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Outline

• `1 minimization for sparse recovery

• Restricted isometry property (RIP)

• A RIPless theory
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Motivation of Compressed Sensing

Conventional paradigms for data acquisition:
• Measure full data

• Compress (by discarding a large fraction of coefficients)

Problem: data is often highly compressible
• Most of acquired data can be thrown away without any

perceptual loss
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Blind sensing

Ideally, if we know a priori which coefficients are worth estimating,
then we can simply measure these coefficients
• Unfortunately, we often have no idea which coefficients are most

relevant

Compressed sensing: compression on the fly
• mimic the behavior of the above ideal situation without

pre-computing all coefficients

• often achieved by random sensing mechanism
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Why go to so much effort to acquire all the data when most of
what we get will be thrown away?

Can’t we just directly measure the part that won’t end up being
thrown away?

— David Donoho
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Setup: sparse recovery

=

Recover x ∈ Rp given y = Ax

where A = [a1, · · · ,an]> ∈ Rn×p (n� p): sampling matrix;
ai: sampling vector; x: sparse signal
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Optimality for `0 minimization

minimizex∈Rp ‖x‖0 s.t. Ax = y

If instead ∃ a sparser feasible x̃ 6= x s.t. ‖x̃‖0 ≤ ‖x‖0 = k, then

A (x− x̃) = 0. (6.1)

We don’t want (6.1) to happen, so we hope

A
(
x− x̃︸ ︷︷ ︸

2k−sparse

)
6= 0, ∀x̃ with ‖x̃‖0 ≤ k

To simultaneously account for all k-sparse x, we hope AT (|T | ≤ 2k)
to have full column rank, where AT consists of all columns of A at
indices from T
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Restricted isometry property (RIP)

Definition 6.1 (Restricted isometry constant)
Restricted isometry constant δk of A is smallest quantity
s.t.

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2 (6.2)

holds for all k-sparse vector x ∈ Rp

• Equivalently, (6.2) says

max
S:|S|=k

‖A>SAS − Ik‖︸ ︷︷ ︸
near orthonormality

= δk

where AS consists of all columns of A at indices
from S

• (Homework) For any x1, x2 that are supported on
disjoint subsets S1, S2 with |S1| ≤ s1 and |S2| ≤ s2:

|〈Ax1,Ax2〉| ≤ δs1+s2‖x1‖2‖x2‖2 (6.3)

angle-preserving! (consequence of parallelogram
identity)
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RIP and `0 minimization

minimizex∈Rp ‖x‖0 s.t. Ax = y

Fact 6.2
Suppose x is k-sparse. If δ2k < 1, then `0-minimization is exact and
unique.



11/56

RIP and `1 minimization

Theorem 6.3 (Candès 2008)

Suppose x is k-sparse. If δ2k <
√

2− 1, then `1-minimization is exact
and unique.

• RIP implies success of `1 minimization (also many other
methods, as we’ll see from later lectures)

• A universal result: works simultaneously for all k-sparse signals

• As we will see later, many random designs satisfy this condition
with near-optimal sample complexity

m ∼ O(k log(n/k))
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Proof of Theorem 6.3

Suppose x+h is feasible and obeys ‖x+h‖1 ≤ ‖x‖1. The goal is to
show that h = 0 under RIP.

The key is to decompose h into hT0 + hT1 + . . .

• T0: locations of k largest entries of x
• T1: locations of k largest entries of h in T0

c

• T2: locations of k largest entries of h in (T0 ∪ T1)c

• ...
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Proof of Theorem 6.3

The proof proceeds by showing that

1. hT0∪T1 dominates h(T0∪T1)c (by objective function)

2. (converse) h(T0∪T1)c dominates hT0∪T1 (by RIP + feasibility)

These can happen simultaneously only when h vanishes



Proof of Theorem 6.3
Step 1 (depending only on objective function). Show that∑

j≥2
‖hTj‖ ≤

1√
k
‖hT0‖1. (6.4)

This follows immediately by combining the following 2 observations:
(i) Since x+ h is assumed to be a better estimate:

‖x‖1 ≥ ‖x+ h‖1 = ‖x+ hT0‖1 + ‖hT c
0
‖1︸ ︷︷ ︸

since T0 is support of x

≥ ‖x‖1 − ‖hT0‖1︸ ︷︷ ︸
triangle inequality

+ ‖hT c
0
‖1

=⇒ ‖hT c
0
‖1 ≤ ‖hT0‖1 (6.5)

(ii) Since entries of hTj−1 uniformly dominate those of hTj
(j ≥ 2):

‖hTj‖ ≤
√
k‖hTj‖∞ ≤

√
k
‖hTj−1‖1

k
= 1√

k
‖hTj−1‖1

=⇒
∑
j≥2
‖hTj

‖ ≤ 1√
k

∑
j≥2
‖hTj−1‖1 = 1√

k
‖hT c

0
‖1 (6.6)
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Proof of Theorem 6.3

Step 2 (using feasibility + RIP). Show that ∃ρ < 1 s.t.

‖hT0∪T1‖ ≤ ρ
∑

j≥2
‖hTj‖ (6.7)

If this claim holds, then

‖hT0∪T1‖ ≤ ρ
∑

j≥2
‖hTj

‖
(6.4)
≤ ρ

1√
k
‖hT0‖1

≤ ρ 1√
k

(√
k‖hT0‖

)
= ρ‖hT0‖ ≤ ρ‖hT0∪T1‖. (6.8)

Since ρ < 1, we necessarily have hT0∪T1 = 0, which together with (6.5)
yields h = 0
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Proof of Theorem 6.3
We now prove (6.7). To connect hT0∪T1 with h(T0∪T1)c , we use feasibility:

Ah = 0 ⇐⇒ AhT0∪T1 = −
∑

j≥2
AhTj

,

which taken collectively with RIP yields

(1− δ2k)‖hT0∪T1‖2 ≤ ‖AhT0∪T1‖2 =
∣∣〈AhT0∪T1 ,

∑
j≥2

AhTj
〉
∣∣.

It follows from (6.3) that for all j ≥ 2,

|〈AhT0∪T1 ,AhTj
〉| ≤ |〈AhT0 ,AhTj

〉|+ |〈AhT1 ,AhTj
〉|

(6.3)
≤ δ2k(‖hT0‖+ ‖hT1‖)‖hTj‖ ≤ δ2k

√
2‖hT0∪T1‖ · ‖hTj‖,

which gives

(1− δ2k)‖hT0∪T1‖2 ≤
∑

j≥2
|〈AhT0∪T1 ,AhTj

〉|

≤
√

2δ2k‖hT0∪T1‖
∑

j≥2
‖hTj‖

This establishes (6.7) if ρ :=
√

2δ2k

1−δ2k
< 1 (or equivalently, δ2k <

√
2− 1).
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Robustness for compressible signals

Theorem 6.4

If δ2k <
√

2− 1, then the solution x̂ to `1-minimization obeys

‖x̂− x‖ . ‖x− xk‖1√
k

,

where xk is best k-term approximation of x

• Suppose lth largest entry of x is 1/lα for some α > 1, then

1√
k
‖x− xk‖1 ≈

1√
k

∑
l>k

l−α ≈ k−α+0.5 � 1

• `1-min works well in recovering compressible signals

• Follows similar arguments as in proof of Theorem 6.3
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Proof of Theorem 6.4

Step 1 (depending only on objective function). Show that∑
j≥2
‖hTj

‖ ≤ 1√
k
‖hT0‖1 + 2√

k
‖x− xT0‖1. (6.9)

This follows immediately by combining the following 2 observations:

(i) Since x+ h is assumed to be a better estimate:

‖xT0‖1 + ‖xT c
0
‖1 = ‖x‖1 ≥ ‖x+ h‖1 = ‖xT0 + hT0‖1 + ‖xT c

0
+ hT c

0
‖1

≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT c
0
‖1 − ‖xT c

0
‖1

=⇒ ‖hT c
0
‖1 ≤ ‖hT0‖1 + 2‖xT c

0
‖1 (6.10)

(ii) Recall from (6.6) that
∑
j≥2 ‖hTj

‖ ≤ 1√
k
‖hT c

0
‖1.

We highlight in red the part different from the proof of Theorem 6.3.
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Proof of Theorem 6.4

Step 2 (using feasibility + RIP). Recall from (6.7) that ∃ρ < 1 s.t.

‖hT0∪T1‖ ≤ ρ
∑

j≥2
‖hTj

‖ (6.11)

If this claim holds, then

‖hT0∪T1‖ ≤ ρ
∑

j≥2
‖hTj

‖
(6.10) and (6.6)

≤ ρ
1√
k
{‖hT0‖1 + 2‖xT c

0
‖1}

≤ ρ 1√
k

(√
k‖hT0‖+ 2‖xT c

0
‖1

)
= ρ‖hT0‖+ 2ρ√

k
‖xT c

0
‖1

≤ ρ‖hT0∪T1‖+ 2ρ√
k
‖xT c

0
‖1.

=⇒ ‖hT0∪T1‖ ≤
2ρ

1− ρ
‖xT c

0
‖1√
k

. (6.12)

We highlight in red the part different from the proof of Theorem 6.3.
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Proof of Theorem 6.4

Finally, putting the above together yields

‖h‖ ≤ ‖hT0∪T1‖+ ‖h(T0∪T1)c‖
(6.9)
≤ ‖hT0∪T1‖+ 1√

k
‖hT0‖1 + 2√

k
‖x− xT0‖1

≤ ‖hT0∪T1‖+ ‖hT0‖+ 2√
k
‖x− xT0‖1

≤ 2‖hT0∪T1‖+ 2√
k
‖x− xT0‖1

(6.12)
≤ 2(1 + ρ)

1− ρ
‖x− xT0‖1√

k

We highlight in red the part different from the proof of Theorem 6.3.
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`1 recovery in the noisy case
In the presence of additive measurement noise,

y = Ax+w,

where ‖w‖2 ≤ ε is assumed to be bounded.
We can modify the BP algorithm in the following manner:

(BP-noisy:) x̂ = argminx ‖x‖1 subject to ‖y −Ax‖2 ≤ ε.

Theorem 6.5 (Performance of BP via RIP, noisy case)

If δ2k <
√

2− 1, then for any vector x, the solution to basis pursuit
(noisy case) satisfies

‖x̂− x‖2 ≤ C0k
−1/2‖x− xk‖1 + C1ε.

where xk is the best k-term approximation of x for some constants
C0 and C1.
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Proof of Theorem 6.5
Again let’s start by assuming x̂ = x+ h. The key difference from the
noiseless case is that in Step 2, we now have

‖Ah‖2 = ‖A(x̂− x)‖2 = ‖(y −Ax̂)− (y −Ax)‖2
≤ ‖y −Ax̂‖2 + ‖y −Ax‖2 ≤ 2ε.

Therefore, we need to bound
‖AhT0∪T1‖22 = 〈Ah−

∑
j≥2
AhTj ,AhT0∪T1〉

≤ 〈Ah,AhT0∪T1︸ ︷︷ ︸
≤2εδ2k‖hT0∪T1‖2

〉−
∑
j≥2
〈AhTj ,AhT0∪T1〉︸ ︷︷ ︸

bounded as before
By plugging in this modification, we show

‖x̂− x‖2 = ‖h‖2 ≤
2(1 + ρ)

1− ρ
‖x− xk‖1√

k
+ 2α

1− ρε,

where α = 2
√

1+δ2k
1−δ2k

.
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Which design matrix satisfies RIP?

First example: i.i.d. Gaussian design

Lemma 6.6

A random matrix A ∈ Rn×p with i.i.d. N
(
0, 1

n

)
entries satisfies

δk < δ with high prob., as long as

n &
1
δ2k log p

k

• This is where non-asymptotic random matrix theory enters
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Gaussian random matrices

Lemma 6.7 (See Vershynin ’10)

Suppose B ∈ Rn×k is composed of i.i.d. N (0, 1) entries. Then
P
(

1√
n
σmax(B) > 1 +

√
k
n + t

)
≤ e−nt2/2

P
(

1√
n
σmin(B) < 1−

√
k
n − t

)
≤ e−nt2/2.

• When n� k, one has 1
nB
>B ≈ Ik

• Similar results (up to different constants) hold for
i.i.d. sub-Gaussian matrix
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Proof of Lemma 6.6

1. Fix any index subset S ⊆ {1, · · · , }, |S| = k, then AS

(submatrix of A consisting of columns at indices from S) obeys∥∥∥A>SAS − Ik
∥∥∥ ≤ O(√k/n)+ t

with prob. exceeding 1− 2e−c1nt2 , where c1 > 0 is constant.

2. Taking a union bound over all S ⊆ {1, · · · , p}, |S| = k yields

δk = max
S:|S|=k

∥∥∥A>SAS − Ik
∥∥∥ ≤ O(√k/n)+ t

with prob. exceeding 1− 2
(p
k

)
e−c1nt2 ≥ 1− 2ek log(ep/k)−c1nt2 .

Thus, δk < δ with high prob. as long as n & δ−2k log(p/k).
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Other design matrices that satisfy RIP

• Random matrices with i.i.d. sub-Gaussian entries, as long as

n & k log(p/k)

• Random partial DFT matrices with

n & k log4 p,

where rows of A are independently sampled from rows of DFT
matrix F (Rudelson & Vershynin ’08)
◦ If you have learned entropy method / generic chaining, check out

Rudelson & Vershynin ’08 and Candes & Plan ’11
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Other design matrices that satisfy RIP

• Random convolution matrices with

n & k log4 p,

where rows of A are independently sampled from rows of

G =


g0 g1 g2 · · · gp−1
gp−1 g0 g1 · · · gp−2
gp−2 gp−1 g0 · · · gp−3

...
...

... . . . ...
g1 g2 g3 · · · g0


with P(gi = ±1) = 0.5 (Krahmer, Mendelson, & Rauhut ’14)



A RIPless theory
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Is RIP necessary?

• RIP leads to a universal result holding simultaneously for all
k-sparse x
◦ Universality is often not needed as we might only care about a

particular x

• There may be a gap between the regime where RIP holds and
the regime in which one has minimal measurements

• Certifying RIP is hard

Can we develop a non-universal RIPless theory?
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A standard recipe

1. Write out Karush-Kuhn-Tucker (KKT) optimality conditions

◦ typically involve certain dual variables

2. Construct dual variables satisfying KKT conditions
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Karush-Kuhn-Tucker (KKT) condition

Consider a convex problem

minimizex f(x)
s.t. Ax− y = 0

Lagrangian:

L (x,ν) := f(x) + ν>(Ax− y) (ν : Lagrangian multiplier)

If x is optimizer, then KKT optimality condition reads{
0 = ∇vL(x,v)
0 ∈ ∂xL(x,v)

{
Ax− y = 0

0 ∈ ∂f(x) +A>ν (no constraint on ν)
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Subgradient

Consider a convex function f(x) (possibly nonsmooth).

Definition 6.8 (Subgradient)
u ∈ ∂f(x0) is a subgradient of a convex f at x0 if for all x:

f(x) ≥ f(x0) + uT (x− x0)

Remark: if f is differentiable at x0, the only subgradient is the
gradient ∇f(x0).



33/56

Subgradient of `1 norm

Example: For the scalar absolute function f(t) = |t|, t ∈ R,
u ∈ ∂f(t) iff {

u = sgn(t), t 6= 0
u ∈ [− 1, 1], t = 0

Example: For f(x) = ‖x‖1, x ∈ Rn, u ∈ ∂f(x) iff{
ui = sgn(xi), xi 6= 0
ui ∈ [− 1, 1], xi = 0
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KKT condition for `1 minimization

minimizex ‖x‖1
s.t. Ax− y = 0

If x is optimizer, then KKT optimality condition reads{
Ax− y = 0, (naturally satisfied as x is truth)
0 ∈ ∂‖x‖1 +A>ν (no constraint on ν)

⇐⇒ ∃u ∈ range(A>) s.t.
{
ui = sign(xi), if xi 6= 0
ui ∈ [−1, 1], else︸ ︷︷ ︸
u is a valid subgradient

Depends only on signs of xi’s irrespective of their magnitudes
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Uniqueness

Theorem 6.9 (A sufficient—and almost necessary—condition)

Let T := supp(x). Suppose AT has full column rank. If

∃u = A>ν for some ν ∈ Rn s.t.
{
ui = sign(xi), if xi 6= 0
ui ∈ (−1, 1), else

,

then x is unique solution to `1 minimization.

• Only slightly stronger than KKT!
• ν is said to be a dual certificate

◦ recall that ν is Lagrangian multiplier

• Finding ν comes down to solving another convex problem
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Geometric interpretation of dual certificate

When |u1| < 1, solution is unique When |u1| = 1, solution is non-unique

When we are able to find u ∈ range(A>) s.t. u2 = sign(x2) and
|u1| < 1, then x (with x1 = 0) is unique solution to `1 minimization
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Proof of Theorem 6.9

Let w ∈ ∂‖x‖1 be
{
wi = sign(xi), if i ∈ T (support of x);
wi = sign(hi), else.

If x+ h is

optimizer with hT c 6= 0, then

‖x‖1 ≥ ‖x+ h‖1 ≥ ‖x‖1 + 〈w,h〉 = ‖x‖1 + 〈u,h〉+ 〈w − u,h〉
= ‖x‖1 + 〈 A>ν︸ ︷︷ ︸

assumption on u

,h〉+
∑
i/∈T

(sign(hi)hi − uihi)

= ‖x‖1 + 〈ν, Ah︸︷︷︸
:=0 (feasibility)

〉+
∑
i/∈T

(|hi| − uihi)

≥ ‖x‖1 +
∑

i/∈T
(1− |ui|) |hi| > ‖x‖1,

resulting in contradiction.

Further, when hT c = 0, one must have hT = 0 from left-invertibility of AT ,
and hence h = hT + hT c = 0



38/56

Constructing dual certificates under Gaussian design

We illustrate how to construct dual certificates for the following setup

• x ∈ Rp is k-sparse

• Entries of A ∈ Rn×p are i.i.d. standard Gaussian

• Sample size n obeys
n & k log p
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Constructing dual certificates under Gaussian design

Find ν ∈ Rn

s.t. (A>ν)T = sign(xT ) (6.13)
|(A>ν)i| < 1, i /∈ T (6.14)

Step 1: propose a ν compatible with linear constraints (6.13). One
candidate is least squares solution:

ν = AT (A>TAT )−1sign(xT ) (explicit expression)

• LS solution minimizes ‖ν‖, which will also be helpful when
controlling |(A>ν)i|

• From Lemma 6.7, A>TAT is invertible when n & k log p



40/56

Constructing dual certificates under Gaussian design
Step 2: verify (6.14), which amounts to controlling

max
i/∈T

∣∣∣〈 ai︸︷︷︸
ith column of A

, AT (A>TAT )−1sign(xT )︸ ︷︷ ︸
ν

〉∣∣∣
• Since ai ∼ N (0, In) and ν are independent for any i /∈ T ,

max
i/∈T
|〈ai, ν〉| . ‖ν‖

√
log p

• ‖ν‖ can be bounded by

‖ν‖ ≤ ‖AT (A>TAT )−1‖ · ‖sgn(xT )‖

= ‖( A>TAT︸ ︷︷ ︸
eigenvalues �n

)−1/2‖ ·
√
k .

√
k/n

• When n/(k log p) is sufficiently large, maxi/∈T |〈ai, ν〉| < 1
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Details

• Conditioned on ν, 〈ai, ν〉 ∼ N (0, ‖ν‖22), we have the Chernoff
bound for the tail of a Gaussian rv:

P (|〈ai, ν〉| ≥ 1|ν) ≤ 2 exp
(
− 1

2‖ν‖22

)
• With probability at least 1− e−cn, we could also bound ‖ν‖2 as

‖ν‖2 ≤

√
2k
n

• We have

P(max
i∈T c
|〈ai, ν〉| ≥ 1) ≤ |T c| · P(|〈ai, ν〉| > 1) union bound

≤ p
∫
ν
P(|〈ai, ν〉| ≥ 1|ν)dµ(ν).
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Continued
Note that∫

ν
P(|〈ai, ν〉| ≥ 1|ν)dµ(ν)

=
(∫
‖ν‖2≤

√
2k
n

+
∫
‖ν‖2>

√
2k
n

)
P(|〈ai, ν〉| ≥ 1|ν)dµ(ν)

≤
∫
‖ν‖2≤

√
2k
n

P(|〈ai, ν〉| ≥ 1|ν)dµ(ν) + P

‖ν‖2 >
√

2k
n


≤
∫
‖ν‖2≤

√
2k
n

2e
− 1

2‖ν‖22 dµ(ν) + e−cn

≤ 2e−
n
4k + e−cn ≤ 3e−

n
4k ,

which gives

P(max
i∈T c
|〈ai, ν〉| ≥ 1) ≤ 3pe−

n
4k ≤ p−γ

by setting n = 4(γ + 1)k log p for some constant γ > 0.
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More general random sampling

Consider a random design: each sampling vector ai is independently
drawn from a distribution F

ai ∼ F

Incoherence sampling:
• Isotropy:

E[aa>] = I, a ∼ F

◦ components of a: (i) unit variance; (ii) uncorrelated

• Incoherence: let µ(F ) be the smallest quantity s.t. for a ∼ F ,

‖a‖2∞ ≤ µ(F ) with high probability
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Incoherence

We want µ(F ) (resp. A) to be small (resp. dense)!

What happen if sampling vectors ai are sparse?
• Example: ai ∼ Uniform({√pe1, · · · ,

√
pep})


0
0
0
0


︸︷︷︸
y

no information

= √p


1

1
1

1


︸ ︷︷ ︸

A



0
0
0
3
0
0
0
5
0
0


︸︷︷︸
x
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Incoherent random sampling
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A general RIPless theory

Theorem 6.10 (Candes & Plan, ’11)

Suppose x ∈ Rp is k-sparse, and ai
ind.∼ F is isotropic. Then `1

minimization is exact and unique with high prob., provided that

n & µ(F )k log p

• Near-optimal even for highly structured sampling matrices

• Proof idea: produce an (approximate) dual certificate by a clever
golfing scheme pioneered by David Gross
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Examples of incoherent sampling

• Binary sensing: P(a[i] = ±1) = 0.5:

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

• Gaussian sensing: a ∼ N (0, I):

E[aa>] = I, ‖a‖2∞ . 2 log p ⇒ µ � log p

• Partial Fourier transform: pick a random frequency
f ∼ Unif

{
0, 1

p , · · · ,
p−1
p

}
or f ∼ Unif[0, 1] and set a[i] = ej2πfi:

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

◦ Improves upon RIP-based result (n & k log4 p)
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Examples of incoherent sampling

• Random convolution matrices: rows of A are independently
sampled from rows of

G =


g0 g1 g2 · · · gp−1
gp−1 g0 g1 · · · gp−2
gp−2 gp−1 g0 · · · gp−3

...
...

... . . . ...
g1 g2 g3 · · · g0


with P(gi = ±1) = 0.5. One has

E[aa>] = I, ‖a‖2∞ = 1, µ = 1

=⇒ `1-min succeeds if n & k log p

◦ Improves upon RIP-based result (n & k log4 p)
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A general scheme for dual construction

Find ν ∈ Rn

s.t. A>T ν = sign(xT ) (6.15)
‖A>T cν‖∞ < 1 (6.16)

A candidate: least squares solution w.r.t. (6.19)

ν = AT (A>TAT )−1sign(xT ) (explicit expression)

To verify (6.20), we need to control A>T cAT (A>TAT )−1sign(xT )

• Issue 1: in general, AT c and AT are dependent

• Issue 2: (A>TAT )−1 is hard to deal with
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A general scheme for dual construction
Find ν ∈ Rn

s.t. A>T ν = sign(xT ) (6.17)
‖A>T cν‖∞ < 1 (6.18)

Key idea 1: use iterative scheme to solve
minimizeν 1

2‖A
>
T ν − sign(xT )‖2

for t = 1, 2, · · ·

ν(t) = ν(t−1) −AT

(
A>T ν

(t−1) − sign(xT )
)

︸ ︷︷ ︸
grad of 1

2‖A
>
T v−sign(xT )‖2

• Converges to a solution obeying the equality constraint; no
inversion involved

• Issue: complicated dependency across iterations
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Golfing scheme (Gross ’11)

Key idea 2: sample splitting — use independent samples for each
iteration to decouple statistical dependency

• Partition A into L row blocks A(1) ∈ Rn1×p, · · · ,A(L) ∈ RnL×p︸ ︷︷ ︸
independent

• for t = 1, 2, · · · (stochastic gradient)

ν(t) = ν(t−1) − µtA(t)
T

(
A

(t)>
T ν(t−1) − sign(xT )

)
︸ ︷︷ ︸

∈Rnt (but we need ν∈Rn)

ν(t) = ν(t−1) − µtÃ(t)
T

(
Ã

(t)>
T ν(t−1) − sign(xT )

)

where Ã(t) =

 0

A(t)

0

 ∈ Rn×p is obtained by zero-padding
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Golfing scheme (Gross ’11)

ν(t) = ν(t−1) − µtÃ(t)
T

 Ã
(t)>
T ν(t−1) − sign(xT )︸ ︷︷ ︸

depends only on A(1),··· ,A(t−1)



• Statistical independence across iterations
◦ By construction,
A>T ν

(t−1) ∈ range(A(i)>
T ) ∩ · · · ∩ range(A(L)>

T )

• Each iteration brings us closer to the target (like
each golf shot brings us closer to the hole)
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A general scheme for dual construction
Find ν ∈ Rn

s.t. A>T ν = sign(xT ) (6.19)
‖A>T cν‖∞ < 1 (6.20)

The golfing scheme doesn’t yield an exact dual certificate, but an
inexact one.
Theorem 6.11 (Inexact duality)

Let T := supp(x). Suppose ‖(A>TAT )−1‖ ≤ 2 and
maxi∈Tc ‖A>T ai‖ ≤ 1. If

∃u = A>ν for some ν ∈ Rn s.t.
{
‖uT − sign(xT )‖ ≤ 1/4,
‖uT c‖∞ ≤ 1/2,

,

then x is unique solution to `1 minimization.

Proof is similar to Theorem 6.9. The conditions in red is guaranteed
with high probability via concentration inequalities.
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