ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

 Sparse Representations

 Sparse Representations}

Yuejie Chi
Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Outline

- Sparse and compressible signals
- Sparse representation in pairs of bases
- Uncertainty principles for basis pairs
- Uncertainty principles for time-frequency bases
- Uncertainty principles for general basis pairs
- Sparse representation via ℓ_{1} minimization
- Sparse representation for general dictionaries

Basic problem

Find $\boldsymbol{x} \in \mathbb{C}^{n} \quad$ s.t. $\boldsymbol{A x}=\boldsymbol{y}$
where $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right] \in \mathbb{C}^{m \times n}$ obeys

- underdetermined system: $m<n$
- full-rank: $\operatorname{rank}(\boldsymbol{A})=m$
\boldsymbol{A} : an over-complete basis / dictionary; \boldsymbol{a}_{i} : atom;
\boldsymbol{x} : representation in this basis / dictionary

Sparse representation

Clearly, there exist infinitely many feasible solutions to $\boldsymbol{A x}=\boldsymbol{y} \ldots$

- Solution set: $\underbrace{\boldsymbol{A}^{*}\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{-1}}_{\boldsymbol{A}^{\dagger}} \boldsymbol{y}+\operatorname{null}(\boldsymbol{A})$
- \boldsymbol{A}^{\dagger} is the pseodo-inverse of $\boldsymbol{A} ; \operatorname{null}(\boldsymbol{A})$ is the null space of \boldsymbol{A}

What is sparsity?

Consider a signal $\boldsymbol{x} \in \mathbb{C}^{n}$.

Definition 2.1 (Support)

The support of a vector $\boldsymbol{x} \in \mathbb{C}^{n}$ is the index set of its nonzero entries, i.e.

$$
\operatorname{supp}(\boldsymbol{x}):=\left\{j \in[n]:\left|x_{j}\right| \neq 0\right\}
$$

where $[p]=\{1, \ldots, n\}$.

Definition 2.2 (k-sparse signal)
The signal \boldsymbol{x} is called k-sparse, if

$$
\|\boldsymbol{x}\|_{0}:=|\operatorname{supp}(\boldsymbol{x})| \leq k
$$

$\|\boldsymbol{x}\|_{0}$ is called the sparsity level of \boldsymbol{x}. (Note: It is a "pseudo-norm").

Sparse signals belong to a union-of-subspace

- For a fixed sparsity pattern (support), it defines a subspace of dimension k in \mathbb{R}^{p}.
- There're $\binom{p}{k}$ subspaces of dimension k.

Best k-term approximations

We're also interested in signals that are approximately sparse (because a lot real-world signals are not exactly sparse). This is measured by how well they can be approximated by sparse signals.

Definition 2.3 (Best k-term approximation)

Denote the index set of the k-largest entries of $|\boldsymbol{x}|$ as S_{k}. The best k-term approximation \boldsymbol{x}_{k} of \boldsymbol{x} is defined as

$$
\boldsymbol{x}_{k}(i)=\left\{\begin{array}{cc}
x_{i}, & i \in S_{k} \\
0, & i \notin S_{k}
\end{array}\right.
$$

The (best) k-term approximation error in ℓ_{p} norm is then given as

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{p}=\left(\sum_{i \notin S_{k}}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Compressible signals

Compressibility: A signal is called compressible if

$$
R(k)=\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{p}
$$

decays "fast" in k.

Compressible signals

Compressibility: A signal is called compressible if

$$
R(k)=\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{p}
$$

decays "fast" in k.

Lemma 2.4 (Compressibility)
For any $q>p>0$ and $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{q} \leq \frac{1}{k^{1 / p-1 / q}}\|\boldsymbol{x}\|_{p}
$$

Signals in ℓ_{1} Ball

Example: Set $q=2$ and $p=1$, we have

$$
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{2} \leq \frac{1}{\sqrt{k}}\|\boldsymbol{x}\|_{1} .
$$

Consider a signal $\boldsymbol{x} \in B_{1}^{n}:=\left\{\boldsymbol{z} \in \mathbb{R}^{n}:\|\boldsymbol{z}\|_{1} \leq 1\right\}$. Then \boldsymbol{x} is compressible when $p=1$.

Geometrically, the ℓ_{p}-ball is pointy when $0<p<1$ in high dimension.

Proof of Lemma 2.4

Without loss of generality we assume the coefficients of \boldsymbol{x} is ordered in descending order of magnitudes. We then have

$$
\begin{aligned}
\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|_{q}^{q} & =\sum_{j=k+1}^{n}\left|x_{j}\right|^{q} \quad \text { (by definition) } \\
& =\left|x_{k}\right|^{q-p} \sum_{j=k+1}^{n}\left|x_{j}\right|^{p}\left(\left|x_{j}\right| /\left|x_{k}\right|\right)^{q-p} \\
& \leq\left|x_{k}\right|^{q-p} \sum_{j=k+1}^{n}\left|x_{j}\right|^{p} \quad\left(\left|x_{j}\right| /\left|x_{k}\right| \leq 1\right) \\
& \leq\left(\frac{1}{k} \sum_{j=1}^{k}\left|x_{j}\right|^{p}\right)^{\frac{q-p}{p}}\left(\sum_{j=k+1}^{n}\left|x_{j}\right|^{p}\right) \\
& \leq\left(\frac{1}{k}\|\boldsymbol{x}\|_{p}^{p}\right)^{\frac{q-p}{p}}\|\boldsymbol{x}\|_{p}^{p}=\frac{1}{k^{q / p-1}}\|\boldsymbol{x}\|_{p}^{q}
\end{aligned}
$$

Sparse representation in pairs of bases

A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: \boldsymbol{A} is a concatenation of 2 orthonormal matrices

$$
\boldsymbol{A}=[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \quad \text { where } \boldsymbol{\Psi} \mathbf{\Psi}^{*}=\boldsymbol{\Psi}^{*} \boldsymbol{\Psi}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{*}=\boldsymbol{\Phi}^{*} \boldsymbol{\Phi}=\boldsymbol{I}
$$

- A classical example: $\boldsymbol{A}=[\boldsymbol{I}, \boldsymbol{F}] \quad$ (\boldsymbol{F} : Fourier matrix)
- representing a signal \boldsymbol{y} as a superposition of spikes and sinusoids

Example 1

The following signal \boldsymbol{y}_{1} is dense in the time domain, but sparse in the frequency domain

time-representation of \boldsymbol{y}_{1}

frequency-representation of \boldsymbol{y}_{1}

Example 2

The following signal \boldsymbol{y}_{2} is dense in both time domain and frequency domain, but sparse in the overcomplete basis $[\boldsymbol{I}, \boldsymbol{F}]$

time representation of \boldsymbol{y}_{2}

frequency representation of \boldsymbol{y}_{2}

Example 2

The following signal \boldsymbol{y}_{2} is dense in both time domain and frequency domain, but sparse in the overcomplete basis $[\boldsymbol{I}, \boldsymbol{F}]$

representation of \boldsymbol{y}_{2} in overcomplete basis (time + frequency)

Uniqueness of sparse representation

A natural strategy to promote sparsity:

- seek the sparsest solution to the linear system

$$
\left(P_{0}\right) \quad \operatorname{minimize}_{\boldsymbol{x} \in \mathbb{C}^{p}}\|\boldsymbol{x}\|_{0} \quad \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

- When is the solution unique?
- How to test whether a candidate solution is the sparsest possible?

Application: multiuser detection

- 2 (or more) users wish to communicate to the same receiver over a shared wireless medium
- The j th user transmits \boldsymbol{a}_{j}; the receiver sees

$$
\boldsymbol{y}=\sum_{j \text { is active }} \boldsymbol{a}_{j}
$$

- Let $\boldsymbol{A}=\left[\boldsymbol{a}_{1} ; \cdots, \boldsymbol{a}_{n}\right]$ be the codebook containing all users of messages; then

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

where the location of the non-zero entries of \boldsymbol{x} indicates active users.

Unique representation \mapsto unambiguous user identification

Connection to null space of A

Suppose \boldsymbol{x} and $\boldsymbol{x}+\boldsymbol{h}$ are both solutions to the linear system, then

$$
\boldsymbol{A} h=\boldsymbol{A}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}-\boldsymbol{y}=\mathbf{0}
$$

Write $\boldsymbol{h}=\left[\begin{array}{l}\boldsymbol{h}_{\Psi} \\ \boldsymbol{h}_{\boldsymbol{\Phi}}\end{array}\right]$ with $\boldsymbol{h}_{\boldsymbol{\Psi}}, \boldsymbol{h}_{\boldsymbol{\Phi}} \in \mathbb{C}^{n}$, then

$$
\Psi h_{\Psi}=-\Phi h_{\Phi}
$$

- h_{Ψ} and $-h_{\Phi}$ are representations of the same vector in different bases
- (Non-rigorously) In order for \boldsymbol{x} to be the sparsest solution, we hope \boldsymbol{h} is much denser, i.e. we don't want $\boldsymbol{h}_{\boldsymbol{\Psi}}$ and $-\boldsymbol{h}_{\boldsymbol{\Phi}}$ to be simultaneously sparse

Detour: uncertainty principles for basis pairs

Heisenberg's uncertainty principle

A pair of complementary variables cannot both be highly concentrated

- Quantum mechanics

$$
\underbrace{\operatorname{Var}[x]}_{\text {position }} \cdot \underbrace{\operatorname{Var}[p]}_{\text {momentum }} \geq \hbar^{2} / 4
$$

- \hbar : Planck constant

Heisenberg's uncertainty principle

A pair of complementary variables cannot both be highly concentrated

- Quantum mechanics

$$
\underbrace{\operatorname{Var}[x]}_{\text {position }} \cdot \underbrace{\operatorname{Var}[p]}_{\text {momentum }} \geq \hbar^{2} / 4
$$

- \hbar : Planck constant
- Signal processing

$$
\underbrace{\int_{-\infty}^{\infty} t^{2}|f(t)|^{2} \mathrm{~d} t}_{\text {oncentration level of } f(t)} \int_{-\infty}^{\infty} \omega^{2}|F(\omega)|^{2} \mathrm{~d} \omega \geq 1 / 4
$$

- $f(t)$: a signal obeying $\int_{-\infty}^{\infty}|f(t)|^{2} \mathrm{~d} t=1$
- $F(\omega)$: Fourier transform of $f(t)$

Heisenberg's uncertainty principle

Roughly speaking, if $f(t)$ vanishes outside an interval of length Δt, and its Fourier transform vanishes outside an interval of length $\Delta \omega$, then

$$
\Delta t \cdot \Delta \omega \geq \text { const }
$$

Proof of Heisenberg's uncertainty principle

(assuming f is real-valued and $t f^{2}(t) \rightarrow 0$ as $|t| \rightarrow \infty$)

1. Rewrite $\int \omega^{2}|F(\omega)|^{2} \mathrm{~d} \omega$ in terms of f. Since $f^{\prime}(t) \xrightarrow{\mathcal{F}} i \omega F(\omega)$, Parseval's theorem yields

$$
\int \omega^{2}|F(\omega)|^{2} \mathrm{~d} \omega=\int|i \omega F(\omega)|^{2} \mathrm{~d} \omega=\int\left|f^{\prime}(t)\right|^{2} \mathrm{~d} t
$$

2. Invoke Cauchy-Schwarz:

$$
\begin{aligned}
& \left(\int t^{2}|f(t)|^{2} \mathrm{~d} t\right)^{1 / 2}\left(\int\left|f^{\prime}(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \geq-\int t f(t) f^{\prime}(t) \mathrm{d} t \\
& =-0.5 \int t \frac{\mathrm{~d} f^{2}(t)}{\mathrm{d} t} \mathrm{~d} t \\
& =-\left.0.5 t f^{2}(t)\right|_{-\infty} ^{\infty}+0.5 \int f^{2}(t) \mathrm{d} t \quad \text { (integration by part) } \\
& =0.5 \\
& \text { (by our assumptions) }
\end{aligned}
$$

Uncertainty principle for time-frequency bases

concentrated signal

sparse but non-concentrated signal

More general case: concentrated signals \rightarrow sparse signals

- $f(t)$ and $F(\omega)$ are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in time and in frequency?

- Formally, for an arbitrary \boldsymbol{x}, suppose $\hat{\boldsymbol{x}}=\boldsymbol{F} \boldsymbol{x}$.

$$
\text { How small can }\|\hat{\boldsymbol{x}}\|_{0}+\|\boldsymbol{x}\|_{0} \text { be ? }
$$

Uncertainty principle for time-frequency bases

Theorem 2.5 (Donoho \& Stark '89)

Consider any nonzero $\boldsymbol{x} \in \mathbb{C}^{n}$, and let $\hat{\boldsymbol{x}}:=\boldsymbol{F} \boldsymbol{x}$. Then

$$
\underbrace{\|\boldsymbol{x}\|_{0} \cdot\|\hat{\boldsymbol{x}}\|_{0}} \geq n
$$

time-bandwidth product

- \boldsymbol{x} and $\hat{\boldsymbol{x}}$ cannot be highly sparse simultaneously
- Does not rely on the support of \boldsymbol{x} and $\hat{\boldsymbol{x}}$
- Sanity check: if $\boldsymbol{x}=[1,0, \cdots, 0]^{\top}$ with $\|\boldsymbol{x}\|_{0}=1$, then $\|\hat{\boldsymbol{x}}\|_{0}=n$ and hence $\|\boldsymbol{x}\|_{0} \cdot\|\hat{\boldsymbol{x}}\|_{0}=n$

Corollary 2.6 (Donoho \& Stark '89)

$$
\|\boldsymbol{x}\|_{0}+\|\hat{\boldsymbol{x}}\|_{0} \geq 2 \sqrt{n} \quad \text { (by } A M-G M \text { inequality) }
$$

Application: super-resolution

wideband sparse signal \boldsymbol{x}

its low-pass version $\boldsymbol{x}_{\mathrm{LP}}$

Consider a sparse wideband (i.e. $\|\boldsymbol{x}\|_{0} \ll n$) signal $\boldsymbol{x} \in \mathbb{C}^{n}$, and project it onto a baseband B (of bandwidth $|B|<n$) to obtain its low-pass version $\boldsymbol{x}_{\mathrm{LP}}=\operatorname{Proj}_{B}(\boldsymbol{x})$. Then we can recover \boldsymbol{x} from $\boldsymbol{x}_{\mathrm{LP}}$ if

$$
\begin{equation*}
2\|\boldsymbol{x}\|_{0} \cdot \underbrace{(n-|B|)}_{\text {size of unobserved band }}<n \tag{2.1}
\end{equation*}
$$

Application: super-resolution

Examples:

- If $\|\boldsymbol{x}\|_{0}=1$, then it's recoverable if $|B|>\frac{1}{2} n$
- If $\|\boldsymbol{x}\|_{0}=2$, then it's recoverable if $|B|>\frac{3}{4} n$

。...

- First nontrivial performance guarantee for super-resolution
- Somewhat pessimistic: we need to measure half of the bandwidth in order to recover just 1 spike
- As will be seen later, we can do much better if nonzero entries of \boldsymbol{x} are scattered

Application: super-resolution

Proof: If \exists another solution $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{h}$ with $\|\boldsymbol{z}\|_{0} \leq\|\boldsymbol{x}\|_{0}$, then

- $\operatorname{Proj}_{B}(\boldsymbol{h})=\mathbf{0} \quad \Longrightarrow \quad\|\boldsymbol{F} \boldsymbol{h}\|_{0} \leq n-|B|$
- $\|\boldsymbol{h}\|_{0} \leq\|\boldsymbol{x}\|_{0}+\|\boldsymbol{z}\|_{0} \leq 2\|\boldsymbol{x}\|_{0}$

This together with the assumption (2.1) gives

$$
\|\boldsymbol{h}\|_{0} \cdot\|\boldsymbol{F} \boldsymbol{h}\|_{0} \leq 2\|\boldsymbol{x}\|_{0} \cdot(n-|B|)<n,
$$

which violates Theorem 2.5 unless $\boldsymbol{h}=\mathbf{0}$.

Proof of Theorem 2.5: a key lemma

The key to prove Theorem 2.5 is to establish the following lemma

Lemma 2.7 (Donoho \& Stark '89)

If $\boldsymbol{x} \in \mathbb{C}^{n}$ has k nonzero entries, then $\hat{\boldsymbol{x}}:=\boldsymbol{F} \boldsymbol{x}$ cannot have k consecutive 0's.
Proof: Suppose $x_{\tau_{1}}, \cdots, x_{\tau_{k}}$ are the nonzero entries, and let $z=e^{-\frac{2 \pi i}{n}}$.

1. For any consecutive frequency interval $(s, \cdots, s+k-1)$, the $(s+l)^{\text {th }}$ frequency component is

$$
\hat{x}_{s+l}=\frac{1}{\sqrt{n}} \sum_{j=1}^{k} x_{\tau_{j}} z^{\tau_{j}(s+l)}, \quad l=0, \cdots, k-1
$$

Proof of Lemma 2.7

Proof (continued): One can thus write

$$
\begin{gathered}
\boldsymbol{g}:=\left[\hat{x}_{s+l}\right]_{0 \leq l<k}=\frac{1}{\sqrt{n}} \boldsymbol{Z} \boldsymbol{x}_{\tau}, \\
\text { where } \boldsymbol{x}_{\tau}:=\left[\begin{array}{c}
x_{\tau_{1}} z^{\tau_{1} s} \\
x_{\tau_{2}} z^{\tau_{2} s} \\
\vdots \\
x_{\tau_{k}} z^{\tau_{k} s}
\end{array}\right], \boldsymbol{Z}:=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
z^{\tau_{1}} & \cdots & \cdots & \cdots & z^{\tau_{k}} \\
z^{2 \tau_{1}} & \cdots & \cdots & \cdots & z^{2 \tau_{k}} \\
\vdots & \vdots & \vdots & \vdots & \because: \\
z^{(k-1) \tau_{1}} & \cdots & \cdots & \cdots & z^{(k-1) \tau_{k}}
\end{array}\right]
\end{gathered}
$$

2. Recognizing that Z is a Vandermonde matrix yields

$$
\operatorname{det}\left(\boldsymbol{Z}^{\top}\right)=\prod_{1 \leq i<j \leq k}\left(z^{\tau_{j}}-z^{\tau_{i}}\right) \neq 0,
$$

and hence \boldsymbol{Z} is invertible. Therefore, $\boldsymbol{x}_{\tau} \neq \mathbf{0} \Rightarrow \boldsymbol{g} \neq \mathbf{0}$ as claimed.

Proof of Theorem 2.5

Suppose \boldsymbol{x} is k-sparse, and suppose $n / k \in \mathbb{Z}$.

1. Partition $\{1, \cdots, n\}$ into n / k intervals of length k each.
2. By Lemma 2.7, none of these intervals of $\hat{\boldsymbol{x}}$ can vanish. Since each interval contains at least 1 non-zero entry, one has

$$
\begin{aligned}
& \|\hat{\boldsymbol{x}}\|_{0} \geq \frac{n}{k} \\
\Longleftrightarrow \quad & \|\boldsymbol{x}\|_{0} \cdot\|\hat{\boldsymbol{x}}\|_{0} \geq n
\end{aligned}
$$

Exercise: fill in the proof for the case where k does not divide n.

Tightness of uncertainty principle

The lower bounds in Theorem 2.5 and Corollary 2.6 are achieved by the picket-fence signal \boldsymbol{x} (a signal with uniform spacing \sqrt{n}).

Figure 2.1: The picket-fence signal for $n=64$, which obeys $\boldsymbol{F} \boldsymbol{x}=\boldsymbol{x}$

Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs

- Wavelets
- Ridgelets
- Hadamard

Generally, for an arbitrary $\boldsymbol{y} \in \mathbb{C}^{n}$ and arbitrary bases $\boldsymbol{\Psi}$ and $\boldsymbol{\Phi}$, suppose $\boldsymbol{y}=\boldsymbol{\Psi} \boldsymbol{\alpha}=\boldsymbol{\Phi} \boldsymbol{\beta}$:

$$
\text { How small can }\|\boldsymbol{\alpha}\|_{0}+\|\boldsymbol{\beta}\|_{0} \text { be ? }
$$

Uncertainty principle for general basis pairs

The degree of "uncertainty" depends on the basis pair.

- Example: suppose $\phi_{1}, \phi_{2} \in \Psi$ and $\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{2}\right)$, $\frac{1}{\sqrt{2}}\left(\phi_{1}-\phi_{2}\right) \in \boldsymbol{\Psi}$. Then $\boldsymbol{y}=\phi_{1}+0.5 \phi_{2}$ can be sparsely represented in both $\boldsymbol{\Psi}$ and $\boldsymbol{\Phi}$.

Message: uncertainty principle depends on how "different" $\boldsymbol{\Psi}$ and $\boldsymbol{\Phi}$ are.

Mutual coherence

A rough way to characterize how "similar" $\boldsymbol{\Psi}$ and $\boldsymbol{\Phi}$ are:

Definition 2.8 (Mutual coherence)

For any pair of orthonormal bases $\boldsymbol{\Psi}=\left[\boldsymbol{\psi}_{1}, \cdots, \boldsymbol{\psi}_{n}\right]$ and $\boldsymbol{\Phi}=\left[\boldsymbol{\phi}_{1}, \cdots, \boldsymbol{\phi}_{n}\right]$, the mutual coherence of these two bases is defined by

$$
\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})=\max _{1 \leq i, j \leq n}\left|\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\phi}_{j}\right\rangle\right|=\max _{1 \leq i, j \leq n}\left|\boldsymbol{\psi}_{i}^{*} \boldsymbol{\phi}_{j}\right|
$$

- $1 / \sqrt{n} \leq \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \leq 1$ (homework)
- For $\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})$ to be small, each ψ_{i} needs to be "spread out" in the $\boldsymbol{\Phi}$ domain

Examples

- $\mu(\boldsymbol{I}, \boldsymbol{F})=1 / \sqrt{n}$
- Spikes and sinusoids are the most mutually incoherent
- Other extreme basis pair obeying $\mu(\boldsymbol{\Phi}, \boldsymbol{\Psi})=1 / \sqrt{n}: \mathbf{\Psi}=\boldsymbol{I}$ and $\boldsymbol{\Phi}=\boldsymbol{H}$ (Hadamard matrix)

Fourier basis vs. wavelet basis ($n=1024$)

Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels the scales of the wavelet transform with $j=1$ the finest scale)

Fig. credit: Candes \& Romberg '07

Uncertainty principle for general bases

Theorem 2.9 (Donoho \& Huo '01, Elad \& Bruckstein '02)
Consider any nonzero $\boldsymbol{b} \in \mathbb{C}^{n}$ and any pair of orthonormal bases $\boldsymbol{\Psi}$ and $\boldsymbol{\Phi}$. Suppose $\boldsymbol{b}=\boldsymbol{\Psi} \boldsymbol{\alpha}=\boldsymbol{\Phi} \boldsymbol{\beta}$. Then

$$
\|\boldsymbol{\alpha}\|_{0} \cdot\|\boldsymbol{\beta}\|_{0} \geq \frac{1}{\mu^{2}(\boldsymbol{\Psi}, \boldsymbol{\Phi})}
$$

Corollary 2.10 (Donoho \& Huo '01, Elad \& Bruckstein '02)

$$
\|\boldsymbol{\alpha}\|_{0}+\|\boldsymbol{\beta}\|_{0} \geq \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \quad \text { (by } A M-G M \text { inequality) }
$$

Implications

- If two bases are "mutually incoherent", then we cannot have highly sparse representations in two bases simultaneously
- If $\boldsymbol{\Psi}=\boldsymbol{I}$ and $\boldsymbol{\Phi}=\boldsymbol{F}$, Theorem 2.9 reduces to

$$
\|\boldsymbol{\alpha}\|_{0} \cdot\|\boldsymbol{\beta}\|_{0} \geq n
$$

since $\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})=1 / \sqrt{n}$, which coincides with Theorem 2.5.

Proof of Theorem 2.9

1. WLOG, assume $\|\boldsymbol{b}\|=1$. This gives

$$
\begin{align*}
1=\boldsymbol{b}^{*} \boldsymbol{b} & =\boldsymbol{\alpha}^{*} \mathbf{\Psi}^{*} \boldsymbol{\Phi} \boldsymbol{\beta} \\
& =\sum_{i, j=1}^{p} \alpha_{i}\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\phi}_{j}\right\rangle \beta_{j} \\
& \leq \sum_{i, j=1}^{p}\left|\alpha_{i}\right| \cdot \mu(\mathbf{\Psi}, \boldsymbol{\Phi}) \cdot\left|\beta_{j}\right| \\
& \leq \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})\left(\sum_{i=1}^{p}\left|\alpha_{i}\right|\right)\left(\sum_{j=1}^{p}\left|\beta_{j}\right|\right) \tag{2.2}
\end{align*}
$$

Aside: this shows $\|\boldsymbol{\alpha}\|_{1} \cdot\|\boldsymbol{\beta}\|_{1} \geq \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$

Proof of Theorem 2.9 (continued)

2. The assumption $\|\boldsymbol{b}\|=1$ implies $\|\boldsymbol{\alpha}\|=\|\boldsymbol{\beta}\|=1$. This together with the elementary inequality $\sum_{i=1}^{k} x_{i} \leq \sqrt{k \sum_{i=1}^{k} x_{i}^{2}}$ yields

$$
\sum_{i=1}^{p}\left|\alpha_{i}\right| \leq \sqrt{\|\boldsymbol{\alpha}\|_{0} \sum_{i=1}^{p}\left|\alpha_{i}\right|^{2}}=\sqrt{\|\boldsymbol{\alpha}\|_{0}}
$$

Similarly, $\sum_{i=1}^{p}\left|\beta_{i}\right| \leq \sqrt{\|\boldsymbol{\beta}\|_{0}}$.
3. Substitution into (2.2) concludes the proof.

Uniqueness of sparse representation

A natural strategy to promote sparsity:

- seek the sparsest solution to the linear system

$$
\left(P_{0}\right) \quad \operatorname{minimize}_{\boldsymbol{x} \in \mathbb{C}^{p}}\|\boldsymbol{x}\|_{0} \quad \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

- When is the solution unique?
- How to test whether a candidate solution is the sparsest possible?

Uniqueness of ℓ_{0} minimization

The uncertainty principle leads to the possibility of ideal sparse representation for the system

$$
\begin{equation*}
\boldsymbol{y}=[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \boldsymbol{x} \tag{2.3}
\end{equation*}
$$

Theorem 2.11 (Donoho \& Huo '01, Elad \& Bruckstein '02)
Any two distinct solutions $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ to (2.3) satisfy

$$
\left\|\boldsymbol{x}^{(1)}\right\|_{0}+\left\|\boldsymbol{x}^{(2)}\right\|_{0} \geq \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}
$$

Corollary 2.12 (Donoho \& Huo '01, Elad \& Bruckstein '02)
If a solution \boldsymbol{x} obeys $\|\boldsymbol{x}\|_{0}<\frac{1}{\mu(\mathbf{\Psi}, \mathbf{\Phi})}$, then it is necessarily the unique sparsest solution.

Proof of Theorem 2.11

Define $\boldsymbol{h}=\boldsymbol{x}^{(1)}-\boldsymbol{x}^{(2)}$, and write $\boldsymbol{h}=\left[\begin{array}{l}\boldsymbol{h}_{\Psi} \\ \boldsymbol{h}_{\Phi}\end{array}\right]$ with $\boldsymbol{h}_{\Psi}, \boldsymbol{h}_{\Phi} \in \mathbb{C}^{n}$.

1. Since $\boldsymbol{y}=[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \boldsymbol{x}^{(1)}=[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \boldsymbol{x}^{(2)}$, one has

$$
[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \boldsymbol{h}=\mathbf{0} \quad \Longleftrightarrow \quad \boldsymbol{\Psi} \boldsymbol{h}_{\Psi}=-\boldsymbol{\Phi} \boldsymbol{h}_{\Phi}
$$

2. By Corollary 2.10,

$$
\|\boldsymbol{h}\|_{0}=\left\|\boldsymbol{h}_{\Psi}\right\|_{0}+\left\|\boldsymbol{h}_{\Phi}\right\|_{0} \geq \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}
$$

3. $\left\|\boldsymbol{x}^{(1)}\right\|_{0}+\left\|\boldsymbol{x}^{(2)}\right\|_{0} \geq\|\boldsymbol{h}\|_{0} \geq \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$ as claimed.

Sparse representation via ℓ_{1} minimization

Relaxation of the highly discontinuous ℓ_{0} norm

Unfortunately, ℓ_{0} minimization is computationally intractable ...
Simple heuristic: replacing ℓ_{0} norm with continuous (or even smooth) approximation

Convexification: ℓ_{1} minimization (basis pursuit)

$$
\begin{gather*}
\operatorname{minimize}_{\boldsymbol{x} \in \mathbb{C}^{p}}\|\boldsymbol{x}\|_{0} \quad \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \\
\Downarrow \\
\text { Convexifying }\|\boldsymbol{x}\|_{0} \text { with }\|\boldsymbol{x}\|_{1} \\
\Downarrow \\
\text { minimize }_{\boldsymbol{x} \in \mathbb{C}^{p}}\|\boldsymbol{x}\|_{1} \quad \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{2.4}
\end{gather*}
$$

- $|x|$ is the largest convex function less than $\mathbf{1}\{x \neq 0\}$ over $\{x:|x| \leq 1\}$
- ℓ_{1} minimization is a linear program (homework)
- ℓ_{1} minimization is non-smooth optimization (since $\|\cdot\|_{1}$ is non-smooth)
- ℓ_{1} minimization does not rely on prior knowledge on sparsity level

Geometry

$\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1}$ s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$

$\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{2}$ s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$

Even pointier in the high dimension

- Level sets of $\|\cdot\|_{1}$ are pointed, enabling it to promote sparsity
- Level sets of $\|\cdot\|_{2}$ are smooth, often leading to dense solutions

Effectiveness of ℓ_{1} minimization

Theorem 2.13 (Donoho \& Huo '01, Elad \& Bruckstein '02)

$\boldsymbol{x} \in \mathbb{C}^{p}$ is the unique solution to ℓ_{1} minimization (2.4) if

$$
\begin{equation*}
\|\boldsymbol{x}\|_{0}<\frac{1}{2}\left(1+\frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}\right) \tag{2.5}
\end{equation*}
$$

- ℓ_{1} minimization yields the sparse solution too!
- The recovery condition (2.5) can be improved to, e.g.,

$$
\|\boldsymbol{x}\|_{0}<\frac{0.914}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \quad \text { [Elad \& Bruckstein '02] }
$$

Effectiveness of ℓ_{1} minimization

$$
\begin{aligned}
&\|\boldsymbol{x}\|_{0}<\frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \Longrightarrow \quad \ell_{0} \text { minimization works } \\
&\|\boldsymbol{x}\|_{0}<\frac{0.914}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \quad \Longrightarrow \quad \ell_{1} \text { minimization works }
\end{aligned}
$$

The recovery condition for ℓ_{1} miniization is within a factor of $1 / 0.914 \approx 1.094$ of the condition derived for ℓ_{0} minimization

Proof of Theorem 2.13

We need to show that $\|\boldsymbol{x}+\boldsymbol{h}\|_{1}>\|\boldsymbol{x}\|_{1}$ holds for any other feasible solution $\boldsymbol{x}+\boldsymbol{h}$. To this end, we proceed as follows

$$
\begin{gather*}
\|\boldsymbol{x}+\boldsymbol{h}\|_{1}>\|\boldsymbol{x}\|_{1} \\
\Longleftarrow \sum_{i \notin \operatorname{supp}(\boldsymbol{x})}\left|h_{i}\right|+\sum_{i \in \operatorname{supp}(\boldsymbol{x})}\left(\left|x_{i}+h_{i}\right|-\left|x_{i}\right|\right)>0 \\
\sum_{i \notin \operatorname{supp}(\boldsymbol{x})}\left|h_{i}\right|-\sum_{i \in \operatorname{supp}(\boldsymbol{x})}\left|h_{i}\right|>0 \quad(\text { since }|a+b|-|a| \geq-|b|) \\
\Longleftarrow\|\boldsymbol{h}\|_{1}>2 \sum_{i \in \operatorname{supp}(\boldsymbol{x})}\left|h_{i}\right| \\
\Longleftarrow \sum_{i \in \operatorname{supp}(\boldsymbol{x})} \frac{\left|h_{i}\right|}{\|\boldsymbol{h}\|_{1}}<\frac{1}{2} \\
\Longleftarrow\|\boldsymbol{x}\|_{0} \frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}}<\frac{1}{2} \tag{2.6}
\end{gather*}
$$

Proof of Theorem 2.13 (continued)

It remains to control $\frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}}$. As usual, due to feasibility constraint we have $[\boldsymbol{\Psi}, \boldsymbol{\Phi}] \boldsymbol{h}=\mathbf{0}$, or

$$
\boldsymbol{\Psi} \boldsymbol{h}_{\psi}=-\boldsymbol{\Phi} \boldsymbol{h}_{\phi} \quad \Longleftrightarrow \quad \boldsymbol{h}_{\psi}=-\boldsymbol{\Psi}^{*} \boldsymbol{\Phi} \boldsymbol{h}_{\phi} \quad \text { where } \boldsymbol{h}=\left[\begin{array}{c}
\boldsymbol{h}_{\psi} \\
\boldsymbol{h}_{\phi}
\end{array}\right] .
$$

For any i, the inequality $\left|\boldsymbol{a}^{*} \boldsymbol{b}\right| \leq\|\boldsymbol{a}\|_{\infty}\|\boldsymbol{b}\|_{1}$ gives

$$
\left|\left(\boldsymbol{h}_{\psi}\right)_{i}\right|=\left|\left(\boldsymbol{\Psi}^{*} \boldsymbol{\Phi}\right)_{\text {row } i} \cdot \boldsymbol{h}_{\phi}\right| \leq\left\|\boldsymbol{\Psi}^{*} \boldsymbol{\Phi}\right\|_{\infty} \cdot\left\|\boldsymbol{h}_{\phi}\right\|_{1}=\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \cdot\left\|\boldsymbol{h}_{\phi}\right\|_{1}
$$

On the other hand, $\left\|\boldsymbol{h}_{\psi}\right\|_{1} \geq\left|\left(\boldsymbol{h}_{\psi}\right)_{i}\right|$. Putting them together yields

$$
\begin{equation*}
\|\boldsymbol{h}\|_{1}=\left\|\boldsymbol{h}_{\phi}\right\|_{1}+\left\|\boldsymbol{h}_{\psi}\right\|_{1} \geq\left|\left(\boldsymbol{h}_{\psi}\right)_{i}\right|\left(1+\frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}\right) \tag{2.7}
\end{equation*}
$$

Proof of Theorem 2.13 (continued)

In fact, this inequality (2.7) holds for any entry of \boldsymbol{h}, giving that

$$
\frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}} \leq \frac{1}{1+\frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}}
$$

Finally, if $\|\boldsymbol{x}\|_{0}<\frac{1}{2}\left(1+\frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}\right)$, then

$$
\|\boldsymbol{x}\|_{0} \cdot \frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}}<\frac{1}{2}
$$

as claimed in (2.6), thus concluding the proof.

Sparse representation for general dictionaries

Beyond two-ortho case

$$
\operatorname{minimize}_{\boldsymbol{x}}\|\boldsymbol{x}\|_{0} \quad \text { s.t. } \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

What if $\boldsymbol{A} \in \mathbb{C}^{n \times p}$ is a general overcomplete dictionary?

We will study this general case through 2 metrics

1. Mutual coherence
2. Spark

Mutual coherence for arbitrary dictionaries

Definition 2.14 (Mutual coherence)

For any $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{p}\right] \in \mathbb{C}^{n \times p}$, the mutual coherence of \boldsymbol{A} is defined by

$$
\mu(\boldsymbol{A})=\max _{1 \leq i, j \leq p, i \neq j} \frac{\left|\boldsymbol{a}_{i}^{*} \boldsymbol{a}_{j}\right|}{\left\|\boldsymbol{a}_{i}\right\|\left\|\boldsymbol{a}_{j}\right\|}
$$

- If $\left\|\boldsymbol{a}_{i}\right\|=1$ for all i, then $\mu(\boldsymbol{A})$ is the maximum off-diagonal entry (in absolute value) of the Gram matrix $\boldsymbol{G}=\boldsymbol{A}^{*} \boldsymbol{A}$
- $\mu(\boldsymbol{A})$ characterizes "second-order" dependency across the atoms $\left\{\boldsymbol{a}_{i}\right\}$
- (Welch bound) $\mu(\boldsymbol{A}) \geq \sqrt{\frac{p-n}{n(p-1)}}$, with equality attained by a family called Grassmannian frames

Uniqueness of sparse representation via $\mu(\boldsymbol{A})$

A theoretical guarantee similar to the two-ortho case

Theorem 2.15 (Donoho \& Elad '03, Gribonval \& Nielsen '03, Fuchs '04)

If \boldsymbol{x} is a feasible solution that obeys $\|\boldsymbol{x}\|_{0}<\frac{1}{2}\left(1+\frac{1}{\mu(\boldsymbol{A})}\right)$, then \boldsymbol{x} is the unique solution to both ℓ_{0} and ℓ_{1} minimization.

Tightness?

Suppose $p=c n$ for some constant $c>2$, then Welch bound gives

$$
\mu(\boldsymbol{A}) \geq 1 / \sqrt{2 n}
$$

\Longrightarrow for the "most incoherent" (and hence best possible) dictionary, the recovery condition reads

$$
\|\boldsymbol{x}\|_{0}=O(\sqrt{n})
$$

This says: to recover a \sqrt{n}-sparse signal (and hence \sqrt{n} degrees of freedom), we need an order of n samples

- The measurement burden is way too high!
- Mutual coherence might not capture the information bottleneck!

Another metric: Spark

Definition 2.16 (Spark, Donoho \& Elad '03)

$\operatorname{spark}(\boldsymbol{A})$ is the size of the smallest linearly dependent column subset of A, i.e.

$$
\operatorname{spark}(\boldsymbol{A})=\min _{\boldsymbol{z}}\|\boldsymbol{z}\|_{0} \text { s.t. } \boldsymbol{A} \boldsymbol{z}=\mathbf{0}
$$

- A way of characterizing null-space of \boldsymbol{A} using ℓ_{0} norm
- Comparison to rank
- $\operatorname{rank}(\boldsymbol{A})$: largest number of columns from \boldsymbol{A} that are linearly independent
- $\operatorname{spark}(\boldsymbol{A})$ is far more difficult to compute than $\operatorname{rank}(\boldsymbol{A})$
- $2 \leq \operatorname{spark}(\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A})+1$ for nontrivial \boldsymbol{A}

Examples

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- $\operatorname{spark}(\boldsymbol{A})=3$
- $\operatorname{rank}(\boldsymbol{A})=4$

Examples

Suppose $\sqrt{n} \in \mathbb{Z}$. Then $\boldsymbol{A}=[\boldsymbol{I}, \boldsymbol{F}] \in \mathbb{C}^{n \times 2 n}$ obeys

$$
\operatorname{spark}(\boldsymbol{A})=2 \sqrt{n}
$$

- Hint: consider the concatenation of two picket-fence signals each with \sqrt{n} peaks

Examples

Suppose the entries of \boldsymbol{A} are i.i.d. standard Gaussian, then

$$
\operatorname{spark}(\boldsymbol{A})=n+1
$$

with probability 1 , since no n columns are linearly dependent.

Uniqueness via spark

Spark provides a simple criterion for uniqueness:

Theorem 2.17

If \boldsymbol{x} is a solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ and obeys $\|\boldsymbol{x}\|_{0}<\operatorname{spark}(\boldsymbol{A}) / 2$, then \boldsymbol{x} is necessarily the unique sparsest possible solution.

- If \boldsymbol{A} is an i.i.d. Gaussian matrix (and hence $\operatorname{spark}(\boldsymbol{A})=n+1$), then this condition reads

$$
\|\boldsymbol{x}\|_{0}<(n+1) / 2
$$

i.e., n samples enable us to recover $n / 2$ units of information!

- much better than the condition based on $\mu(\boldsymbol{A})$

Proof of Theorem 2.17

Consider any other feasible solution $\boldsymbol{z} \neq \boldsymbol{x}$.

1. Since $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$, one has

$$
A(x-z)=0
$$

i.e. the columns of \boldsymbol{A} at indices coming from the support of $\boldsymbol{x}-\boldsymbol{z}$ are linearly dependent
2. By definition,

$$
\operatorname{spark}(\boldsymbol{A}) \leq\|\boldsymbol{x}-\boldsymbol{z}\|_{0}
$$

3. The fact $\|\boldsymbol{x}\|_{0}+\|\boldsymbol{z}\|_{0} \geq\|\boldsymbol{x}-\boldsymbol{z}\|_{0}$ then gives

$$
\|\boldsymbol{x}\|_{0}+\|\boldsymbol{z}\|_{0} \geq \operatorname{spark}(\boldsymbol{A})
$$

4. If $\|\boldsymbol{x}\|_{0}<\operatorname{spark}(\boldsymbol{A}) / 2$, then

$$
\|\boldsymbol{z}\|_{0} \geq \operatorname{spark}(\boldsymbol{A}) / 2>\|\boldsymbol{x}\|_{0}
$$

Connecting Spark with mutual coherence

Theorem 2.18 (Donoho \& Elad '03)

$$
\operatorname{spark}(\boldsymbol{A}) \geq 1+1 / \mu(\boldsymbol{A})
$$

Connecting Spark with mutual coherence

Corollary 2.19 (Donoho \& Elad '03)

If a solution \boldsymbol{x} obeys $\|\boldsymbol{x}\|_{0}<0.5(1+1 / \mu(\boldsymbol{A}))$, then it is the sparsest possible solution.

- Corollary 2.19 is, however, much weaker than Theorem 2.17
- Example (2-ortho case):
- Corollary 2.19 gives $\|\boldsymbol{x}\|_{0}=O(\sqrt{n})$ at best, since $\mu(\boldsymbol{A}) \geq 1 / \sqrt{n}$
- Theorem 2.17 may give a bound as large as $\|\boldsymbol{x}\|_{0}=O(n)$ since $\operatorname{spark}(\boldsymbol{A})$ may be as large as n

Proof of Theorem 2.18

WLOG, assume $\left\|\boldsymbol{a}_{i}\right\|=1, \forall i$, then the Gram matrix $\boldsymbol{G}:=\boldsymbol{A}^{*} \boldsymbol{A}$ obeys

$$
\begin{equation*}
G_{i, i}=1 \quad \forall i \quad \text { and } \quad\left|G_{i, j}\right| \leq \mu(\boldsymbol{A}) \quad \forall i \neq j \tag{2.8}
\end{equation*}
$$

1. Consider any $k \times k$ principal submatrix $\boldsymbol{G}_{J, J}$ of \boldsymbol{G} with J an index subset. If $\boldsymbol{G}_{J, J} \succ \mathbf{0}$, then the k columns of \boldsymbol{A} at indices in J are linearly independent
2. If this holds for all $k \times k$ principal submatrices, then by definition $\operatorname{spark}(\boldsymbol{A})>k$
3. Finally, by Gershgorin circle theorem, one would have $\boldsymbol{G}_{J, J} \succ \mathbf{0}$ if $\left|G_{i, i}\right|>\sum_{j \in J, j \neq i}\left|G_{i, j}\right|$, which would follow if (by (2.8))

$$
1>(k-1) \mu(\boldsymbol{A})
$$

i.e. k can be as large as $1+\lfloor 1 / \mu(\boldsymbol{A})\rfloor$

Gershgorin circle theorem

Lemma 2.20 (Gershgorin circle theorem)

The eigenvalues of $\boldsymbol{M}=\left[m_{i, j}\right]_{1 \leq i, j \leq n}$ lie in the union of n discs $\operatorname{disc}\left(c_{i}, r_{i}\right), 1 \leq i \leq n$, centered at $c_{i}=m_{i i}$ and with radius $r_{i}=\sum_{j: j \neq i}\left|m_{i j}\right|$.

Summary

- For many dictionaries, if a signal is representable in a highly sparse manner, then it is often guaranteed to be the unique sparse solution.
- Seeking a sparse solution often becomes a well-posed question with interesting properties

Reference

[1] "Sparse and redundant representations: from theory to applications in signal and image processing," M. Elad, Springer, 2010.
[2] "Uncertainty principles and signal recovery," D. Donoho and P. Stark, SIAM Journal on Applied Mathematics, 1989.
[3] "Uncertainty principles and ideal atomic decomposition," D. Donoho and X. Huo, IEEE Trans. on Info. Theory, 2001.
[4] "A generalized uncertainty principle and sparse representation in pairs of bases," M. Elad and A. Bruckstein, IEEE Trans. on Info. Theory, 2002.
[5] "Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_{1} minimization," D. Donoho, and M. Elad, Proceedings of the National Academy of Sciences, 2003.
[6] "Sparsity and incoherence in compressive sampling," E. Candes, and J. Romberg, Inverse Problems, 2007.

Reference

[7] "Atomic decomposition by basis pursuit," S. Chen, D. Donoho, M. A. Saunders, SIAM review, 2001.
[8] "On sparse representations in arbitrary redundant bases," J. Fuchs, IEEE Trans. on Info. Theory, 2004.
[9] "Sparse representations in unions of bases," R. Gribonval, and M. Nielsen, IEEE Trans. on Info. Theory, 2003.

