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Outline

• Parameter estimation, super resolution

• Classical parametric approach
◦ Prony’s method
◦ MUSIC
◦ Matrix pencil

• Optimization-based methods

◦ Basis mismatch
◦ Atomic norm minimization
◦ Connections to low-rank matrix completion
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Parameter estimation

Model: a signal is mixture of r modes

x[t] =
∑r

i=1
diψ(t; νi), t ∈ Z

• di : amplitudes

• νi : modal parameter

• ψ: (known) modal function, e.g. point spread function

• r: model order

• 2r unknown parameters: {di} and {νi}
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High-resolution source localization

Consider a time signal

z(t) =
∑r

i=1
diδ(t− ti)

• Resolution is limited by point spread
function h(t) of imaging system

x(t) = z(t) ∗ h(t) point spread function h(t)

z(t) x(t)
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Single-molecule fluorescence microscopy

The Nobel Prize in Chemistry 2014 “for the development of
super-resolved fluorescence microscopy”.

E. Betzig S. W. Hell W. E. Moerner

Photo credit: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/.

How do we break the
diffraction limit of
optical microscopy?

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/
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Single-molecule fluorescence microscopy
Single-molecule based superresolution techniques achieve nanometer
spatial resolution by integrating the temporal information of the
switching dynamics of fluorophores (emitters).

High density implies better time resolution.

Figure credit: ”The Nobel Prize in Chemistry 2014 - Popular Information”.


movie.mov
Media File (video/quicktime)
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Spectral-domain viewpoint

time domain: x(t) = z(t) ∗ h(t) =
r∑
i=1

dih(t− ti)

spectral domain: x̂(f) = ẑ(f) ĥ(f) =
r∑
i=1

di ĥ(f)︸ ︷︷ ︸
known

ej2πfti

=⇒ observed data: x̂(f)
ĥ(f)

=
r∑
i=1

di e
j2πfti︸ ︷︷ ︸
ψ(f ;ti)

, ∀f : ĥ(f) 6= 0

h(t) is usually band-limited (suppress high-frequency components)
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Application: super-resolution imaging

(a) highly resolved signal z(t); (b) low-pass version x(t)

(c) Fourier transform ẑ(f); (d) (red) observed spectrum x̂(f)

Fig. credit: Candes, Fernandez-Granda ’14

Super-resolution: extrapolate high-end spectrum (fine scale details)
from low-end spectrum (low-resolution data)
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Application: multipath communication channels

In wireless communications, transmitted signals arrive at the receiver
by multiple paths, due to reflection from objects (e.g. buildings).

Suppose h(t) is transmitted signal, then received signal is

x(t) =
∑r

i=1
dih(t− ti) (ti : delay in ith path)

→ same as super-resolution model
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Basic model

• Signal model: a mixture of sinusoids at r distinct frequencies

x[t] =
∑r

i=1
die

j2πtfi

where fi ∈ [0, 1) : frequencies; di : amplitudes
◦ Sparsity in a continuous dictionary: fi can assume ANY value in

[0, 1)

• Observed data:

x =
[
x[0], · · · , x[n− 1]

]>
or a subsampled version of it in an index set
T ∈ {0, 1, . . . , n− 1}.

• Goal: retrieve the frequencies / recover signal (also called
harmonic retrieval)



11/60

Matrix / vector representation

Alternatively, the observed data can be written as

x = Vn×rd (10.1)

where d = [d1, · · · , dr]>;

Vn×r :=


1 1 1 · · · 1
z1 z2 z3 · · · zr
z2

1 z2
2 z2

3 · · · z2
r

...
...

... . . . ...
zn−1

1 zn−1
2 zn−1

3 · · · zn−1
r

 (Vandermonde matrix)

with zi = ej2πfi .

• Basic property of Vandermonde matrix: the columns of Vn×r are
linearly independent as long as fi 6= fj , r ≤ n.
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Prony’s method
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Prony’s method

• A parametric method proposed by Gaspard Riche de Prony in
1795 based on polynomial interpolation.

• Key idea: construct an annihilating filter + polynomial root
finding
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Annihilating filter

• Define a filter by (Z-transform or characteristic polynomial)

G(z) =
∑r

l=0
glz
−l =

∏r

l=1
(1− zlz−1)

whose roots are {zl = ej2πfl | 1 ≤ l ≤ r}

• G(z) is called annihilating filter since it annihilates x[k], i.e.

q[k] := gk ∗ x[k]︸ ︷︷ ︸
convolution

= 0 (10.2)

Proof:

q[k] =
∑r

i=0
gix[k − i] =

∑r

i=0

∑r

l=1
gidlz

k−i
l

=
∑r

l=1
dlz

k
l

(∑r

i=0
giz
−i
l︸ ︷︷ ︸

=0

)
= 0
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Annihilating filter
Equivalently, one can write (10.2) as

Xeg = 0, (10.3)

where g = [gr, · · · , g0]> and

Xe :=


x[0] x[1] x[2] · · · x[r]
x[1] x[2] x[3] · · · x[r + 1]
x[2] x[3] x[4] · · · x[r + 2]

...
...

...
. . .

...
x[n− r − 1] x[n− r] · · · · · · x[n− 1]


︸ ︷︷ ︸

Hankel matrix

∈ C(n−r)×(r+1)

(10.4)

Thus, we can obtain coefficients {gi} (hence the filter G(z)) by
solving linear system (10.3). Is the solution unique?

n− r > r + 1 =⇒ r < (n− 1)/2
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A crucial decomposition

Vandermonde decomposition

Xe = V(n−r)×r diag(d)V >(r+1)×r (10.5)

where Xe ∈ C(n−r)×(r+1).

Implications: if r < (n− 1)/2 and di 6= 0, then

• rank(Xe) = rank(V(n−r)×r) = rank(V(r+1)×r) = r

• null(Xe) is 1-dimensional ⇐⇒ nonzero solution to Xeg = 0
is unique

Proof: For any i and j,

[Xe ]i,j = x[i+ j − 2] =
r∑
l=1

dlz
i+j−2
l =

r∑
l=1

zi−1
l dlz

j−1
l

=
(
V(n−r)×r

)
i,:

diag(d)
(
V(r+1)×r

)>
j,:
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Prony’s method

Algorithm 10.1 Prony’s method

1. Find g = [gr, · · · , g0]> 6= 0 that solves Xeg = 0

2. Compute r roots {zl | 1 ≤ l ≤ r} of G(z) =
∑r
l=0 glz

−l

3. Calculate fl via zl = ej2πfl

Drawbacks:

• need to estimate the model order
• Root-finding for polynomials becomes difficult for large r
• Numerically unstable in the presence of noise
• don’t work with subsampling or missing data
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Subspace method: MUSIC
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MUltiple SIgnal Classification (MUSIC)

• Let z(f) :=


1

ej2πf

...
ej2πrf

, from the annihilating filter in Prony,

G(ej2πfl) = 0, we have

z(fl)>g = 0,

where g ∈ null(Xe).

• Consider a generalized Xe that has a larger null space, than
utilize that subspace for frequency recovery.
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MUltiple SIgnal Classification (MUSIC)

Consider a (slightly more general) Hankel matrix

Xe =


x[0] x[1] x[2] · · · x[k]
x[1] x[2] x[3] · · · x[k + 1]
x[2] x[3] x[4] · · · x[k + 2]

...
...

...
. . .

...
x[n− k − 1] x[n− k] · · · · · · x[n− 1]

 ∈ C(n−k)×(k+1)

where r ≤ k ≤ n− r (note that k = r in Prony’s method).

• null(Xe) might span multiple dimensions by taking k > r
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MUltiple SIgnal Classification (MUSIC)

• Generalize Prony’s method by computing {vi | 1 ≤ i ≤ k− r+ 1}
that forms orthonormal basis for null(Xe), call that subspace V

• Let z(f) :=


1

ej2πf

...
ej2πkf

, then it follows from Vandermonde

decomposition that

z(fl)>vi = 0, 1 ≤ i ≤ k − r + 1, 1 ≤ l ≤ r

• Thus, {fl} are peaks in pseudospectrum

S(f) := 1
‖z(fl)>V ‖22

= 1∑k−r+1
i=1 |z(f)>vi|2
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MUSIC algorithm

Algorithm 10.2 MUSIC

1. Compute orthonormal basis {vi | 1 ≤ i ≤ k − r + 1} for null(Xe)

2. Return r largest peaks of S(f) := 1∑k−r+1
i=1 |z(f)>vi|2

, where

z(f) := [1, ej2πf , · · · , ej2πkf ]>

Drawbacks:

• need to estimate the model order

• don’t work with subsampling or missing data
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Sparse recovery?
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Optimization methods for super resolution?

Recall our representation in (10.1):

x = Vn×rd (10.6)

• Challenge: both Vn×r and d are unknown

One can view (10.6) as sparse representation over a continuous
dictionary {z(f) = [1, ej2πf , · · · , ej2π(n−1)f ]> | 0 ≤ f < 1},

x =
r∑
i=1

diz(fi)
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Sparse recovery?
Convert nonlinear representation into linear system via discretization
at desired resolution:

(assume) x = Ψ︸︷︷︸
n×p overcomplete DFT matrix

β

• representation over a discrete frequency set {0, 1
p , · · · ,

p−1
p }

• gridding resolution: 1/p

Over-determined versus Under-determined
nonlinear linear and sparse
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Sparse recovery via `1 minimization
Solve `1 minimization:

minimizeβ∈Cp ‖β‖1 s.t. x = Ψβ

If β is r-sparse, then recovery from n = O(r log p) samples, and
robust against subsampling, noise and outliers enabled by the
machinery of convex optimization.

The issue of being off-the-grid: the point sources / frequencies fi
never lies on the discrete set!
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Basis Mismatch: A Tale of Two Models

Mathematical (CS) model:

x = Ψcsβ

The basis Ψcs is assumed,
typically a gridded imaging
matrix (e.g., n point DFT
matrix or identity matrix), and
β is presumed to be r-sparse.

Physical (true) model:

x = Ψphα

The basis Ψph is unknown, and
is determined by a point spread
function, a Green’s function, or
an impulse response, and α is
r-sparse and unknown.

Key transformation:

β = Ψmisα = Ψ−1
cs Ψphα

x is sparse in the unknown
mismatch Ψmis basis.
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Basis Mismatch: Fundamental Question

Question: What is the consequence of assuming that x is k-sparse in
I, when in fact it is only k-sparse in an unknown basis Ψmis, which is
determined by the mismatch between Ψcs and Ψph?

. . . . . .

Basis Mismatch

Two models:

s = Ψ0x = Ψ1θ

Key transformation:

x = Ψθ = Ψ−1
0 Ψ1θ

x is sparse in the unknown Ψ basis, not in the identity basis.

Physical Model CS InverterCS Sampler

y = Φs

min ‖x‖1

s.t. y = ΦΨcsx
s = Ψphα

() June 25, 2014 1 / 1
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Discretization destroys sparsity
Suppose n = p (square case), and recall

x = Ψβ = Vn×rd

=⇒ β = Ψ−1Vn×rd

Ideally, if Ψ−1Vn×r ≈ submatrix of I, then sparsity is preserved.

Simple calculation gives

Ψ−1Vn×r =


D(δ0) D(δ1) · · · D(δr)

D(δ0 − 1
p

) D(δ1 − 1
p

) · · · D(δr − 1
p

)
...

...
. . .

...
D(δ0 − p−1

p
) D(δ1 − p−1

p
) · · · D(δr − p−1

p
)


where fi is mismatched to grid {0, 1

p , · · · ,
p−1
p } by δi, and

D (f) := 1
p

p−1∑
l=0

ej2πlf = 1
p
ejπf(p−1) sin(πfp)

sin(πf)︸ ︷︷ ︸
heavy tail

(Dirichlet kernel)

Slow decay / spectral leakage of Dirichlet kernel

If δi = 0 (no mismatch), Ψ−1Vn×r = submatrix of I
=⇒ Ψ−1Vn×rd is sparse

If δi 6= 0 (e.g. randomly generated), Ψ−1Vn×r may be far from
submatrix of I

=⇒ Ψ−1Vn×rd may be incompressible

• Finer gridding does not help!
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Mismatch of DFT basis
Loss of sparsity after discretization due to basis mismatch
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Grid-free methods: atomic norm minimization
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Inspirations for Atomic Norm Minimization

• Prior information to exploit: there are only a few active
parameters (sparse!), the exact number of which is unknown.
• In compressed sensing, a sparse signal is simple – it is a

parsimonious sum of the canonical basis vectors {ek}.
• The `1 norm enforces sparsity w.r.t. the canonical basis vectors.
• The unit `1 norm ball is conv{±ek}, the convex hull of the basis

vectors – enforcing sparsity with respect to canonical basis
vectors.

= + + 
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Inspirations for Atomic Norm Minimization

• A low rank matrix has a sparse representation in terms of
unit-norm, rank-one matrices.
• The dictionary D = {uvT : ‖u‖2 = ‖v‖2 = 1} is continuously

parameterized and has infinite number of primitive signals.
• We enforce low-rankness using the nuclear norm:

‖X‖∗ = min{‖σ‖1 : X =
∑
i

σiuiv
T
i }

• The nuclear norm ball is the convex hull of unit-norm, rank-one
matrices.
• A hyperplane touches the nuclear norm ball at low-rank solutions.

= + 
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Atomic Set

• Consider a dictionary or set of atoms A = {ψ(ν) : ν ∈ N} ⊂ Rn
or Cn.

• The parameter space N can be finite, countably infinite, or
continuous.

• The atoms {ψ(ν)} are building blocks for signal representation.

• Examples: canonical basis vectors, rank-one matrices.

• Line spectral atoms:

a(f, φ) = ejφ[1, ej2πf , . . . , ej2π(n−1)f ]T : ν ∈ [0, 1]
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Atomic Norms

• Prior information: the signal is simple w.r.t. A— it has a
parsimonious decomposition using atoms in A

x =
∑r
k=1 αkψ(νk)

Definition 10.1 (Atomic norm, Chandrasekaran et al. ’10)
The atomic norm of any x is defined as

‖x‖A := inf
{
‖d‖1 : x =

∑
k

dkψ(νk)
}

= inf {t > 0 : x ∈ t conv (A)}

• The unit ball of the atomic norm is the convex hull of A.



36/60

Dual norm of atomic norms

• The dual atomic norm is defined as

‖q‖∗A := sup
x:‖x‖A≤1

|〈x, q〉| = sup
a∈A
|〈a, q〉|

• For line spectral atoms, the dual atomic norm is the maximal
magnitude of a complex trigonometric polynomial.

‖q‖∗A = sup
a∈A
|〈a, q〉| = sup

f∈[0,1]

∣∣∣∣∣
n−1∑
k=0

qke
j2πkf

∣∣∣∣∣

Atoms Atomic Norm Dual Atomic Norm
canonical basis vectors `1 norm `∞ norm
finite atoms ‖ · ‖D ‖D>q‖∞
unit-norm, rank-one matrices nuclear norm spectral norm
line spectral atoms ‖ · ‖A ‖ · ‖∗A
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SDP representation of atomic norm

Consider set of line spectral atoms
A :=

{
a(f, φ) := ejφ · [1, ej2πf , · · · , ej2π(n−1)f ]>

∣∣∣ f ∈ [0, 1), φ ∈ [0, 2π)
}

,

then

‖x‖A = inf
dk≥0, φk∈[0,2π), fk∈[0,1)

{∑
k
dk | x =

∑
k
dka(fk, φk)

}

Lemma 10.2 (Tang, Bhaskar, Shah, Recht ’13)

For any x ∈ Cn,

‖x‖A = inf
{

1
2nTr (Toeplitz(u)) + 1

2 t
∣∣∣ [ Toeplitz(u) x

x∗ t

]
� 0

}
(10.7)
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Caratheodory’s decomposition lemma

Lemma 10.3

Any Toeplitz matrix P � 0 can be represented as

P = V diag(d)V ∗,

where V := [a(f1, 0), · · · ,a(fr, 0)], di ≥ 0, and r = rank(P ).

• Vandermonde decomposition can be computed efficiently via
root finding
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Proof of Lemma 10.2

Let SDP(x) be value of RHS of (10.7).
1. Show that SDP(x) ≤ ‖x‖A.

• Suppose x =
∑
k dka(fk, φk) for dk ≥ 0. Picking u =

∑
k dka(fk, 0)

and t =
∑
k dk gives (exercise)

Toeplitz(u) =
∑
k

dka(fk, 0)a∗(fk, 0) =
∑
k

dka(fk, φk)a∗(fk, φk)

⇒
[

Toeplitz(u) x
x∗ t

]
=
∑
k

dk

[
a(fk, φk)

1

] [
a(fk, φk)

1

]∗
� 0

• Given that 1
nTr(Toeplitz(u)) = t =

∑
k dk, one has

SDP(x) ≤
∑

k
dk.

Since this holds for any decomposition of x, we conclude this part.
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Proof of Lemma 10.2

2. Show that ‖x‖A ≤ SDP(x).

i) Suppose for some u, [
Toeplitz(u) x

x∗ t

]
� 0. (10.8)

Lemma 10.3 suggests Vandermonde decomposition

Toeplitz(u) = V diag(d)V ∗ =
∑
k

dka(fk, 0)a∗(fk, 0).

This together with the fact ‖a(fk, 0)‖ =
√
n gives

1
n

Tr (Toeplitz(u)) =
∑
k

dk.
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Proof of Lemma 10.2
2. Show that ‖x‖A ≤ SDP(x).

ii) It follows from (10.8) that x ∈ range(V ), i.e.

x =
∑
k

wka(fk, 0) = V w

for some w. By Schur’s complement lemma,

V diag(d)V ∗ � 1
t
xx∗ = 1

t
V ww∗V ∗.

Let q be any vector s.t. V ∗q = sign(w). Then∑
k
dk = q∗V diag(d)V ∗q � 1

t
q∗V ww∗V ∗q = 1

t

(∑
k
|wk|

)2

⇒ t
∑

k
dk ≥

(∑
k
|wk|

)2

AM-GM inequality=⇒ 1
2nTr (Toeplitz(u))+1

2 t ≥
√
t
∑

k
dk ≥

∑
k
|wk| ≥ ‖x‖A
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Atomic norm minimization

minimizez∈Cn ‖z‖A
s.t. zi = xi, i ∈ T (observation set)

m

minimizez∈Cn
1

2nTr (Toeplitz(u)) + 1
2 t

s.t. zi = xi, i ∈ T[
Toeplitz(u) z

z∗ t

]
� 0
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Localization via dual solution

Identify activated atoms (source localization) via the dual solution q:

max 〈x, q〉 subject to ‖q‖∗A ≤ 1

• Relaxation is tight (recover the decomposition), when:

strict boundeness: |〈a(f), q〉| < 1, f ∈ [0, 1]\{fl}
interpolation: 〈a(fl, 0), q〉 = sign(dl),

8
0 0.2 0.4 0.6 0.8 1

-1

0

1

2
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Key metrics

Minimum separation ∆ of {fl | 1 ≤ l ≤ r} is

∆ := min
i 6=l
|fi − fl|Rayleigh resolution limit

Lord Rayleigh

Rayleigh resolution limit: λc = 2
n−1
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Performance guarantees for super resolution

Suppose T = {−n−1
2 , · · · , n−1

2 }

Theorem 10.4 (Candes, Fernandez-Granda ’14)
Suppose that
• Separation condition: ∆ ≥ 4

n−1 = 2λc;
Then atomic norm (or total-variation) minimization is exact.

• A deterministic result

• Can recover at most n/4 spikes from n consecutive samples

• Does not depend on amplitudes / phases of spikes
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Optimality condition

• Define µ? =
∑r
k=1 dkδ(f − fk).

• Atomic decomposition studies the parameter estimation ability of
total variation minimization in the full-data, noise-free case.
• Recall the dual problem:

max 〈q,x〉 s.t. |〈q,a(f)〉| ≤ 1, ∀f ∈ [0, 1)︸ ︷︷ ︸
‖q‖∗A≤1

• Define a function q(f) = 〈q,a(f)〉. µ? is optimal if and only if

dual feasibility: ‖q(f)‖L∞ ≤ 1
complementary slackness: q(fk) = sign(dk), k ∈ [r]
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Optimality condition

• To ensure the uniqueness of the optimal solution µ?, we
strengthen the optimality condition to:

strict boundeness: |q(f)| < 1, ν ∈ f ∈ [0, 1)/{fk}
interpolation: q(fk) = sign(dk), k ∈ [r]

8
0 0.2 0.4 0.6 0.8 1

-1

0

1

2

• Dual certificate: constructive proof to design such a dual
polynomial.
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Resolution Limits I

• To simultaneously interpolate sign(di) = +1 and sign(dj) = −1
at fi and fj respectively while remain bounded imposes
constraints on the derivative of q(f):

‖∇q(f̂)‖2 ≥
|q(fi)− q(fj)|
|fi − fj |

= 2
|fi − fj |

• By mean-value theorem, there exists f̂ ∈ (fi, fj) such that

q′(f̂) = 2
|fj − fi|

0.2 0.3 0.4
-1

0

1
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Resolution Limits II

• For certain classes of functions F , if the function values are
uniformly bounded by 1, this limits the maximal achievable
derivative, i.e.,

sup
g∈F

‖g′‖∞
‖g‖∞

<∞.

• For F = {trigonometric polynomials of degree at most n},

‖g′(f)‖∞ ≤ 2πn‖g(f)‖∞.

• This is the classical Markov-Bernstein’s inequality.
• Resolution limit for line spectral signals: If mini 6=j |fi − fj | < 1

πn ,
then there is a sign pattern for {dk} such that

∑
k dka(fk) is not

an atomic decomposition.
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Resolution Limits III

• Using a theorem by Turán about the roots of trigonometric
polynomials, Duval and Peýre obtained a better critical
separation bound

min
i 6=j
|fi − fj | >

1
n
.

• Sign pattern of {dj} plays a big role. There is no resolution limit
if, e.g., all dj are positive ([Schiebinger, Robeva & Recht, 2015]).
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Compressed sensing off the grid

Suppose T is random subset of {0, · · · , N − 1} of cardinality n
— Extend compressed sensing to continuous domain

Theorem 10.5 (Tang, Bhaskar, Shah, Recht ’13)
Suppose that
• Random sign: sign(di) are i.i.d. and random;

• Separation condition: ∆ ≥ 4
N−1 ;

• Sample size: n & max{r log r logN, log2N}.
Then atomic norm minimization is exact with high prob.
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Connection to low-rank matrix completion

Recall Hankel matrix

Xe :=


x[0] x[1] x[2] · · · x[k]
x[1] x[2] x[3] · · · x[k + 1]
x[2] x[3] x[4] · · · x[k + 2]

...
...

...
. . .

...
x[n− k − 1] x[n− k] · · · · · · x[n− 1]


= V(n−k)×r diag(d)V >(k+1)×r (Vandermonde decomposition)

• rank (Xe) ≤ r

• Spectral sparsity ⇐⇒ low rank
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Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

minimize
z∈Cn

‖Ze‖∗

s.t. zi = xi, i ∈ T

When T is random subset of {0, · · · , N − 1}:

• Coherence measure is closely related to separation condition
(Liao & Fannjiang ’16)

• Similar performance guarantees as atomic norm minimization
(Chen, Chi, Goldsmith ’14)
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Extension to 2D frequencies

Signal model: a mixture of 2D sinusoids at r distinct frequencies

x[t] =
∑r

i=1
die

j2π〈t,fi〉

where fi ∈ [0, 1)2 : frequencies; di : amplitudes

• Multi-dimensional model: fi can assume ANY value in [0, 1)2
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Vandermonde decomposition

X = [x(t1, t2)]0≤t1<n1,0≤t2<n2

Vandermonde decomposition:

X = Y · diag(d) ·Z>.

where

Y :=


1 1 · · · 1
y1 y2 · · · yr

...
...

...
...

yn1−1
1 yn1−1

2 · · · yn1−1
r

 ,Z :=


1 1 · · · 1
z1 z2 · · · zr

...
...

...
...

zn2−1
1 zn2−1

2 · · · zn2−1
r


with yi = exp(j2πf1i), zi = exp(j2πf2i).
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Multi-fold Hankel matrix (Hua ’92)

An enhanced form Xe: k1 × (n1 − k1 + 1) block Hankel matrix

Xe =


X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1
...

...
...

...
Xk1−1 Xk1 · · · Xn1−1

 ,
where each block is k2 × (n2 − k2 + 1) Hankel matrix:

Xl =


xl,0 xl,1 · · · xl,n2−k2

xl,1 xl,2 · · · xl,n2−k2+1
...

...
...

...
xl,k2−1 xl,k2 · · · xl,n2−1

 .
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Multi-fold Hankel matrix (Hua ’92)

Xe
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Low-rank structure of enhanced matrix

• Enhanced matrix can be decomposed as

Xe =


ZL
ZLYd

...
ZLY

k1−1
d

diag(d)
[
ZR,YdZR, · · · ,Y n1−k1

d ZR
]
,

◦ ZL and ZR are Vandermonde matrices specified by z1, . . . , zr
◦ Yd = diag [y1, y2, · · · , yr]

• Low-rank: rank (Xe) ≤ r
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Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):

minimize
z∈Cn

‖Ze‖∗

s.t. zi,j = xi,j , (i, j) ∈ T

• Can be easily extended to higher-dimensional frequency models
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