Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

1/67



Outline

e Low-rank matrix completion and recovery

e Nuclear norm minimization (this lecture)

o RIP and low-rank matrix recovery
o Matrix completion

o Algorithms for nuclear norm minization

e Non-convex methods (next lecture)
o Spectral methods

o (Projected) gradient descent



Low-rank matrix completion and recovery:
motivation



Motivation 1: recommendation systems
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o Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies

e How to predict unseen user ratings for movies?



In general, we cannot infer missing ratings
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Underdetermined system (more unknowns than observations)



... unless rating matrix has other structure
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A few factors explain most of the data



unless rating matrix has other structure
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A few factors explain most of the data — low-rank approximation

How to exploit (approx.) low-rank structure in prediction?




Motivation 2: sensor localization

e n sensors / points z; ER3, j=1,---,n
e Observe partial information about pairwise distances

.
Dij = |lmi — x| = ||l@]|* + || ||* — 22, @;

e Want to infer distance between every pair of nodes
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Motivation 2: sensor localization

Introduce

X = € R™3

sy

xr

then distance matrix D = [D; j]1<; j<n can be written as

D=dye" +ed) —2XXT

low rank

where dy 1= [Hw1H27 T 7HC‘9nH2F

rank(D) < n —  low-rank matrix completion




Motivation 3: structure from motion

Structure from motion: reconstruct 3D scene geometry and

. . structure
camera poses from multiple images
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Given multiple images and a few correspondences between image
features, how to estimate locations of 3D points?




Motivation 3: structure from motion

Tomasi and Kanade's factorization:
e Consider n 3D points in m different 2D frames
e x; j € R?*L: Jocations of 5™ point in it frame
xi; = P; s;

—~— ~—
projection matrix €R2*3 3D position €R3

e Matrix of all 2D locations rank(X) = 3.
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low-rank factorization
Due to occlusions, there are many missing entries in the matrix X.
Goal: Can we complete the missing entries?



Motivation 4: missing phase problem

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z(f1, f2)
Fig credit: Stanford SLAC
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ffraction pattern
recorded in the far field

. 2
intensity of electrical field: |:f:(f1,f2)|2 = ‘/x(tl,tg)e*”“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal x(t1,t2) from intensity |Z(f1, f2)|2 J




A discrete-time model: solving quadratic systems
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Solve for & € C™ in m quadratic equations

Y = |<ak,m>|2, k=1,....m
or y = |A313|2 where |z|2 = {|zl|2,-~- ,|zm|2}



An equivalent view: low-rank factorization

Lifting: introduce X = xx* to linearize constraints

yr = |ajz|? = aj(zx")ay = yr = ap Xay (6.1)

| -

find X =0
s.t. ye = (apar, X), k=1,---.m
rank(X) =1



The list continues

system identification and time series analysis;

spatial-temporal data: low-rank due to correlations, e.g. MRI
video, network traffic, ..

face recognition;
quantum state tomography;

community detection;



Low-rank matrix completion and recovery:
setup and algorithms



Setup

e Consider M € R™*™ (square case for simplicity)
o rank(M)=r<n
e The thin Singular value decomposition (SVD) of M:

-
_ T _ P
M = Uxv = Do
(2n—r)r degrees of freedom =1
01
where ¥ = contain all singular values {o;};

Or
U:=[ui, - ,u], V:=][vy,- - ,v,] consist of singular vectors



Low-rank matrix completion

Observed entries

Mi,ja (Z,])E \Q,
sampling set

Completion via rank minimization

minimizex rank(X) st. X;;=M,;; (i,j) €N




Low-rank matrix completion

Observed entries
sampling set

e An operator Pq: orthogonal projection onto subspace of
matrices supported on {2

[Pa(X)]i; = { 0 otherwise

Completion via rank minimization

minimizex rank(X) sit. Pa(X)=Pa(M)




More general: low-rank matrix recovery

Linear measurements

yi = (A, M) =Tr(A/ M), i=1,...m

e An operator form, with A : R™*™ — R™:

<A17M>
y=AM):= :
(Am, M)

Recovery via rank minimization

minimizex rank(X) st. y=A(X)




Nuclear norm minimization



Convex relaxation

Low-rank matrix completion:

minimize x rank(X)
———
s.t. PQ(X) = PQ(M)

Low-rank matrix recovery:

minimize x rank(X)
———
s.t. A(X) = A(M)

Question: what is convex surrogate for rank(-)?




Analogy with sparse recovery

For a given matrix X € R™*", take the full SVD of X:

X=UsvV"'

T
:[u17“'7un:| |:’U1>"'7’Un:| .

On

diag(o)
Then n
rank(X) = Z 1{o; #0} = ||olo
i=1

Convex relaxation: from |lo || to ||o][17?



Nuclear norm

Definition 6.1
The nuclear norm of X is
n

IXh=Y  aiX)

=1, )
ith largest singular value

e Nuclear norm is a counterpart of /1 norm for rank function

e Equivalence among different norms (r = rank(X))
IX1 < IXlF < [ X[l < VPIX e < 7l X

where | X || = o1(X); | X|r = (X5, 02(X))"?.

%



Tightness of relaxation

Recall: the ¢1 norm ball is convex hull of 1-sparse, unit-norm vectors.

(a) £1 norm ball (b) nuclear norm ball

Fact 6.2

The nuclear norm ball {X : || X ||« < 1} is the convex hull of rank-1
matrices, unit-norm matrices obeying |[uv'| =1 .




Additivity of nuclear norm

Fact 6.3

Let A and B be matrices of the same dimensions. If ABT = 0 and
ATB =0, then | A+ B, = | Al + | BJ..

e If row (resp. column) spaces of A and B are orthogonal, then
|4+ Bl = [| Al + [ Bl

e Similar to /1 norm: when x and y have disjoint support,

& +ylls = llzll + [lyll

which is a key to study £1-min under RIP.



Proof of Fact 6.3

Suppose A =UsX 4V, and B =UpXVjy, which gives

ABT =0 — V)iV =0
ATB =0 UiUg =0
Thus, one can write
P .
A =[Ua,Ug, U] 0 [Va, Vg, Vel
0
0 T
B =[U4,Ug,Uc] B [Va, Vg, Vel
0

and hence

3
la+ Bl = |oavs] | % o waval”| <14l + 181,

*




Dual norm

Definition 6.4 (Dual norm)

For a given norm | - || 4, the dual norm is defined as

1 X% = max{(X,Y) : [Y]l.a <1}

¢1 norm
{5 norm

Frobenius norm

nuclear norm

dual
—— {ls norm
dual
<— /{5 norm

dual .
< Frobenius norm

dual
< spectral norm



Schur complement

Given a block matrix

A B
_ (p+9) % (p+q)
D= l - :] eR :

where A € RP*P, B € RP*Y and C € R7*4.

The Schur complement of the block A (assume it's invertible) in D
is given as
C-B'A'B.

Fact 6.5
D0 < A-0,C-B'A"'B>o0




Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,
[ X = max{(X,Y) : [Y]| <1}

The constraint is equivalent to

||Y|| <1l <= YyT <7T Schur complement [ TI Y

Fact 6.6

1] = mgx{<X,Y> ’ [;T ‘I’] - o}




Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,
[ X[ = max{(X,Y) : [[Y] <1}
The constraint is equivalent to

||Y|| <1 e YYT <1 Schur complement [ I Y ‘| =0

Fact 6.7 (Dual characterization)

W, X

X' w,

1 1
X|ls= min {-T T
11 &?71%2{2 H(W) + 5 r(Wa)‘ [

.

e Optimal point: W, =UXU'T, Wy, = VEV T (where
X =UxV")



Aside: dual of semidefinite program

(primal)  minimizex (C,X)
s.t. <Ai,X>=bi, 1<:1<m
X >0

(dual) maximize, b'y
s.t. Zy’AZ +85=C
i=1
S>0

Exercise: use this to verify Fact 6.7



Nuclear norm minimization via SDP

Nuclear norm minization

N

M = argminy | X ||« st y=AX)

This is solvable via SDP

1 1
minimizex w, w, ETF(WD + §T"(W2)
st. y=AX),

[Wl X =0

X' W,




Rank minimization vs Cardinality minimization

parsimony concept cardinality rank
Hilbert Space norm Euclidean Frobenius
sparsity inducing norm 0 nuclear
dual norm loo operator
norm additivity disjoint support orthogonal row and column spaces
convex optimization linear programming semidefinite programming

Table 1: A dictionary relating the concepts of cardinality and rank minimization.

Fig. credit: Fazel et.al. '10



Proximal algorithm

In the presence of noise, one needs to solve
N 1 2
minimizex o ly — A(X)|| + Al X«

which can be solved via proximal methods.

Algorithm 6.1 Proximal gradient methods

fort=0,1,---:
X" = prox,, 1. (Xt — AT (A(XY) — y))

where i, step size / learning rate




Proximal operator for nuclear norm

Proximal operator:
(1
proxy 1. (X) = argmin { 512 — X + A Z].
—UT\(Z)V'T
where SVD of X is X = UXV | with ¥ = diag({s;}), and

TA(X) = diag({(gi = A)+})



Accelerated proximal gradient

Algorithm 6.2 Accelerated proximal gradient methods

fort=0,1,---:
X = ProX ., All-|| (Zt - HtA*(A(Zt) - y))

ZH = Xt 4, (Xt+1 _ Xt)

momentum term

where i;: step size / learning rate, a4 is the momentum.

e Convergence rate: O (ﬁ) iterations to reach e-accuracy.

e Per-iteration cost is a (partial-)SVD.



Frank-Wolfe for nuclear norm minimization

Consider the constrained problem:
N 1 2
minimize x iHy - AX)|g st || X[« < T

which can be solved via conditional gradient method (Frank-Wolfe
1956).

e More generally, consider the problem:

minimizeg f(B) st. Be€C,

where f(x) is smooth and convex, and C is a convex set.

e Recall projected gradient descent:

B =Pe (B - mV(B))



Conditional Gradient Method

Algorithm 6.3 Frank-Wolfe

fort=0,1,---:
s = argmin,ecV/(8) s

ﬁt+1 — (1 . ,yt)ﬁt + ,ytst
where v, := 2/(t + 1) is the (default) step size.

e The first step is a constrained optimization of a linear
approximation at f(3%);

e The second step controls how much we move towards s.



Figure illustration

D
Figure credit: Jaggi 2011
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Frank-Wolfe for nuclear norm minimization

Algorithm 6.4 Frank-Wolfe for nuclear norm minimization

fort=0,1,---:
St = argminHS||*§T<Vf(Xt)7 S>7

X = (1 — ) Xt + 4,8
where 7, := 2/(t + 1) is the (default) step size.

e (Homework) Note that Vf(X?!) = A*(A(X?) — y)), and

St=r. argmin||s‘|*§1<Vf(Xt), S)
= ruv?,

where u, v are the left and right top singular vector of

—Vf(XY).



Further comments on Frank-Wolfe

Extremely low per-iteration cost (only top singular vectors are
needed);

e Every iteration is a rank-1 update;

e Convergence rate: O(%) to reach e-accuracy, which can be very
slow.

Various ways to speed up; active research area.



RIP and low-rank matrix recovery



RIP for low-rank matrices

Almost parallel results to compressed sensing ...*

Definition 6.8

The r-restricted isometry constants 6°P(A) and §!P(A) are smallest
quantities s.t.

(1 =o)X [r < JAX)[F < (1 +6) | X[F, VX :rank(X) <

'One can also define RIP w.r.t. || - ||& rather than || - ||r.



RIP and low-rank matrix recovery

Theorem 6.9 (Recht, Fazel, Parrilo 10, Candes, Plan '11)

Suppose rank(M) = r. For any fixed integer K > 0, if

1+5?<b K L. . .
— e < 5 then nuclear norm minimization is exact

e Can be easily extended to account for noise and imperfect
structural assumption



Geometry of nuclear norm ball

Level set of nuclear norm ball: H[ “; Z w <1
*

Fig. credit: Candes '14



Some notation

Recall M =UXV "

e Let T be span of matrices of the form  (called tangent space)
T={UX"+YV':X,Y ¢ R""}
e Let Pr be orthogonal projection onto T
Pr(X)=UU"X+XVV' -UU'XVV'T
o lts complement Pp. =7 — Pr:
Pr(X)=I-UUNX(I-VVT)

o MPJ,(X)=0and M Pr.(X)=0



Proof of Theorem 6.9

Suppose X = M + H is feasible and obeys ||M + H||. < || M||..
The goal is to show that H = 0 under RIP.

The key is to decompose H into Hy+ Hy + Hy + . ..
| ——
H,

Hy=Pr(H) (rank 2r)

H.=P#(H) (obeying MH] =0and M"H,. = 0)
e H;: best rank-(Kr) approximation of H. (K is const)
Hy: best rank-(Kr) approximation of H. — H;



Proof of Theorem 6.9

Informally, the proof proceeds by showing that

1. Hj dominates 37, H; (by objective function)
2. (converse) >, H; dominates Ho + H;  (by RIP 4 feasibility)

These can happen simultaneously only when H =0



Proof of Theorem 6.9
Step 1 (which does not rely on RIP). Show that

> IHjlle < [|Holl«/VET. (6.2)

Jj=2

This follows immediately by combining the following 2 observations:

(i) Since M + H is assumed to be a better estimate:

M|l = | M + HI|. = [[M + Hl|. — | Ho (6.3)
= [ M + [ Hell« = [[Ho||.
—_——

Fact 6.3 (MHJ =0 and M T H.=0)
= [[Hcll« < [|Holl« (6.4)
(ii) Since nonzero singular values of H;_; dominate those of H; (j > 2):
1Hlle < VEr|H;|| < VEr[|Hjoi|lo/(Kr)] < | Hjall/VEr
— Yl < =Y IH ol = = H. (65)
mj22 VEr

Jj=2



Proof of Theorem 6.9

Step 2 (using feasibility 4+ RIP). Show that 3p < \/K/2 s.t.
|[Ho + Hi|p szjzz | Hjlle (6.6)
If this claim holds, then

(6.2
|Ho+ Hills < p>° _ IH,lle < |H .

) 1
IR
1 2
< P\/ﬁ (@HHOHF) =py/ ?HHO“F
2
< p\/;HHo + H||p. (6.7)

This cannot hold with p < \/K/2 unless Hy+ H; =0
—_———

equivalently, Ho=H/=0



Proof of Theorem 6.9

We now prove (6.6). To connect Ho + H; with 3., Hj, we use feasibility:
AH)=0 <= A(Hy+H,) =— Zm A(H;),
which taken collectively with RIP yields

(1= 68 [ Ho + Hillr < Ao + Hy), = || 3

<2, M)

<Z (1 + 055 |1 H |l

j>2 j)HF

ub
This establishes (6.6) as long as p := 513 < 1/
(24 K)r



Gaussian sampling operators satisfy RIP

If entries of {A;}7, are i.i.d. N'(0,1/m), then

V- V2

%A < BT ve

with high prob., provided that

m 2 nr (near-optimal sample size)

This satisfies assumption of Theorem 6.9 with K =3



Precise phase transition

Using statistical dimension machienry, we can locate precise phase
transition (Amelunxen, Lotz, McCoy & Tropp '13)

works if m > stat-dim(D (|| - ||+, X))

nuclear norm min
{ fails if m < stat-dim(D (|| - ||+, X))

where
stat-dim(D (|| - ||, X)) ~ n%y (;)
and
¥ (p) =Tir21f0{p+(1—p) p(1+72)+(1_p)/ (u—1)? @dul}




Numerical phase transition (n = 30)

Low-rank matrix recovery via Schatten 1-norm minimization
900

600

300

95% success
50% success
5% success
Theory

Number of random measurements

10 20 a0
Rank of Xj

Figure credit: Amelunxen, Lotz, McCoy, & Tropp '13



Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP
(e.g. none of the 4 motivating examples in this lecture satisfies RIP)




Matrix completion



Sampling operators for matrix completion

Observation operator (projection onto matrices supported on 2)
Y = Pq(M)

where (i,7) € Q with prob. p (random sampling)
e P does NOT satisfy RIP when p <« 1!

e For example,

10000 RN GV AY
000 0O v 1 v v
000 O00O TV v 7
0 00 0O v o711 v
00000 v 1 1 vV
M Q
ub
|Pa(M)||g = 0, or equivalently, % = oo

24+ K



Which sampling pattern?

Consider the following sampling pattern

ANENENRRN
ANENENRORN
ANENENRORN
AN
AN

e If some rows/columns are not sampled, recovery is impossible.



Which low-rank matrices can we recover?

Compare following rank-1 matrices:

1 00 0 111 ... 1
0 00 0 111 -1
VS.

000 -0 111 -1
hard easy

Column / row spaces cannot be aligned with canonical basis vectors



Coherence

Definition 6.10
Coherence parameter p of M = UXV " is smallest quantity s.t.

max || U "e;|? < T and max ||V Te;||? < Hr
7 n K3

o p=1 (since L, [[UTe|* = [U[f =)
o un=1 if ﬁl =U =V (most incoherent)
o p="="ife;eU

(most coherent)



Performance guarantee

Theorem 6.11 (Candes & Recht '09, Candes & Tao ’'10, Gross
'11, ...)

Nuclear norm minimization is exact and unique with high probability,
provided that
m > pnrlog?n

~

e This result is optimal up to a logarithmic factor

e Established via a RIPless theory



Numerical performance of nuclear-norm
minimization

nr—r(r—1)/2

Fig. credit: Candes, Recht '09



Subgradient of nuclear norm

Subdifferential (set of subgradients) of || - || at M is

oMl ={UVT+W: Pr(W)=0, [W| <1}

e Does not depend on singular values of M

o Z cO||M]||, iff

Pr(Z)=UV', |Pr.(2Z)|<1.



KKT condition

Lagrangian:

L(X,A) = | X[l++(A, Po(X)=Po(M)) = [ X[l +(Pa(A), X—M)

When M is minimizer, KKT condition reads

0€0xL(X,A)| x—ns == 3IAst. —Pgo(A) € 9| M]|.

<— dW st UV + W is supported on €,
Pr(W) =0, and |[W| <1



Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:
Lemma 6.12

M is unique minimizer of nuclear norm minimization if

e sampling operator Pq restricted to I' is injective, i.e.
Pa(H)#0 VY nonzero H € T
e JW s.t.

UV +W is supported on ,
Pr(W) =0, and |[W] <1




Proof of Lemma 6.12

For any Wy, obeying ||[W;|| < 1 and Pr(W) = 0, one has

|M + H]. > | M| +(UV" + Wy, H)
=|M|,+{(UVT + W, ,H)+ (W, - W,H)
= |M|, +(Po (UV' + W) H) + (Pr.(Wy — W), H)
=M, +{UVT + W,Po(H)) + (Wy — W, Pr.(H))
if we take Wy s.t. (Wo, Pro(H)) = ||Pre(H)||«
> | M|l + [[Pr+ (H)|« — W] - [P+ (H)||«
= M|l + Q1 = W) [[Pr+ (H)|. > || M]].

unless Py (H) = 0.

But if Py (H) =0, then H = 0 by injectivity. Thus, |M + H||. > | M|«
for any H # 0, concluding the proof.



Constructing dual certificates

Use “golfing scheme” to produce approximate dual certificate (Gross
'11)

e Think of it as an iterative algorithm (with sample splitting) to
solve KKT
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