
ECE 18-898G: Special Topics in Signal Processing:
Sparsity, Structure, and Inference

Sparse Recovery using L1 minimization - algorithms

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2018

1/49

2/49

Outline

• Lasso with orthogonal design

• Proximal operators

• Proximal gradient methods for lasso and its extensions

• Nesterov’s accelerated algorithm (FISTA)

These are useful in general for compound optimization problems.

3/49

Sparse recovery by `0 regularization

As a warm up, consider a sparsifying basis X ∈ Rn×n that is
orthonormal, we wish to solve the following sparsity-promoting
problem regularized by `0 norm:

β̂ = argminβ
1
2‖y −Xβ‖

2 + λ‖β‖0︸ ︷︷ ︸
penalized by sparsity level

(4.1)

• The first term is the approximation error: ‖y −Xβ̂‖2.
• The second term is the model complexity: ‖β̂‖0.

We will discuss “regularized” algorithms throughout this lecture.

4/49

Orthogonal design

Since X is orthonormal,

‖y −Xβ‖2 = ‖X>y − β‖2.

Without loss of generality, suppose X = I, then (4.1) reduces to

β̂ = argminβ
n∑
i=1

1
2
[
(yi − βi)2 + λ · 1{βi 6= 0}

]
Solving this problem gives

β̂i =
{

0, |yi| ≤
√

2λ
yi, |yi| >

√
2λ

hard thresholding

• Keep large coefficients; discard small coefficients

5/49

The case X = I

β̂i = ψht(yi;
√

2λ) :=
{

0, |yi| ≤
√

2λ
yi, |yi| >

√
2λ

hard thresholding

Hard thresholding preserves data outside threshold zone

6/49

Convex relaxation: Lasso (Tibshirani ’96)
Lasso (Least absolute shrinkage and selection operator)

β̂ = argminβ
1
2‖y −Xβ‖

2 + λ‖β‖1 (4.2)

for some regularization parameter λ > 0.

• It is equivalent to
β̂ = argminβ ‖y −Xβ‖2 s.t. ‖β‖1 ≤ t

for some t that depends on λ (no explicit formula)
◦ a quadratic program (QP) with convex constraints

• λ controls model complexity: larger λ restricts the parameters
more; smaller λ frees up more parameters
• Also related to Basis Pursuit:

β̂ = argminβ ‖β‖1 s.t. ‖y −Xβ‖ ≤ ε

7/49

Lasso vs. ridge regression

β̂: least squares solution

minimizeβ ‖y −Xβ‖
s.t. ‖β‖1 ≤ t

minimizeβ ‖y −Xβ‖
s.t. ‖β‖2 ≤ t

Fig. credit: Hastie, Tibshirani, & Wainwright

8/49

A Bayesian interpretation
Orthogonal design: y = β + η with η ∼ N (0, σ2I).

Impose an i.i.d. prior on βi to encourage sparsity (Gaussian is not a
good choice):

(Laplacian prior) P(βi = z) = λ

2 e
−λ|z|

The tail decays exponentially.

9/49

A Bayesian interpretation of Lasso

Posterior of β:

P (β | y) ∝ P(y|β)P(β) ∝
n∏
i=1

e−
(yi−βi)

2

2σ2
λ

2 e
−λ|βi|

∝
n∏
i=1

exp
{
−(yi − βi)2

2σ2 − λ|βi|
}

=⇒ maximum a posteriori (MAP) estimator:

arg min
β

n∑
i=1

{
(yi − βi)2

2σ2 + λ|βi|
}

(Lasso)

Implication: Lasso is MAP estimator under Laplacian prior

10/49

Example: orthogonal design

Suppose X = I, then Lasso reduces to

β̂ = argminβ
n∑
i=1

[1
2(yi − βi)2 + λ|βi|

]

The Lasso estimate β̂ is then given by

β̂i =


yi − λ, yi ≥ λ
yi + λ, yi ≤ −λ
0, else

soft thresholding

11/49

Example: orthogonal design

β̂i = ψst(yi;λ) =


yi − λ, yi ≥ λ
yi + λ, yi ≤ −λ
0, else

soft thresholding

Soft thresholding shrinks data towards 0 outside threshold zone

12/49

Optimality condition for convex functions

For any convex function f(β), β∗ is an optimal solution iff
0 ∈ ∂f(β∗), where ∂f(β) is the set of all subgradients at β

• The subgradient of f(β) = 1
2(y − β)2 + λ|β| can be written as

g = β − y + λs

with s is a subgradient of f(β) = |β| if{
s = sign(β), if β 6= 0
s ∈ [−1, 1], if β = 0

(4.3)

• We see that β̂ = ψst(y;λ) by checking optimality conditions for
two cases:
◦ If |y| ≤ λ, taking β = 0 and s = y/λ gives g = 0
◦ If |y| > λ, taking β = y − sign(y)λ gives g = 0

13/49

Solving LASSO in general cases

14/49

Composite optimization problems

General composite optimization problem:

β̂ = argminβ {F (β) = f(β) + g(β)}

• f(β) is convex and differentiable, e.g. approximation error
• g(β) is convex, possibly non-differentiable, e.g. regularizers

Examples:
• LASSO: f(β) = 1

2‖y −Xβ‖
2
2, and g(β) = λ‖β‖1.

• Matrix completion:

f(X) = ‖PΩ(Y −X)‖2F, g(X) = λ‖X‖∗

where ‖X‖∗ is the nuclear norm.

15/49

Motivation

Standard methods (e.g. subgradient methods) for solving composite
optimization has very slow convergence rate.

We would discuss accelerated proximal gradient methods that
• is iterative, and has low computational cost (first-order algorithm,

which requires computation of a single gradient per iteration);
• has quadratic convergence rate;
• performs well in practice and works for a large class of problems.

16/49

Proximal gradient methods

17/49

Gradient descent

minimizeβ∈Rp f(β)
where f(β) is convex and smooth (differentiable)

Algorithm 4.1 Gradient descent
for t = 0, 1, · · · :

βt+1 = βt − µt∇f(βt)

where µt: step size / learning rate

18/49

A proximal point of view of GD

βt+1 = arg min
β

{
f(βt) + 〈∇f(βt),β − βt〉︸ ︷︷ ︸

linear approximation

+ 1
2µt
‖β − βt‖2︸ ︷︷ ︸

proximal term

}

• When µt is small, βt+1 tends to stay close to βt

19/49

Proximal operator

If we define the proximal operator

proxh(b) := arg min
β

{1
2 ‖β − b‖

2 + h(β)
}

for any convex function h, then one can write

βt+1 = proxµtft
(
βt
)

where ft(β) := f(βt) + 〈∇f(βt),β − βt〉

Gradient descent is performing proximal mapping at every iteration.

20/49

Why consider proximal operators?

proxh(b) := arg min
β

{1
2 ‖β − b‖

2 + h(β)
}

• It is well-defined under very general conditions (including
nonsmooth convex functions)

• The operator can be evaluated efficiently for many widely used
functions (in particular, regularizers)

• This abstraction is conceptually and mathematically simple, and
covers many well-known optimization algorithms

21/49

Example: characteristic functions

• If h is characteristic function

h(β) =
{

0, if β ∈ C
∞, else

then

proxh(b) = arg min
β∈C
‖β − b‖2 (Euclidean projection)

22/49

Example: `1 norm

• If h(β) = ‖β‖1, then

proxλh(b) = ψst(b;λ)

where soft-thresholding ψst(·) is applied in an entry-wise manner.

23/49

Example: `2 norm

proxh(b) := arg min
β

{1
2 ‖β − b‖

2 + h(β)
}

• If h(β) = ‖β‖, then

proxλh(b) =
(

1− λ

‖b‖

)
+
b

where a+ := max{a, 0}. This is called block soft thresholding.

24/49

Example: log barrier

proxh(b) := arg min
β

{1
2 ‖β − b‖

2 + h(β)
}

• If h(β) = −
∑p
i=1 log βi, then

(proxλh(b))i =
bi +

√
b2i + 4λ
2

25/49

Nonexpansiveness of proximal operators

Recall that when h(β) =
{

0, if β ∈ C
∞ else

, proxh(β) is Euclidean

projection PC onto C, which is nonexpansive:

‖PC(β1)− PC(β2)‖ ≤ ‖β1 − β2‖

26/49

Nonexpansiveness of proximal operators
Nonexpansiveness is a property for general proxh(·)

Fact 4.1 (Nonexpansiveness)

‖proxh(β1)− proxh(β2)‖ ≤ ‖β1 − β2‖

• In some sense, proximal operator behaves like projection

27/49

Proof of nonexpansiveness

Let z1 = proxh(β1) and z2 = proxh(β2). Subgradient
characterizations of z1 and z2 read

β1 − z1 ∈ ∂h(z1) and β2 − z2 ∈ ∂h(z2)

The claim would follow if

(β1−β2)>(z1− z2) ≥ ‖z1− z2‖2 (together with Cauchy-Schwarz)

⇐= (β1 − z1 − β2 + z2)>(z1 − z2) ≥ 0

⇐=


h(z2) ≥ h(z1) + 〈β1 − z1︸ ︷︷ ︸

∈∂h(z1)

, z2 − z1〉

h(z1) ≥ h(z2) + 〈β2 − z2︸ ︷︷ ︸
∈∂h(z2)

, z1 − z2〉

28/49

Proximal gradient methods

29/49

Optimizing composite functions

(Lasso) minimizeβ∈Rp
1
2‖Xβ − y‖

2︸ ︷︷ ︸
:=f(β)

+ λ‖β‖1︸ ︷︷ ︸
:=g(β)

= f(β) + g(β)

where f(β) is differentiable, and g(β) is non-smooth

• Since g(β) is non-differentiable, we cannot run vanilla gradient
descent

30/49

Proximal gradient methods

One strategy: replace f(β) with linear approximation, and compute
the proximal solution

βt+1 = arg min
β

{
f(βt) +

〈
∇f(βt),β − βt

〉
+ g(β) + 1

2µt
‖β − βt‖2

}
The optimality condition reads

0 ∈ ∇f(βt) + ∂g(βt+1) + 1
µt

(
βt+1 − βt

)
which is equivalent to optimality condition of

βt+1 = arg min
β

{
g(β) + 1

2µt

∥∥∥β − (βt − µt∇f(βt)
)∥∥∥2}

= proxµtg
(
βt − µt∇f(βt)

)

31/49

Proximal gradient methods

Alternate between gradient updates on f and proximal mapping on g

Algorithm 4.2 Proximal gradient methods
for t = 0, 1, · · · :

βt+1 = proxµtg
(
βt − µt∇f(βt)

)
where µt: step size / learning rate

32/49

Projected gradient methods

When g(β) =


0, if β ∈ C︸︷︷︸

convex
∞, else

is characteristic function:

βt+1 = PC
(
βt − µt∇f(βt)

)
:= arg min

β∈C

∥∥∥β − (βt − µt∇f(βt))
∥∥∥

This is a first-order method to solve the constrained optimization

minimizeβ f(β)
s.t. β ∈ C

33/49

Proximal gradient methods for lasso

For lasso: f(β) = 1
2‖Xβ − y‖

2 and g(β) = λ‖β‖1,

proxg(β) = arg min
b

{1
2‖β − b‖

2 + λ‖b‖1
}

= ψst (β;λ)

=⇒ βt+1 = ψst
(
βt − µtX>(Xβt − y); µtλ

)
iterative soft thresholding

34/49

Proximal gradient methods for group lasso

Sometimes variables have a natural group structure, and it is desirable to set
all variables within a group to be zero (or nonzero) simultaneously

(group lasso) 1
2‖Xβ − y‖

2︸ ︷︷ ︸
:=f(β)

+ λ
∑k

j=1
‖βj‖︸ ︷︷ ︸

:=g(β)

where βj ∈ Rp/k and β =

 β1
...
βk

.

proxg(β) = ψbst (β;λ) :=
[(

1− λ

‖βj‖

)
+
βj

]
1≤j≤k

=⇒ βt+1 = ψbst
(
βt − µtX

>(Xβt − y); µtλ
)

35/49

Proximal gradient methods for elastic net
Lasso does not handle highly correlated variables well: if there is a
group of highly correlated variables, lasso often picks one from the
group and ignore the rest.
• Sometimes we make a compromise between lasso and `2 penalties

(elastic net) 1
2‖Xβ − y‖

2︸ ︷︷ ︸
:=f(β)

+ λ
{
‖β‖1 + (γ/2)‖β‖22

}
︸ ︷︷ ︸

:=g(β)

proxλg(β) = 1
1 + λγ

ψst (β;λ)

=⇒ βt+1 = 1
1 + µtλγ

ψst
(
βt − µtX>(Xβt − y); µtλ

)
• soft thresholding followed by multiplicative shrinkage

36/49

Interpretation: majorization-minimization

fµt(β,βt) := f(βt) +
〈
∇f(βt),β − βt

〉
︸ ︷︷ ︸

linearization

+ 1
2µt
‖β − βt‖2︸ ︷︷ ︸

trust region penalty

majorizes f(β) if 0 < µt <
1
L , where L is Lipschitz constant1 of ∇f(·)

Proximal gradient descent is a majorization-minimization algorithm

βt+1 = arg min
β︸ ︷︷ ︸

minimization

{
fµt(β,βt) + g(β)︸ ︷︷ ︸

majorization

}

1This means ‖∇f(β)−∇f(b)‖ ≤ L‖β − b‖ for all β and b

37/49

Assumptions for convergence

• g : Rn 7→ R is a continuous convex function, possibly nonsmooth;
• f : Rn 7→ R is a smooth convex function that is continuously

differentiable with Lipschitz constant:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rn.

f(y) ≤ f(x) +∇f(x)>(y − x) + Lf
2 ‖y − x‖

2
2, ∀x,y

38/49

Convergence rate of proximal gradient methods

Theorem 4.2 (fixed step size; Nesterov ’07)
Suppose g is convex, and f is differentiable and convex whose
gradient has Lipschitz constant L. If µt ≡ µ ∈ (0, 1/L), then

F (βt)− F (β̂) ≤ O

(
‖β0 − β̂‖2

tµ

)

• Step size requires an upper bound on L
◦ For LASSO problems, we have L = σmax(A>A).

• May prefer backtracking line search to fixed step size

• Question: can we further improve the convergence rate?

39/49

Nesterov’s accelerated gradient methods

• We will first examine Nesterov’s acceleration method (1983) for
smooth convex functions;
• We then extend it to optimizing composite functions, using

FISTA (Beck and Teboulle, 2009), which extends Nesterov’s
method to proximal gradient methods.

40/49

Nesterov’s accelerated method

Problem of gradient descent: zigzagging

Nesterov’s idea: include a momentum term to avoid overshooting

41/49

Accelerated Gradient descent

minimizeβ∈Rp f(β)

where f(β) is convex and smooth (differentiable)

Algorithm 4.3 Accelerated Gradient descent
for t = 0, 1, · · · :

βt = bt−1 − µt∇f(bt−1)

bt = βt + αt
(
βt − βt−1

)
︸ ︷︷ ︸

momentum term

where µt: step size / learning rate, αt the the extrapolation parametre

42/49

With/Without Acceleration

43/49

Momentum parameter
A simple (but mysterious) choice of extrapolation parameter

αt = t− 1
t+ 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Another choice: let s1 = 1, st+1 = 1+
√

1+4s2
t

2 , and αt = st−1
st+1

.

44/49

Accelerated proximal method (FISTA)

Nesterov’s idea: include a momentum term to avoid overshooting

βt = proxµtg
(
bt−1 − µt∇f

(
bt−1

))
bt = βt + αt

(
βt − βt−1

)
︸ ︷︷ ︸

momentum term

(extrapolation)

• A simple (but mysterious) choice of extrapolation parameter

αt = t− 1
t+ 2

• Fixed size µt ≡ µ ∈ (0, 1/L) or backtracking line search

• Same computational cost per iteration as proximal gradient

45/49

Interpretation

46/49

Convergence of FISTA

Theorem 4.3 (Nesterov ’83, Nesterov ’07, Beck & M. Teboulle
’09)
Suppose f is differentiable and convex and g is convex. If one takes
αt = t−1

t+2 and a fixed step size µt ≡ µ ∈ (0, 1/L), then

F (βt)− F (β̂) ≤ O

(1
t2

)

• Improves upon O(1
t) convergence than proximal gradient

method.
• in general un-improvable

47/49

Numerical experiments (for lasso)

Figure credit: Hastie, Tibshirani, & Wainwright ’15

48/49

Computational-Statistical Trade-off

If there is indeed a ground truth β? and we wish β̂ is close to β?; we
have a sequence of {βt} and hope βt converges to β̂. At a fixed t,
we may bound

‖βt − β?‖2 ≤ ‖βt − β̂‖2︸ ︷︷ ︸
computational error

+ ‖β̂ − β?‖2︸ ︷︷ ︸
statistical error

49/49

Reference

[1] ”Proximal algorithms,” Neal Parikh and S. Boyd, Foundations and
Trends in Optimization, 2013.

[2] ”Convex optimization algorithms,” D. Bertsekas, Athena Scientific, 2015.

[3] ”Convex optimization: algorithms and complexity,” S. Bubeck,
Foundations and Trends in Machine Learning, 2015.

[4] ”Statistical learning with sparsity: the Lasso and generalizations,”
T. Hastie, R. Tibshirani, and M. Wainwright, 2015.

[5] ”Model selection and estimation in regression with grouped variables,”
M. Yuan and Y. Lin, Journal of the royal statistical society, 2006.

[6] ”A method of solving a convex programming problem with convergence
rate O(1/k2),” Y. Nesterov, Soviet Mathematics Doklady, 1983.

50/49

Reference

[7] ”Gradient methods for minimizing composite functions,”, Y. Nesterov,
Technical Report, 2007.

[8] ”A fast iterative shrinkage-thresholding algorithm for linear inverse
problems,” A. Beck and M. Teboulle, SIAM journal on imaging
sciences, 2009.

