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Outline

Lasso with orthogonal design

Proximal operators

Proximal gradient methods for lasso and its extensions

Nesterov's accelerated algorithm (FISTA)

These are useful in general for compound optimization problems.



Sparse recovery by /, regularization

As a warm up, consider a sparsifying basis X € R"*" that is
orthonormal, we wish to solve the following sparsity-promoting
problem regularized by ¢y norm:

~ . 1

B =argming Sy - X8| + AllBllo
——

penalized by sparsity level

e The first term is the approximation error: ||y — X 3|2,

e The second term is the model complexity: ||3]|o.

We will discuss “regularized” algorithms throughout this lecture.



Orthogonal design

Since X is orthonormal,
ly — XBII> = |1 X"y - B>
Without loss of generality, suppose X = I, then (4.1) reduces to

8= argming Z [ ZN-1{p; # 0}}

Solving this problem gives

A~ 0, ‘yz‘ S vV 2A )
Bi = hard thresholding
Yi, |yl > V2A

o Keep large coefficients; discard small coefficients



The case X =1

wht(x)
v |
V2 x
5 0, |yl < V2 )
i = i V2)) = ’ hard thresholdin
Bi = Yne(y ) v Iyl > VI ing

Hard thresholding preserves data outside threshold zone



Convex relaxation: Lasso (Tibshirani '96)

Lasso (Least absolute shrinkage and selection operator)

B=argming Sy~ XBI” + X8l (42)
for some regularization parameter A > 0.
e |t is equivalent to
B =argming |y—XB|° st 1Bl <t

for some t that depends on A (no explicit formula)
o a quadratic program (QP) with convex constraints

e )\ controls model complexity: larger A restricts the parameters
more; smaller )\ frees up more parameters

e Also related to Basis Pursuit:

ﬁ:argminﬁ IB]]1 st ly —XB| <e



Lasso vs. ridge regression

A

3: least squares solution

P B g ()
B, B,
minimizeg ly — X8| minimizeg ly — X8
s.t. 181 <t s.t. 1Bl <t

Fig. credit: Hastie, Tibshirani, & Wainwright



A Bayesian interpretation

Orthogonal design: y = B + 1 with n ~ A(0,02I).

Impose an i.i.d. prior on f3; to encourage sparsity (Gaussian is not a
good choice):

A
(Laplacian prior) P(B;=2) = 56_)“Z|

The tail decays exponentially.



A Bayesian interpretation of Lasso

Posterior of 3:

n

(v —By)> )\
P(B|y) o« P(y|B)P(B) He W A = IBi]

~ Hexp{ i@) —Aw}

= maximum a posteriori (MAP) estimator:

arg mlnz { + )\|Bz|} (Lasso)

Implication: Lasso is MAP estimator under Laplacian prior J




Example: orthogonal design

Suppose X = I, then Lasso reduces to
,B—argmlnﬁ Z [ )2+ \|Bil

The Lasso estimate ,é is then given by

Yi — )\) Yi 2 )\
Bi=yi+ A 1y < =X soft thresholding

0, else



Example: orthogonal design

‘ wst(x) i
B T
Yi— A yi = A
Bi=vst(Wis ) =Sy + A, i < —A soft thresholding
0, else

Soft thresholding shrinks data towards 0 outside threshold zone



Optimality condition for convex functions

For any convex function f(3), 8* is an optimal solution iff
0 € Jf(B*), where Of(3) is the set of all subgradients at 3

e The subgradient of f(3) = %(y — )% 4 \|B| can be written as

g=B-y+As
with s is a subgradient of f(3) = |B] if
{szsign< ) iFB#0 (4.3)
€[-1,1], fB=0

e We see that 3 = st (y; A) by checking optimality conditions for
two cases:
o If |y] <A, taking 8 =0 and s = y/\ gives g =0

o If |y| > A, taking 8 =y — sign(y)\ gives g =0



Solving LASSO in general cases



Composite optimization problems

General composite optimization problem:

A

B = argming {F(8) = f(B) +9(8)}

e f(B) is convex and differentiable, e.g. approximation error
e g(B) is convex, possibly non-differentiable, e.g. regularizers

Examples:
o LASSO: f(B8) = 3|y — XB|3, and ¢(8) = \|B|1.

e Matrix completion:
F(X)=[Paly = X)[E 9(X) =AIX]|

where || X ||, is the nuclear norm.



Motivation

Standard methods (e.g. subgradient methods) for solving composite
optimization has very slow convergence rate.

We would discuss accelerated proximal gradient methods that

e is iterative, and has low computational cost (first-order algorithm,
which requires computation of a single gradient per iteration);

e has quadratic convergence rate;

e performs well in practice and works for a large class of problems.



Proximal gradient methods



Gradient descent

minimizegerr  f(03)
where f(8) is convex and smooth (differentiable)

Algorithm 4.1 Gradient descent

fort=0,1,---:

g =p" — V(B

where (i, step size / learning rate




A proximal point of view of GD

8- B e
et .
F(B)+(Vf(8).8-8"

Bl = argngn{fwt) + (V8.8 B + ;nﬁ —W}
Kt

linear approximation -
proximal term

e When p; is small, B! tends to stay close to 3



Proximal operator

If we define the proximal operator
prox (b) i= axgmin {3 118~ b|* + h(B) |
for any convex function h, then one can write
Bt+1 = prox,,,;, (gt)
where fi(8) := f(B:) + (Vf(Bt), B — Br)

Gradient descent is performing proximal mapping at every iteration.



Why consider proximal operators?

1
prox (b) = argmin {5 18~ bl + h(9)}

e It is well-defined under very general conditions (including
nonsmooth convex functions)

e The operator can be evaluated efficiently for many widely used
functions (in particular, regularizers)

e This abstraction is conceptually and mathematically simple, and
covers many well-known optimization algorithms



Example: characteristic functions

H00 g

/@l+|
5B B e
e If h is characteristic function
0, ifgecC
h(B) = {
o0, else

then

prox;, (b) = arg rﬁnlg |3 —bll2  (Euclidean projection)
€



Example: /; norm

1 1
——B8-87+c¢ B - B+
2 2mHﬁ B +c

o I 1(8) = B}, then
proxy, (b) = e (b; \)

where soft-thresholding 14 (+) is applied in an entry-wise manner.



Example: /5 norm

prox(b) = argmin { 5 18~ bl + h()}

o If h(8) = ||B]., then

A
proxy,(b) = (1 — ) b
" 1ol /

where a; := max{a,0}. This is called block soft thresholding.



Example: log barrier

1
prox (b) = argmin { 5 18~ bl + h(9)}

e If h(B) = —>"_ | log B, then

bi 4+ /b7 + 4\

(proxy,(b))i = 9



Nonexpansiveness of proximal operators

~
~

1 //“\
s LRI
1 \

\ \\

\ Y C
\ \‘/#\Pc(ﬂ% \
\ |
62 N . //'
0, ifpgecC

oo else
projection P¢ onto C, which is nonexpansive:

Recall that when h(3) = { , prox,(3) is Euclidean

1Pe(8") = Pe(B%) < 18" - Bl



Nonexpansiveness of proximal operators

Nonexpansiveness is a property for general prox,(-)

1 o
- §||ﬂ*ﬁsz+Cz

1 .
—5\\5—[31H2 +e

Fact 4.1 (Nonexpansiveness)

Iprox;, (8') — prox,,(8%)] < 18" — 8%

e In some sense, proximal operator behaves like projection



Proof of nonexpansiveness

Let z! = prox,(B') and 22 = prox,,(8%). Subgradient
characterizations of z! and z?2 read

Bl — 2zt € oh(z') and B% — 2% € Oh(2?)

The claim would follow if

(B'—B*) T (2! —22%) > ||z! —2%|* (together with Cauchy-Schwarz)
= BB -2 >0

h(z%) > h(z!) + (B — 21, 22— 21)
———
€dh(zh)



Proximal gradient methods



Optimizing composite functions

1
(Lasso) minimizegerr || X8 — 'y||2 + A8l = f(B) +9(B)
2 ——
%/_/ R
=) o)

where f(8) is differentiable, and g(3) is non-smooth

e Since g(3) is non-differentiable, we cannot run vanilla gradient
descent



Proximal gradient methods

One strategy: replace f(3) with linear approximation, and compute
the proximal solution

. 1
5 = argmin { 1(8') + (V(8).8 - B') + a(8) + 5 -8 — 81}
The optimality condition reads

0 VF(B)+0g(BY) +— (87 - 8')

1
e
which is equivalent to optimality condition of

g+ = argmpn {gw) + ;MHB - (8- wat»HQ}
= Prox,q (Bt - Mtvf(ﬁt))



Proximal gradient methods

Alternate between gradient updates on f and proximal mapping on g

Algorithm 4.2 Proximal gradient methods

fort=0,1,---:

B = prox,,,, (8" — mV£(8")

where i;: step size / learning rate




Projected gradient methods

0, ifge C
When ¢(8) = convex is characteristic function:
o0, else

B =Pe (B - mV(B))
= arglﬁneig HB — (8" - Mtvf(ﬁt))H

This is a first-order method to solve the constrained optimization

minimizeg  f(B)
s.t. BecC



Proximal gradient methods for lasso

For lasso: f(B) = || XB — yl|*> and g(B8) = \||B||1,

prox,(8) = argmin { 5116~ bl + Al |
= st (B; \)

— BT =y (B - X (X8 —y); )

iterative soft thresholding



Proximal gradient methods for group lasso

Sometimes variables have a natural group structure, and it is desirable to set
all variables within a group to be zero (or nonzero) simultaneously

1 5 K
(group lasso) iHX[)'—yH +)\Zj:1 185l

=f(B) =9(B)

B
where 3; € R?/* and B = 5
B

proxy(B3) = Yust (B A) = [(1 - ”2”> 5j]
ill/ 4

1<j<k

= BT =ty (B — X T (XB —y); )



Proximal gradient methods for elastic net

Lasso does not handle highly correlated variables well: if there is a
group of highly correlated variables, lasso often picks one from the
group and ignore the rest.

e Sometimes we make a compromise between lasso and /5 penalties

(clastic net) 2| X8~ >+ A {1811 + (1/2) |83}
=f(8) =g(B)

1
PVOXAg(:@) = m%t (B; )

= Bt = T+ )\’Y%t (/3 — X (XB" - y); MM)

e soft thresholding followed by multiplicative shrinkage



Interpretation: majorization-minimization

1
fuu(B,8) = 18 + (VI(8),8- ') + 5 -6 - 8|

linearization

trust region penalty

majorizes f(3) if 0 <y, < 1, where L is Lipschitz constant® of V f(-)

Proximal gradient descent is a majorization-minimization algorithm

B! = argmin {£,.(8.8) +9(8)}

N majorization
minimization

'This means |V f(B) — Vf(b)|| < L||3@ — b|| for all 3 and b



Assumptions for convergence

e ¢g:R" — R is a continuous convex function, possibly nonsmooth;

e f:R"— R is a smooth convex function that is continuously
differentiable with Lipschitz constant:

IVf(x) = Vi)l <Llz-yl, VeyeR"™




Convergence rate of proximal gradient methods

Theorem 4.2 (fixed step size; Nesterov '07)

Suppose g is convex, and f is differentiable and convex whose
gradient has Lipschitz constant L. If yy = p € (0,1/L), then

R 0 _ 2

e Step size requires an upper bound on L
o For LASSO problems, we have L = (AT A).

e May prefer backtracking line search to fixed step size

e Question: can we further improve the convergence rate?



Nesterov’s accelerated gradient methods

e We will first examine Nesterov's acceleration method (1983) for
smooth convex functions;

e We then extend it to optimizing composite functions, using
FISTA (Beck and Teboulle, 2009), which extends Nesterov's
method to proximal gradient methods.



Nesterov’s accelerated method

Problem of gradient descent: zigzagging

Nesterov’s idea: include a momentum term to avoid overshooting



Accelerated Gradient descent

minimizegere  f(B)

where f(3) is convex and smooth (differentiable)

Algorithm 4.3 Accelerated Gradient descent
for t =0,1, -

Bl=b""— VIR

b =B+ oy (51: . Bt—l)
N———
momentum term

where 11, step size / learning rate, oy the the extrapolation parametre




With/Without Acceleration

Gradient Descent vs Accelerated Gradient Descent
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Momentum parameter

A simple (but mysterious) choice of extrapolation parameter

t—1

M2
:
ook
ol
05
02
o1
00 0 20 0 %0 50 50 70 50 % 100

Another choice: let 51 =1, sp41 = w, and oy = ﬁ



Accelerated proximal method (FISTA)

Nesterov’s idea: include a momentum term to avoid overshooting

gt = Prox,,. (bt_l —utVf (bt_l))
b = B'+ay (ﬁt — Btﬂ) (extrapolation)
N

momentum term

e A simple (but mysterious) choice of extrapolation parameter

t—1

R

o Fixed size s = p € (0,1/L) or backtracking line search

e Same computational cost per iteration as proximal gradient



Interpretation

J'(k) — proxtkg (y - f}lvf(y))

2(5-2) 2D v



Convergence of FISTA

Theorem 4.3 (Nesterov '83, Nesterov ‘07, Beck & M. Teboulle
'09)

Suppose f is differentiable and convex and g is convex. If one takes
ap = % and a fixed step size iy = p € (0,1/L), then

F(8) - FB) < 0(5)

e Improves upon O(%) convergence than proximal gradient
method.

e in general un-improvable



Numerical experiments (for lasso)
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Computational-Statistical Trade-off

If there is indeed a ground truth B* and we wish ,@ is close to 3*; we
have a sequence of {3;} and hope (3; converges to 3. At a fixed ¢,
we may bound

1B:—B*2<  1B:—Bl2  + |88
N———— N————

computational error statistical error
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