{x}(f)=\hat{z}(f) \hat{h}(f)=\sum_{i=1}^{r} d_{i} \underbrace{\hat{h}(f)}_{\text {known }} e^{j 2 \pi f t_{i}}$
$\Longrightarrow$ observed data: $\frac{\hat{x}(f)}{\hat{h}(f)}=\sum_{i=1}^{r} d_{i} \underbrace{e^{j 2 \pi f t_{i}}}_{\psi\left(f ; t_{i}\right)}, \quad \forall f: \hat{h}(f) \neq 0$
$h(t)$ is usually band-limited
(suppress high-frequency components)

## Application: super-resolution imaging


(a) highly resolved signal $z(t)$;
(b) low-pass version $x(t)$

(c) Fourier transform $\hat{z}(f)$;
(d) (red) observed spectrum $\hat{x}(f)$

Fig. credit: Candes, Fernandez-Granda '14
Super-resolution: extrapolate high-end spectrum (fine scale details) from low-end spectrum (low-resolution data)

## Application: multipath communication channels

In wireless communications, transmitted signals arrive at the receiver by multiple paths, due to reflection from objects (e.g. buildings).
multipath in wireless comm


Suppose $h(t)$ is transmitted signal, then received signal is

$$
x(t)=\sum_{i=1}^{r} d_{i} h\left(t-t_{i}\right) \quad\left(t_{i}: \text { delay in } i^{\text {th }} \text { path }\right)
$$

$\rightarrow \quad$ same as super-resolution model

## Basic model

- Signal model: a mixture of sinusoids at $r$ distinct frequencies

$$
x[t]=\sum_{i=1}^{r} d_{i} e^{j 2 \pi t f_{i}}
$$

where $f_{i} \in[0,1)$ : frequencies; $d_{i}$ : amplitudes

- Sparsity in a continuous dictionary: $f_{i}$ can assume ANY value in $[0,1)$
- Observed data:

$$
\boldsymbol{x}=[x[0], \cdots, x[n-1]]^{\top}
$$

or a subsampled version of it in an index set $T \in\{0,1, \ldots, n-1\}$.

- Goal: retrieve the frequencies / recover signal (also called harmonic retrieval)


## Matrix / vector representation

Alternatively, the observed data can be written as

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \tag{10.1}
\end{equation*}
$$

where $\boldsymbol{d}=\left[d_{1}, \cdots, d_{r}\right]^{\top}$;
$\boldsymbol{V}_{n \times r}:=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & z_{3} & \cdots & z_{r} \\ z_{1}^{2} & z_{2}^{2} & z_{3}^{2} & \cdots & z_{r}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_{1}^{n-1} & z_{2}^{n-1} & z_{3}^{n-1} & \cdots & z_{r}^{n-1}\end{array}\right]$
(Vandermonde matrix)
with $z_{i}=e^{j 2 \pi f_{i}}$.

- Basic property of Vandermonde matrix: the columns of $\boldsymbol{V}_{n \times r}$ are linearly independent as long as $f_{i} \neq f_{j}, r \leq n$.


## Prony's method

## Prony's method



- A parametric method proposed by Gaspard Riche de Prony in 1795 based on polynomial interpolation.
- Key idea: construct an annihilating filter + polynomial root finding


## Annihilating filter

- Define a filter by (Z-transform or characteristic polynomial)

$$
G(z)=\sum_{l=0}^{r} g_{l} z^{-l}=\prod_{l=1}^{r}\left(1-z_{l} z^{-1}\right)
$$

whose roots are $\left\{z_{l}=e^{j 2 \pi f_{l}} \mid 1 \leq l \leq r\right\}$

- $G(z)$ is called annihilating filter since it annihilates $x[k]$, i.e.

$$
\begin{equation*}
q[k]:=\underbrace{g_{k} * x[k]}_{\text {convolution }}=0 \tag{10.2}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
q[k] & =\sum_{i=0}^{r} g_{i} x[k-i]=\sum_{i=0}^{r} \sum_{l=1}^{r} g_{i} d_{l} z_{l}^{k-i} \\
& =\sum_{l=1}^{r} d_{l} z_{l}^{k}(\underbrace{\sum_{i=0}^{r} g_{i} z_{l}^{-i}}_{=0})=0
\end{aligned}
$$

## Annihilating filter

Equivalently, one can write (10.2) as

$$
\begin{equation*}
\boldsymbol{X}_{\mathrm{e}} \boldsymbol{g}=\mathbf{0} \tag{10.3}
\end{equation*}
$$

where $\boldsymbol{g}=\left[g_{r}, \cdots, g_{0}\right]^{\top}$ and

$$
\boldsymbol{X}_{\mathrm{e}}:=\underbrace{\left(\begin{array}{ccccc}
x[0] & x[1] & x[2] & \cdots & x[r]  \tag{10.4}\\
x[1] & x[2] & x[3] & \cdots & x[r+1] \\
x[2] & x[3] & x[4] & \cdots & x[r+2] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x[n-r-1] & x[n-r] & \cdots & \cdots & x[n-1]
\end{array}\right)}_{\text {Hankel matrix }} \in \mathbb{C}^{(n-r) \times(r+1)}
$$

Thus, we can obtain coefficients $\left\{g_{i}\right\}$ (hence the filter $G(z)$ ) by solving linear system (10.3). Is the solution unique?

$$
n-r>r+1 \Longrightarrow r<(n-1) / 2
$$

## A crucial decomposition

Vandermonde decomposition

$$
\begin{equation*}
\boldsymbol{X}_{\mathrm{e}}=\boldsymbol{V}_{(n-r) \times r} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}_{(r+1) \times r}^{\top} \tag{10.5}
\end{equation*}
$$

where $\boldsymbol{X}_{\mathrm{e}} \in \mathbb{C}^{(n-r) \times(r+1)}$.

Implications: if $r<(n-1) / 2$ and $d_{i} \neq 0$, then

- $\operatorname{rank}\left(\boldsymbol{X}_{\mathrm{e}}\right)=\operatorname{rank}\left(\boldsymbol{V}_{(n-r) \times r}\right)=\operatorname{rank}\left(\boldsymbol{V}_{(r+1) \times r}\right)=r$
- $\operatorname{null}\left(\boldsymbol{X}_{\mathrm{e}}\right)$ is 1-dimensional $\Longleftrightarrow$ nonzero solution to $\boldsymbol{X}_{\mathrm{e}} \boldsymbol{g}=\mathbf{0}$ is unique


## A crucial decomposition

Vandermonde decomposition

$$
\begin{equation*}
\boldsymbol{X}_{\mathrm{e}}=\boldsymbol{V}_{(n-r) \times r} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}_{(r+1) \times r}^{\top} \tag{10.5}
\end{equation*}
$$

where $\boldsymbol{X}_{\mathrm{e}} \in \mathbb{C}^{(n-r) \times(r+1)}$.

Proof: For any $i$ and $j$,

$$
\begin{aligned}
{\left[\boldsymbol{X}_{\mathrm{e}}\right]_{i, j} } & =x[i+j-2]=\sum_{l=1}^{r} d_{l} z_{l}^{i+j-2}=\sum_{l=1}^{r} z_{l}^{i-1} d_{l} z_{l}^{j-1} \\
& =\left(\boldsymbol{V}_{(n-r) \times r}\right)_{i,:} \operatorname{diag}(\boldsymbol{d})\left(\boldsymbol{V}_{(r+1) \times r}\right)_{j,:}^{\top}
\end{aligned}
$$

## Prony's method

## Algorithm 10.1 Prony's method

1. Find $\boldsymbol{g}=\left[g_{r}, \cdots, g_{0}\right]^{\top} \neq \mathbf{0}$ that solves $\boldsymbol{X}_{\mathrm{e}} \boldsymbol{g}=\mathbf{0}$
2. Compute $r$ roots $\left\{z_{l} \mid 1 \leq l \leq r\right\}$ of $G(z)=\sum_{l=0}^{r} g_{l} z^{-l}$
3. Calculate $f_{l}$ via $z_{l}=e^{j 2 \pi f_{l}}$

## Drawbacks:

- need to estimate the model order
- Root-finding for polynomials becomes difficult for large $r$
- Numerically unstable in the presence of noise
- don't work with subsampling or missing data


## Subspace method: MUSIC

## MUltiple SIgnal Classification (MUSIC)

- Let $\boldsymbol{z}(f):=\left[\begin{array}{c}1 \\ e^{j 2 \pi f} \\ \vdots \\ e^{j 2 \pi r f}\end{array}\right]$, from the annihilating filter in Prony, $G\left(e^{j 2 \pi f_{l}}\right)=0$, we have

$$
\boldsymbol{z}\left(f_{l}\right)^{\top} \boldsymbol{g}=0
$$

where $\boldsymbol{g} \in \operatorname{null}\left(\boldsymbol{X}_{\mathrm{e}}\right)$.

- Consider a generalized $\boldsymbol{X}_{\mathrm{e}}$ that has a larger null space, than utilize that subspace for frequency recovery.


## MUltiple Slgnal Classification (MUSIC)

Consider a (slightly more general) Hankel matrix
$\boldsymbol{X}_{\mathrm{e}}=\left(\begin{array}{ccccc}x[0] & x[1] & x[2] & \cdots & x[k] \\ x[1] & x[2] & x[3] & \cdots & x[k+1] \\ x[2] & x[3] & x[4] & \cdots & x[k+2] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x[n-k-1] & x[n-k] & \cdots & \cdots & x[n-1]\end{array}\right) \in \mathbb{C}^{(n-k) \times(k+1)}$
where $r \leq k \leq n-r$ (note that $k=r$ in Prony's method).

- null $\left(\boldsymbol{X}_{\mathrm{e}}\right)$ might span multiple dimensions by taking $k>r$


## MUltiple SIgnal Classification (MUSIC)

- Generalize Prony's method by computing $\left\{\boldsymbol{v}_{i} \mid 1 \leq i \leq k-r+1\right\}$ that forms orthonormal basis for $\operatorname{null}\left(\boldsymbol{X}_{\mathrm{e}}\right)$, call that subspace $\boldsymbol{V}$
- Let $\boldsymbol{z}(f):=\left[\begin{array}{c}1 \\ e^{j 2 \pi f} \\ \vdots \\ e^{j 2 \pi k f}\end{array}\right]$, then it follows from Vandermonde decomposition that

$$
\boldsymbol{z}\left(f_{l}\right)^{\top} \boldsymbol{v}_{i}=0, \quad 1 \leq i \leq k-r+1,1 \leq l \leq r
$$

- Thus, $\left\{f_{l}\right\}$ are peaks in pseudospectrum

$$
S(f):=\frac{1}{\left\|\boldsymbol{z}\left(f_{l}\right)^{\top} \boldsymbol{V}\right\|_{2}^{2}}=\frac{1}{\sum_{i=1}^{k-r+1}\left|\boldsymbol{z}(f)^{\top} \boldsymbol{v}_{i}\right|^{2}}
$$

## MUSIC algorithm

## Algorithm 10.2 MUSIC

1. Compute orthonormal basis $\left\{\boldsymbol{v}_{i} \mid 1 \leq i \leq k-r+1\right\}$ for null $\left(\boldsymbol{X}_{\mathrm{e}}\right)$
2. Return $r$ largest peaks of $S(f):=\frac{1}{\sum_{i=1}^{k-r+1}\left|\boldsymbol{z}(f)^{\top} \boldsymbol{v}_{i}\right|^{2}}$, where

$$
\boldsymbol{z}(f):=\left[1, e^{j 2 \pi f}, \cdots, e^{j 2 \pi k f}\right]^{\top}
$$

## Drawbacks:

- need to estimate the model order
- don't work with subsampling or missing data


## Sparse recovery?

## Optimization methods for super resolution?

Recall our representation in (10.1):

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \tag{10.6}
\end{equation*}
$$

- Challenge: both $\boldsymbol{V}_{n \times r}$ and $\boldsymbol{d}$ are unknown

One can view (10.6) as sparse representation over a continuous dictionary $\left\{\boldsymbol{z}(f)=\left[1, e^{j 2 \pi f}, \cdots, e^{j 2 \pi(n-1) f}\right]^{\top} \mid 0 \leq f<1\right\}$,

$$
\boldsymbol{x}=\sum_{i=1}^{r} d_{i} \boldsymbol{z}\left(f_{i}\right)
$$

## Sparse recovery?

Convert nonlinear representation into linear system via discretization at desired resolution:

$$
\text { (assume) } \boldsymbol{x}=\underbrace{\boldsymbol{\Psi}}_{n \times p \text { overcomplete DFT matrix }}
$$

- representation over a discrete frequency set $\left\{0, \frac{1}{p}, \cdots, \frac{p-1}{p}\right\}$
- gridding resolution: $1 / p$


Over-determined versus Under-determined nonlinear

## Sparse recovery via $\ell_{1}$ minimization

Solve $\ell_{1}$ minimization:

$$
\operatorname{minimize}_{\boldsymbol{\beta} \in \mathbb{C}^{p}}\|\boldsymbol{\beta}\|_{1} \quad \text { s.t. } \boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}
$$

If $\boldsymbol{\beta}$ is $r$-sparse, then recovery from $n=O(r \log p)$ samples, and robust against subsampling, noise and outliers enabled by the machinery of convex optimization.

## Sparse recovery via $\ell_{1}$ minimization

Solve $\ell_{1}$ minimization:

$$
\operatorname{minimize}_{\boldsymbol{\beta} \in \mathbb{C}^{p}}\|\boldsymbol{\beta}\|_{1} \quad \text { s.t. } \boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}
$$

If $\boldsymbol{\beta}$ is $r$-sparse, then recovery from $n=O(r \log p)$ samples, and robust against subsampling, noise and outliers enabled by the machinery of convex optimization.

The issue of being off-the-grid: the point sources / frequencies $f_{i}$ never lies on the discrete set!


## Basis Mismatch: A Tale of Two Models

Mathematical (CS) model:

$$
\boldsymbol{x}=\boldsymbol{\Psi}_{c s} \boldsymbol{\beta}
$$

The basis $\boldsymbol{\Psi}_{c s}$ is assumed, typically a gridded imaging matrix (e.g., $n$ point DFT matrix or identity matrix), and $\boldsymbol{\beta}$ is presumed to be $r$-sparse.


Physical (true) model:

$$
\boldsymbol{x}=\boldsymbol{\Psi}_{p h} \boldsymbol{\alpha}
$$

The basis $\boldsymbol{\Psi}_{p h}$ is unknown, and is determined by a point spread function, a Green's function, or an impulse response, and $\boldsymbol{\alpha}$ is $r$-sparse and unknown.

Key transformation:

$$
\boldsymbol{\beta}=\boldsymbol{\Psi}_{m i s} \boldsymbol{\alpha}=\boldsymbol{\Psi}_{c s}^{-1} \boldsymbol{\Psi}_{p h} \boldsymbol{\alpha}
$$

$\boldsymbol{x}$ is sparse in the unknown mismatch $\Psi_{m i s}$ basis.

## Basis Mismatch: Fundamental Question

Question: What is the consequence of assuming that $\boldsymbol{x}$ is $k$-sparse in $\boldsymbol{I}$, when in fact it is only $k$-sparse in an unknown basis $\boldsymbol{\Psi}_{\text {mis }}$, which is determined by the mismatch between $\boldsymbol{\Psi}_{c s}$ and $\boldsymbol{\Psi}_{p h}$ ?


## Discretization destroys sparsity

Suppose $n=p$ (square case), and recall

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \\
\Longrightarrow \quad \boldsymbol{\beta}=\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r} \boldsymbol{d}
\end{gathered}
$$

Ideally, if $\Psi^{-1} \boldsymbol{V}_{n \times r} \approx$ submatrix of $\boldsymbol{I}$, then sparsity is preserved.

## Discretization destroys sparsity

Suppose $n=p$ (square case), and recall

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \\
\Longrightarrow \quad \boldsymbol{\beta}=\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r} \boldsymbol{d}
\end{gathered}
$$

Simple calculation gives

$$
\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r}=\left[\begin{array}{cccc}
D\left(\delta_{0}\right) & D\left(\delta_{1}\right) & \cdots & D\left(\delta_{r}\right) \\
D\left(\delta_{0}-\frac{1}{p}\right) & D\left(\delta_{1}-\frac{1}{p}\right) & \cdots & D\left(\delta_{r}-\frac{1}{p}\right) \\
\vdots & \vdots & \ddots & \vdots \\
D\left(\delta_{0}-\frac{p-1}{p}\right) & D\left(\delta_{1}-\frac{p-1}{p}\right) & \cdots & D\left(\delta_{r}-\frac{p-1}{p}\right)
\end{array}\right]
$$

where $f_{i}$ is mismatched to grid $\left\{0, \frac{1}{p}, \cdots, \frac{p-1}{p}\right\}$ by $\delta_{i}$, and

$$
D(f):=\frac{1}{p} \sum_{l=0}^{p-1} e^{j 2 \pi l f}=\frac{1}{p} e^{j \pi f(p-1)} \underbrace{\frac{\sin (\pi f p)}{\sin (\pi f)}}_{\text {heavy tail }} \text { (Dirichlet kernel) }
$$

## Discretization destroys sparsity

Suppose $n=p$ (square case), and recall

$$
\begin{aligned}
& \boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \\
& \Rightarrow \quad \boldsymbol{\beta}=\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r} \boldsymbol{d}
\end{aligned}
$$

Slow decay / spectral leakage of Dirichlet kernel


If $\delta_{i}=0$ (no mismatch), $\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r}=$ submatrix of $\boldsymbol{I}$

$$
\Longrightarrow \quad \Psi^{-1} V_{n \times r} \boldsymbol{d} \text { is sparse }
$$

## Discretization destroys sparsity

Suppose $n=p$ (square case), and recall

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{\Psi} \boldsymbol{\beta}=\boldsymbol{V}_{n \times r} \boldsymbol{d} \\
\Longrightarrow \quad \boldsymbol{\beta}=\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r} \boldsymbol{d}
\end{gathered}
$$

Slow decay / spectral leakage of Dirichlet kernel


If $\delta_{i} \neq 0$ (e.g. randomly generated), $\boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r}$ may be far from submatrix of $\boldsymbol{I}$
$\Longrightarrow \quad \boldsymbol{\Psi}^{-1} \boldsymbol{V}_{n \times r} \boldsymbol{d}$ may be incompressible

- Finer gridding does not help!


## Mismatch of DFT basis

Loss of sparsity after discretization due to basis mismatch


Compressed sensing


Conventional FFT


Linear Prediction


## Grid-free methods: atomic norm minimization

## Inspirations for Atomic Norm Minimization

- Prior information to exploit: there are only a few active parameters (sparse!), the exact number of which is unknown.
- In compressed sensing, a sparse signal is simple - it is a parsimonious sum of the canonical basis vectors $\left\{\boldsymbol{e}_{k}\right\}$.
- The $\ell_{1}$ norm enforces sparsity w.r.t. the canonical basis vectors.
- The unit $\ell_{1}$ norm ball is conv $\left\{ \pm \boldsymbol{e}_{k}\right\}$, the convex hull of the basis vectors - enforcing sparsity with respect to canonical basis vectors.



## Inspirations for Atomic Norm Minimization

- A low rank matrix has a sparse representation in terms of unit-norm, rank-one matrices.
- The dictionary $D=\left\{\boldsymbol{u} \boldsymbol{v}^{T}:\|\boldsymbol{u}\|_{2}=\|\boldsymbol{v}\|_{2}=1\right\}$ is continuously parameterized and has infinite number of primitive signals.
- We enforce low-rankness using the nuclear norm:

$$
\|\boldsymbol{X}\|_{*}=\min \left\{\|\boldsymbol{\sigma}\|_{1}: \boldsymbol{X}=\sum_{i} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}\right\}
$$

- The nuclear norm ball is the convex hull of unit-norm, rank-one matrices.
- A hyperplane touches the nuclear norm ball at low-rank solutions.



## Atomic Set

- Consider a dictionary or set of atoms $\mathcal{A}=\{\boldsymbol{\psi}(\nu): \nu \in N\} \subset \mathbb{R}^{n}$ or $\mathbb{C}^{n}$.
- The parameter space $N$ can be finite, countably infinite, or continuous.
- The atoms $\{\boldsymbol{\psi}(\nu)\}$ are building blocks for signal representation.
- Examples: canonical basis vectors, rank-one matrices.
- Line spectral atoms:

$$
\boldsymbol{a}(f, \phi)=e^{j \phi}\left[1, e^{j 2 \pi f}, \ldots, e^{j 2 \pi(n-1) f}\right]^{T}: \nu \in[0,1]
$$

## Atomic Norms

- Prior information: the signal is simple w.r.t. $\mathcal{A}$ - it has a parsimonious decomposition using atoms in $\mathcal{A}$

$$
\boldsymbol{x}=\sum_{k=1}^{r} \alpha_{k} \boldsymbol{\psi}\left(\nu_{k}\right)
$$

## Definition 10.1 (Atomic norm, Chandrasekaran et al. '10)

The atomic norm of any $\boldsymbol{x}$ is defined as

$$
\|\boldsymbol{x}\|_{\mathcal{A}}:=\inf \left\{\|\boldsymbol{d}\|_{1}: \boldsymbol{x}=\sum_{k} d_{k} \psi\left(\nu_{k}\right)\right\}=\inf \{t>0: \boldsymbol{x} \in t \operatorname{conv}(\mathcal{A})\}
$$

- The unit ball of the atomic norm is the convex hull of $\mathcal{A}$.



## Dual norm of atomic norms

- The dual atomic norm is defined as

$$
\|\boldsymbol{q}\|_{\mathcal{A}}^{*}:=\sup _{x:\|\boldsymbol{x}\|_{\mathcal{A}} \leq 1}|\langle\boldsymbol{x}, \boldsymbol{q}\rangle|=\sup _{\boldsymbol{a} \in \mathcal{A}}|\langle\boldsymbol{a}, \boldsymbol{q}\rangle|
$$

- For line spectral atoms, the dual atomic norm is the maximal magnitude of a complex trigonometric polynomial.

$$
\|\boldsymbol{q}\|_{\mathcal{A}}^{*}=\sup _{\boldsymbol{a} \in \mathcal{A}}|\langle\boldsymbol{a}, \boldsymbol{q}\rangle|=\sup _{f \in[0,1]}\left|\sum_{k=0}^{n-1} q_{k} e^{j 2 \pi k f}\right|
$$

## Dual norm of atomic norms

- The dual atomic norm is defined as

$$
\|\boldsymbol{q}\|_{\mathcal{A}}^{*}:=\sup _{\boldsymbol{x}:\|\boldsymbol{x}\|_{\mathcal{A}} \leq 1}|\langle\boldsymbol{x}, \boldsymbol{q}\rangle|=\sup _{\boldsymbol{a} \in \mathcal{A}}|\langle\boldsymbol{a}, \boldsymbol{q}\rangle|
$$

- For line spectral atoms, the dual atomic norm is the maximal magnitude of a complex trigonometric polynomial.

$$
\|\boldsymbol{q}\|_{\mathcal{A}}^{*}=\sup _{\boldsymbol{a} \in \mathcal{A}}|\langle\boldsymbol{a}, \boldsymbol{q}\rangle|=\sup _{f \in[0,1]}\left|\sum_{k=0}^{n-1} q_{k} e^{j 2 \pi k f}\right|
$$

| Atoms | Atomic Norm | Dual Atomic Norm |
| :--- | :--- | :--- |
| canonical basis vectors | $\ell_{1}$ norm | $\ell_{\infty}$ norm |
| finite atoms | $\\|\cdot\\|_{D}$ | $\left\\|D^{\top} \boldsymbol{q}\right\\|_{\infty}$ |
| unit-norm, rank-one matrices | nuclear norm | spectral norm |
| line spectral atoms | $\\|\cdot\\|_{\mathcal{A}}$ | $\\|\cdot\\|_{\mathcal{A}}^{*}$ |

## SDP representation of atomic norm

Consider set of line spectral atoms
$\mathcal{A}:=\left\{\boldsymbol{a}(f, \phi):=e^{j \phi} \cdot\left[1, e^{j 2 \pi f}, \cdots, e^{j 2 \pi(n-1) f}\right]^{\top} \mid f \in[0,1), \phi \in[0,2 \pi)\right\}$, then

$$
\|\boldsymbol{x}\|_{\mathcal{A}}=\inf _{d_{k} \geq 0, \phi_{k} \in[0,2 \pi), f_{k} \in[0,1)}\left\{\sum_{k} d_{k} \mid \boldsymbol{x}=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, \phi_{k}\right)\right\}
$$

Lemma 10.2 (Tang, Bhaskar, Shah, Recht '13)
For any $\boldsymbol{x} \in \mathbb{C}^{n}$,

$$
\|\boldsymbol{x}\|_{\mathcal{A}}=\inf \left\{\frac{1}{2 n} \operatorname{Tr}(\operatorname{Toeplitz}(\boldsymbol{u}))+\frac{1}{2} t \left\lvert\,\left[\begin{array}{cc}
\operatorname{Toeplitz}(\boldsymbol{u}) & \boldsymbol{x}  \tag{10.7}\\
\boldsymbol{x}^{*} & t
\end{array}\right] \succeq \mathbf{0}\right.\right\}
$$

## Caratheodory's decomposition lemma

## Lemma 10.3

Any Toeplitz matrix $\mathbf{P} \succeq \mathbf{0}$ can be represented as

$$
\boldsymbol{P}=\boldsymbol{V} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}^{*}
$$

where $\boldsymbol{V}:=\left[\boldsymbol{a}\left(f_{1}, 0\right), \cdots, \boldsymbol{a}\left(f_{r}, 0\right)\right], d_{i} \geq 0$, and $r=\operatorname{rank}(\boldsymbol{P})$.

- Vandermonde decomposition can be computed efficiently via root finding


## Proof of Lemma 10.2

Let $\operatorname{SDP}(\boldsymbol{x})$ be value of RHS of (10.7).

1. Show that $\operatorname{SDP}(\boldsymbol{x}) \leq\|\boldsymbol{x}\|_{\mathcal{A}}$.

- Suppose $\boldsymbol{x}=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, \phi_{k}\right)$ for $d_{k} \geq 0$. Picking $\boldsymbol{u}=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, 0\right)$ and $t=\sum_{k} d_{k}$ gives (exercise)

$$
\begin{aligned}
& \operatorname{Toeplitz}(\boldsymbol{u})=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, 0\right) \boldsymbol{a}^{*}\left(f_{k}, 0\right)=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, \phi_{k}\right) \boldsymbol{a}^{*}\left(f_{k}, \phi_{k}\right) \\
\Rightarrow & {\left[\begin{array}{cc}
\operatorname{Toeplitz}(\boldsymbol{u}) & \boldsymbol{x} \\
\boldsymbol{x}^{*} & t
\end{array}\right]=\sum_{k} d_{k}\left[\begin{array}{c}
\boldsymbol{a}\left(f_{k}, \phi_{k}\right) \\
1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{a}\left(f_{k}, \phi_{k}\right) \\
1
\end{array}\right]^{*} \succeq \mathbf{0} }
\end{aligned}
$$

- Given that $\frac{1}{n} \operatorname{Tr}(\operatorname{Toeplitz}(\boldsymbol{u}))=t=\sum_{k} d_{k}$, one has

$$
\operatorname{SDP}(\boldsymbol{x}) \leq \sum_{k} d_{k}
$$

Since this holds for any decomposition of $\boldsymbol{x}$, we conclude this part.

## Proof of Lemma 10.2

2. Show that $\|\boldsymbol{x}\|_{\mathcal{A}} \leq \operatorname{SDP}(\boldsymbol{x})$.
i) Suppose for some $\boldsymbol{u}$,

$$
\left[\begin{array}{cc}
\operatorname{Toeplitz}(\boldsymbol{u}) & \boldsymbol{x}  \tag{10.8}\\
\boldsymbol{x}^{*} & t
\end{array}\right] \succeq \mathbf{0} .
$$

Lemma 10.3 suggests Vandermonde decomposition

$$
\operatorname{Toeplitz}(\boldsymbol{u})=\boldsymbol{V} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}^{*}=\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}, 0\right) \boldsymbol{a}^{*}\left(f_{k}, 0\right)
$$

This together with the fact $\left\|\boldsymbol{a}\left(f_{k}, 0\right)\right\|=\sqrt{n}$ gives

$$
\frac{1}{n} \operatorname{Tr}(\operatorname{Toeplitz}(\boldsymbol{u}))=\sum_{k} d_{k} .
$$

## Proof of Lemma 10.2

2. Show that $\|\boldsymbol{x}\|_{\mathcal{A}} \leq \operatorname{SDP}(\boldsymbol{x})$.
ii) It follows from (10.8) that $\boldsymbol{x} \in \operatorname{range}(\boldsymbol{V})$, i.e.

$$
\boldsymbol{x}=\sum_{k} w_{k} \boldsymbol{a}\left(f_{k}, 0\right)=\boldsymbol{V} \boldsymbol{w}
$$

for some $\boldsymbol{w}$. By Schur's complement lemma,

$$
\boldsymbol{V} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}^{*} \succeq \frac{1}{t} \boldsymbol{x} \boldsymbol{x}^{*}=\frac{1}{t} \boldsymbol{V} \boldsymbol{w} \boldsymbol{w}^{*} \boldsymbol{V}^{*}
$$

Let $\boldsymbol{q}$ be any vector s.t. $\boldsymbol{V}^{*} \boldsymbol{q}=\operatorname{sign}(\boldsymbol{w})$. Then

$$
\begin{gathered}
\sum_{k} d_{k}=\boldsymbol{q}^{*} \boldsymbol{V} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}^{*} \boldsymbol{q} \succeq \frac{1}{t} \boldsymbol{q}^{*} \boldsymbol{V} \boldsymbol{w} \boldsymbol{w}^{*} \boldsymbol{V}^{*} \boldsymbol{q}=\frac{1}{t}\left(\sum_{k}\left|w_{k}\right|\right)^{2} \\
\Rightarrow \quad t \sum_{k} d_{k} \geq\left(\sum_{k}\left|w_{k}\right|\right)^{2}
\end{gathered}
$$

$\stackrel{\mathrm{AM}-\mathrm{GM} \text { inequality }}{\Longrightarrow} \frac{1}{2 n} \operatorname{Tr}(\operatorname{Toeplitz}(\boldsymbol{u}))+\frac{1}{2} t \geq \sqrt{t \sum_{k} d_{k}} \geq \sum_{k}\left|w_{k}\right| \geq\|\boldsymbol{x}\|_{\mathcal{A}}$

## Atomic norm minimization

$$
\begin{aligned}
& \operatorname{minimize}_{\boldsymbol{z} \in \mathbb{C}^{n}}\|\boldsymbol{z}\|_{\mathcal{A}} \\
& \text { s.t. } \quad z_{i}=x_{i}, \quad i \in T \quad \text { (observation set) } \\
& \Uparrow
\end{aligned}
$$

## Localization via dual solution

Identify activated atoms (source localization) via the dual solution $q$ :

$$
\max \langle\boldsymbol{x}, \boldsymbol{q}\rangle \quad \text { subject to } \quad\|\boldsymbol{q}\|_{\mathcal{A}}^{*} \leq 1
$$

- Relaxation is tight (recover the decomposition), when:
strict boundeness: $|\langle\boldsymbol{a}(f), \boldsymbol{q}\rangle|<1, \quad f \in[0,1] \backslash\left\{f_{l}\right\}$ interpolation: $\left\langle\boldsymbol{a}\left(f_{l}, 0\right), \boldsymbol{q}\right\rangle=\operatorname{sign}\left(d_{l}\right)$,



## Key metrics

Minimum separation $\Delta$ of $\left\{f_{l} \mid 1 \leq l \leq r\right\}$ is

$$
\Delta:=\min _{i \neq l}\left|f_{i}-f_{l}\right|
$$



Rayleigh resolution limit: $\lambda_{\mathrm{c}}=\frac{2}{n-1}$

## Performance guarantees for super resolution

Suppose $T=\left\{-\frac{n-1}{2}, \cdots, \frac{n-1}{2}\right\}$
Theorem 10.4 (Candes, Fernandez-Granda '14)
Suppose that

- Separation condition: $\Delta \geq \frac{4}{n-1}=2 \lambda_{\mathrm{c}}$;

Then atomic norm (or total-variation) minimization is exact.

- A deterministic result
- Can recover at most $n / 4$ spikes from $n$ consecutive samples
- Does not depend on amplitudes / phases of spikes


## Optimality condition

- Define $\mu^{\star}=\sum_{k=1}^{r} d_{k} \delta\left(f-f_{k}\right)$.
- Atomic decomposition studies the parameter estimation ability of total variation minimization in the full-data, noise-free case.
- Recall the dual problem:

$$
\max \langle\boldsymbol{q}, \boldsymbol{x}\rangle \text { s.t. } \underbrace{|\langle\boldsymbol{q}, \boldsymbol{a}(f)\rangle| \leq 1, \forall f \in[0,1)}_{\|\boldsymbol{q}\|_{\mathcal{A}}^{*} \leq 1}
$$

- Define a function $q(f)=\langle\boldsymbol{q}, \boldsymbol{a}(f)\rangle$. $\mu^{\star}$ is optimal if and only if dual feasibility: $\|q(f)\|_{L_{\infty}} \leq 1$ complementary slackness: $q\left(f_{k}\right)=\operatorname{sign}\left(d_{k}\right), k \in[r]$


## Optimality condition

- To ensure the uniqueness of the optimal solution $\mu^{\star}$, we strengthen the optimality condition to:

$$
\begin{aligned}
& \text { strict boundeness: }|q(f)|<1, \nu \in f \in[0,1) /\left\{f_{k}\right\} \\
& \text { interpolation: } q\left(f_{k}\right)=\operatorname{sign}\left(d_{k}\right), k \in[r]
\end{aligned}
$$



- Dual certificate: constructive proof to design such a dual polynomial.


## Resolution Limits I

- To simultaneously interpolate $\operatorname{sign}\left(d_{i}\right)=+1$ and $\operatorname{sign}\left(d_{j}\right)=-1$ at $f_{i}$ and $f_{j}$ respectively while remain bounded imposes constraints on the derivative of $q(f)$ :

$$
\|\nabla q(\hat{f})\|_{2} \geq \frac{\left|q\left(f_{i}\right)-q\left(f_{j}\right)\right|}{\left|f_{i}-f_{j}\right|}=\frac{2}{\left|f_{i}-f_{j}\right|}
$$

- By mean-value theorem, there exists $\hat{f} \in\left(f_{i}, f_{j}\right)$ such that

$$
q^{\prime}(\hat{f})=\frac{2}{\left|f_{j}-f_{i}\right|}
$$



## Resolution Limits II

- For certain classes of functions $\mathcal{F}$, if the function values are uniformly bounded by 1 , this limits the maximal achievable derivative, i.e.,

$$
\sup _{g \in \mathcal{F}} \frac{\left\|g^{\prime}\right\|_{\infty}}{\|g\|_{\infty}}<\infty
$$

- For $\mathcal{F}=\{$ trigonometric polynomials of degree at most $n\}$,

$$
\left\|g^{\prime}(f)\right\|_{\infty} \leq 2 \pi n\|g(f)\|_{\infty}
$$

- This is the classical Markov-Bernstein's inequality.
- Resolution limit for line spectral signals: If $\min _{i \neq j}\left|f_{i}-f_{j}\right|<\frac{1}{\pi n}$, then there is a sign pattern for $\left\{d_{k}\right\}$ such that $\sum_{k} d_{k} \boldsymbol{a}\left(f_{k}\right)$ is not an atomic decomposition.


## Resolution Limits III

- Using a theorem by Turán about the roots of trigonometric polynomials, Duval and Peyŕe obtained a better critical separation bound

$$
\min _{i \neq j}\left|f_{i}-f_{j}\right|>\frac{1}{n}
$$

- Sign pattern of $\left\{d_{j}\right\}$ plays a big role. There is no resolution limit if, e.g., all $d_{j}$ are positive ([Schiebinger, Robeva \& Recht, 2015]).


## Compressed sensing off the grid

Suppose $T$ is random subset of $\{0, \cdots, N-1\}$ of cardinality $n$ - Extend compressed sensing to continuous domain

## Theorem 10.5 (Tang, Bhaskar, Shah, Recht '13)

Suppose that

- Random sign: $\operatorname{sign}\left(d_{i}\right)$ are i.i.d. and random;
- Separation condition: $\Delta \geq \frac{4}{N-1}$;
- Sample size: $n \gtrsim \max \left\{r \log r \log N, \log ^{2} N\right\}$.

Then atomic norm minimization is exact with high prob.

## Connection to low-rank matrix completion

Recall Hankel matrix

$$
\left.\begin{array}{rl}
\boldsymbol{X}_{\mathrm{e}} & :=\left(\begin{array}{ccccc}
x[0] & x[1] & x[2] & \cdots & x[k] \\
x[1] & x[2] & x[3] & \cdots & x[k+1] \\
x[2] & x[3] & x[4] & \cdots & x[k+2] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x[n-k-1] & x[n-k] & \cdots & \cdots & x[n-1]
\end{array}\right) \\
& =\boldsymbol{V}_{(n-k) \times r} \operatorname{diag}(\boldsymbol{d}) \boldsymbol{V}_{(k+1) \times r}^{\top}
\end{array} \text { (Vandermonde decomposition) }\right)
$$

- $\operatorname{rank}\left(\boldsymbol{X}_{\mathrm{e}}\right) \leq r$
- Spectral sparsity $\Longleftrightarrow$ low rank


## Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

$$
\begin{aligned}
\underset{\boldsymbol{z} \in \mathbb{C}^{n}}{\operatorname{minimize}} & \left\|\boldsymbol{Z}_{\mathrm{e}}\right\|_{*} \\
\text { s.t. } & z_{i}=x_{i}, \quad i \in T
\end{aligned}
$$

When $T$ is random subset of $\{0, \cdots, N-1\}$ :

- Coherence measure is closely related to separation condition (Liao \& Fannjiang '16)
- Similar performance guarantees as atomic norm minimization (Chen, Chi, Goldsmith '14)


## Extension to 2D frequencies

Signal model: a mixture of 2D sinusoids at $r$ distinct frequencies

$$
x[\boldsymbol{t}]=\sum_{i=1}^{r} d_{i} e^{j 2 \pi\left\langle\boldsymbol{t}, \boldsymbol{f}_{i}\right\rangle}
$$

where $\boldsymbol{f}_{i} \in[0,1)^{2}$ : frequencies; $d_{i}:$ amplitudes

- Multi-dimensional model: $\boldsymbol{f}_{i}$ can assume $A N Y$ value in $[0,1)^{2}$


## Vandermonde decomposition

$$
\boldsymbol{X}=\left[x\left(t_{1}, t_{2}\right)\right]_{0 \leq t_{1}<n_{1}, 0 \leq t_{2}<n_{2}}
$$

Vandermonde decomposition:

$$
\boldsymbol{X}=\boldsymbol{Y} \cdot \operatorname{diag}(\boldsymbol{d}) \cdot \boldsymbol{Z}^{\top}
$$

where
$\boldsymbol{Y}:=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ y_{1} & y_{2} & \cdots & y_{r} \\ \vdots & \vdots & \vdots & \vdots \\ y_{1}^{n_{1}-1} & y_{2}^{n_{1}-1} & \cdots & y_{r}^{n_{1}-1}\end{array}\right], \boldsymbol{Z}:=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & \cdots & z_{r} \\ \vdots & \vdots & \vdots & \vdots \\ z_{1}^{n_{2}-1} & z_{2}^{n_{2}-1} & \cdots & z_{r}^{n_{2}-1}\end{array}\right]$
with $y_{i}=\exp \left(j 2 \pi f_{1 i}\right), \quad z_{i}=\exp \left(j 2 \pi f_{2 i}\right)$.

## Multi-fold Hankel matrix (Hua '92)

An enhanced form $\boldsymbol{X}_{\mathrm{e}}: \quad k_{1} \times\left(n_{1}-k_{1}+1\right)$ block Hankel matrix

$$
\boldsymbol{X}_{\mathrm{e}}=\left[\begin{array}{cccc}
\boldsymbol{X}_{0} & \boldsymbol{X}_{1} & \cdots & \boldsymbol{X}_{n_{1}-k_{1}} \\
\boldsymbol{X}_{1} & \boldsymbol{X}_{2} & \cdots & \boldsymbol{X}_{n_{1}-k_{1}+1} \\
\vdots & \vdots & \vdots & \vdots \\
\boldsymbol{X}_{k_{1}-1} & \boldsymbol{X}_{k_{1}} & \cdots & \boldsymbol{X}_{n_{1}-1}
\end{array}\right],
$$

where each block is $k_{2} \times\left(n_{2}-k_{2}+1\right)$ Hankel matrix:

$$
\boldsymbol{X}_{l}=\left[\begin{array}{cccc}
x_{l, 0} & x_{l, 1} & \cdots & x_{l, n_{2}-k_{2}} \\
x_{l, 1} & x_{l, 2} & \cdots & x_{l, n_{2}-k_{2}+1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{l, k_{2}-1} & x_{l, k_{2}} & \cdots & x_{l, n_{2}-1}
\end{array}\right]
$$

## Multi-fold Hankel matrix (Hua '92)



## Low-rank structure of enhanced matrix

- Enhanced matrix can be decomposed as

$$
\boldsymbol{X}_{\mathrm{e}}=\left[\begin{array}{c}
\boldsymbol{Z}_{\mathrm{L}} \\
\boldsymbol{Z}_{\mathrm{L}} \boldsymbol{Y}_{\mathrm{d}} \\
\vdots \\
\boldsymbol{Z}_{\mathrm{L}} \boldsymbol{Y}_{\mathrm{d}}^{k_{1}-1}
\end{array}\right] \operatorname{diag}(\boldsymbol{d})\left[\boldsymbol{Z}_{\mathrm{R}}, \boldsymbol{Y}_{\mathrm{d}} \boldsymbol{Z}_{\mathrm{R}}, \cdots, \boldsymbol{Y}_{\mathrm{d}}^{n_{1}-k_{1}} \boldsymbol{Z}_{\mathrm{R}}\right],
$$

- $\boldsymbol{Z}_{\mathrm{L}}$ and $\boldsymbol{Z}_{\mathrm{R}}$ are Vandermonde matrices specified by $z_{1}, \ldots, z_{r}$
- $\boldsymbol{Y}_{\mathrm{d}}=\operatorname{diag}\left[y_{1}, y_{2}, \cdots, y_{r}\right]$
- Low-rank: $\operatorname{rank}\left(\boldsymbol{X}_{\mathrm{e}}\right) \leq r$


## Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

$$
\begin{aligned}
\underset{\boldsymbol{z} \in \mathbb{C}^{n}}{\operatorname{minimize}} & \left\|\boldsymbol{Z}_{\mathrm{e}}\right\|_{*} \\
\text { s.t. } & z_{i, j}=x_{i, j}, \quad(i, j) \in T
\end{aligned}
$$

- Can be easily extended to higher-dimensional frequency models


## Reference

[1] ICASSP 2016 Tutorial, "Convex Optimization Techniques for Super-resolution Parameter Estimation." Y. Chi and G. Tang.
[2] "Sampling theory: beyond bandlimited systems," Y. C. Eldar, Cambridge University Press, 2015.
[3] "Multiple emitter location and signal parameter estimation," R. Schmidt, IEEE transactions on antennas and propagation, 1986.
[4] "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil," Y. Hua, IEEE Transactions on Signal Processing, 1992.
[5] "Superresolution via sparsity constraints," D. Donoho, SIAM journal on mathematical analysis, 1992.
[6] "Sparse nonnegative solution of underdetermined linear equations by linear programming," D. Donoho, J. Tanner, Proceedings of the National Academy of Sciences, 2005.

## Reference

[7] "Sensitivity to basis mismatch in compressed sensing," Y. Chi, L. Scharf, A. Pezeshki, R. Calderbank, IEEE Transactions on Signal Processing, 2011.
[8] "The convex geometry of linear inverse problems," V. Chandrasekaran, B. Recht, P. Parrilo, A. Willsky, Foundations of Computational mathematics, 2012.
[9] "Towards a mathematical theory of super-resolution," E. Candes, C. Fernandez-Granda, Communications on Pure and Applied Mathematics, 2014.
[10] "Compressed sensing off the grid," G. Tang, B. Bhaskar, P. Shah, B. Recht, IEEE Transactions on Information Theory, 2013.
[11] "Robust spectral compressed sensing via structured matrix completion," Y. Chen, Y. Chi, IEEE Transactions on Information Theory, 2014.

