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Outline

• Low-rank matrix completion and recovery

• Nuclear norm minimization (this lecture)

◦ RIP and low-rank matrix recovery
◦ Matrix completion
◦ Algorithms for nuclear norm minization

• Non-convex methods (next lecture)
◦ Spectral methods
◦ (Projected) gradient descent
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Low-rank matrix completion and recovery:
motivation
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Motivation 1: recommendation systems

? ? ? ?

?

?

??

??

???

?

?

• Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies

• How to predict unseen user ratings for movies?
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In general, we cannot infer missing ratings



X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?


Underdetermined system (more unknowns than observations)
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... unless rating matrix has other structure

? ? ? ?

?

?

??

??

???

?

?

A few factors explain most of the data

How to exploit (approx.) low-rank structure in prediction?
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... unless rating matrix has other structure

? ? ? ?

?

?

??

??

???

?

?

A few factors explain most of the data −→ low-rank approximation

How to exploit (approx.) low-rank structure in prediction?



7/67

Motivation 2: sensor localization

• n sensors / points xj ∈ R3, j = 1, · · · , n
• Observe partial information about pairwise distances

Di,j = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2x>i xj

• Want to infer distance between every pair of nodes
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Motivation 2: sensor localization

Introduce

X =


x>1
x>2

...
x>n

 ∈ Rn×3

then distance matrix D = [Di,j ]1≤i,j≤n can be written as

D = d2e
> + ed>2 − 2XX>︸ ︷︷ ︸

low rank

where d2 := [‖x1‖2, · · · , ‖xn‖2 ]>

rank(D)� n −→ low-rank matrix completion
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Motivation 3: structure from motion

Structure from motion: reconstruct 3D scene geometry︸ ︷︷ ︸
structure

and

camera poses︸ ︷︷ ︸
motion

from multiple images

Unknown 
camera 

viewpoints 

Given multiple images and a few correspondences between image
features, how to estimate locations of 3D points?
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Motivation 3: structure from motion

Tomasi and Kanade’s factorization:
• Consider n 3D points in m different 2D frames

• xi,j ∈ R2×1: locations of jth point in ith frame

xi,j = Pi︸︷︷︸
projection matrix ∈R2×3

sj︸︷︷︸
3D position ∈R3

• Matrix of all 2D locations rank(X) = 3.

X =

x1,1 · · · x1,n
... . . . ...

xm,1 · · · xm,n

 =

 P1
...
Pm

 [ s1 · · · sn
]

︸ ︷︷ ︸
low-rank factorization

∈ R2m×n

Due to occlusions, there are many missing entries in the matrix X.
Goal: Can we complete the missing entries?
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Motivation 4: missing phase problem
Detectors record intensities of diffracted rays
• electric field x(t1, t2) −→ Fourier transform x̂(f1, f2)

Fig credit: Stanford SLAC

intensity of electrical field:
∣∣x̂(f1, f2)

∣∣2 =
∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣2
Phase retrieval: recover signal x(t1, t2) from intensity |x̂(f1, f2)

∣∣2
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A discrete-time model: solving quadratic systems
A
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Solve for x ∈ Cn in m quadratic equations

yk = |〈ak,x〉|2, k = 1, . . . ,m
or y = |Ax|2 where |z|2 := {|z1|2, · · · , |zm|2}
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An equivalent view: low-rank factorization

Lifting: introduce X = xx∗ to linearize constraints

yk = |a∗kx|2 = a∗k(xx∗)ak =⇒ yk = a∗kXak (6.1)

find X � 0

s.t. yk = 〈aka∗k,X〉, k = 1, · · · ,m
rank(X) = 1
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The list continues

• system identification and time series analysis;

• spatial-temporal data: low-rank due to correlations, e.g. MRI
video, network traffic, ..

• face recognition;

• quantum state tomography;

• community detection;

• ....
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Low-rank matrix completion and recovery:
setup and algorithms
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Setup

• Consider M ∈ Rn×n (square case for simplicity)

• rank(M) = r � n

• The thin Singular value decomposition (SVD) of M :

M = UΣV >︸ ︷︷ ︸
(2n−r)r degrees of freedom

=
r∑
i=1

σiuiv
T
i

where Σ =

 σ1
. . .

σr

 contain all singular values {σi};

U := [u1, · · · ,ur], V := [v1, · · · ,vr] consist of singular vectors
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Low-rank matrix completion

Observed entries

Mi,j , (i, j) ∈ Ω︸︷︷︸
sampling set

Completion via rank minimization

minimizeX rank(X) s.t. Xi,j = Mi,j , (i, j) ∈ Ω

• An operator PΩ: orthogonal projection onto subspace of
matrices supported on Ω

[PΩ(X)]i,j =
{
Xi,j if (i, j) ∈ Ω
0 otherwise

Completion via rank minimization

minimizeX rank(X) s.t. PΩ(X) = PΩ(M)
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More general: low-rank matrix recovery

Linear measurements

yi = 〈Ai,M〉 = Tr(A>i M), i = 1, . . .m

• An operator form, with A : Rn×n 7→ Rm:

y = A(M) :=

 〈A1,M〉
...

〈Am,M〉



Recovery via rank minimization

minimizeX rank(X) s.t. y = A(X)
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Nuclear norm minimization
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Convex relaxation

Low-rank matrix completion:

minimizeX rank(X)︸ ︷︷ ︸
nonconvex

s.t. PΩ(X) = PΩ(M)

Low-rank matrix recovery:

minimizeX rank(X)︸ ︷︷ ︸
nonconvex

s.t. A(X) = A(M)

Question: what is convex surrogate for rank(·)?



21/67

Analogy with sparse recovery

For a given matrix X ∈ Rn×n, take the full SVD of X:

X = ÛΣ̂V̂ >

=
[
u1, · · · ,un

]  σ1
. . .

σn


︸ ︷︷ ︸

diag(σ)

[
v1, · · · ,vn

]>
.

Then
rank(X) =

n∑
i=1

1{σi 6= 0} = ‖σ‖0

Convex relaxation: from ‖σ‖0 to ‖σ‖1?



22/67

Nuclear norm

Definition 6.1
The nuclear norm of X is

‖X‖∗ :=
n∑
i=1

σi(X)︸ ︷︷ ︸
ith largest singular value

• Nuclear norm is a counterpart of `1 norm for rank function

• Equivalence among different norms (r = rank(X))

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F ≤ r‖X‖.

where ‖X‖ = σ1(X); ‖X‖F =
(∑n

i=1 σ
2
i (X)

)1/2.
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Tightness of relaxation

Recall: the `1 norm ball is convex hull of 1-sparse, unit-norm vectors.

(a) `1 norm ball (b) nuclear norm ball

Fact 6.2
The nuclear norm ball {X : ‖X‖∗ ≤ 1} is the convex hull of rank-1
matrices, unit-norm matrices obeying ‖uv>‖ = 1 .
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Additivity of nuclear norm

Fact 6.3

Let A and B be matrices of the same dimensions. If AB> = 0 and
A>B = 0, then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.

• If row (resp. column) spaces of A and B are orthogonal, then
‖A+B‖∗ = ‖A‖∗ + ‖B‖∗

• Similar to `1 norm: when x and y have disjoint support,

‖x+ y‖1 = ‖x‖1 + ‖y‖1

which is a key to study `1-min under RIP.
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Proof of Fact 6.3

Suppose A = UAΣAV
>
A and B = UBΣBV

>
B , which gives

AB> = 0
A>B = 0

⇐⇒ V >A VB = 0
U>AUB = 0

Thus, one can write

A = [UA,UB ,UC ]

 ΣA

0
0

 [VA,VB ,VC ]>

B = [UA,UB ,UC ]

 0
ΣB

0

 [VA,VB ,VC ]>

and hence
‖A+B‖∗ =

∥∥∥∥[UA,UB ]
[

ΣA

ΣB

]
[VA,VB ]>

∥∥∥∥
∗

= ‖A‖∗ + ‖B‖∗
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Dual norm

Definition 6.4 (Dual norm)
For a given norm ‖ · ‖A, the dual norm is defined as

‖X‖?A := max{〈X,Y 〉 : ‖Y ‖A ≤ 1}

• `1 norm dual←→ `∞ norm

• `2 norm dual←→ `2 norm

• Frobenius norm dual←→ Frobenius norm

• nuclear norm dual←→ spectral norm
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Schur complement

Given a block matrix

D =
[
A B
B> C

]
∈ R(p+q)×(p+q),

where A ∈ Rp×p, B ∈ Rp×q and C ∈ Rq×q.

The Schur complement of the block A (assume it’s invertible) in D
is given as

C −B>A−1B.

Fact 6.5

D � 0 ⇐⇒ A � 0, C −B>A−1B � 0
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Representing nuclear norm via SDP
Since spectral norm is dual norm of nuclear norm,

‖X‖∗ = max{〈X,Y 〉 : ‖Y ‖ ≤ 1}

The constraint is equivalent to

‖Y ‖ ≤ 1 ⇐⇒ Y Y > � I Schur complement⇐⇒
[
I Y
Y > I

]
� 0

Fact 6.6

‖X‖∗ = max
Y

{
〈X,Y 〉

∣∣∣∣∣
[
I Y
Y > I

]
� 0

}

Fact 6.7 (Dual characterization)

‖X‖∗ = min
W1,W2

{
1
2Tr(W1) + 1

2Tr(W2)
∣∣∣∣∣
[
W1 X
X> W2

]
� 0

}

• Optimal point: W1 = UΣU>, W2 = V ΣV > (where
X = UΣV >)
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Aside: dual of semidefinite program

(primal) minimizeX 〈C,X〉
s.t. 〈Ai,X〉 = bi, 1 ≤ i ≤ m

X � 0

m

(dual) maximizey b>y

s.t.
m∑
i=1

yiAi + S = C

S � 0

Exercise: use this to verify Fact 6.7
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Nuclear norm minimization via SDP

Nuclear norm minization
M̂ = argminX‖X‖∗ s.t. y = A(X)

This is solvable via SDP

minimizeX,W1,W2
1
2Tr(W1) + 1

2Tr(W2)

s.t. y = A(X),[
W1 X
X> W2

]
� 0
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Rank minimization vs Cardinality minimization

Fig. credit: Fazel et.al. ’10
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Proximal algorithm

In the presence of noise, one needs to solve

minimizeX
1
2‖y −A(X)‖2F + λ‖X‖∗

which can be solved via proximal methods.

Algorithm 6.1 Proximal gradient methods
for t = 0, 1, · · · :

Xt+1 = proxµtλ‖·‖∗

(
Xt − µtA∗(A(Xt)− y)

)
where µt: step size / learning rate
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Proximal operator for nuclear norm

Proximal operator:

proxλ‖·‖∗(X) = arg min
Z

{1
2‖Z −X‖

2
F + λ‖Z‖∗

}
= UTλ(Σ)V >

where SVD of X is X = UΣV > with Σ = diag({σi}), and

Tλ(Σ) = diag({(σi − λ)+})
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Accelerated proximal gradient

Algorithm 6.2 Accelerated proximal gradient methods
for t = 0, 1, · · · :

Xt+1 = proxµtλ‖·‖∗

(
Zt − µtA∗(A(Zt)− y)

)
Zt+1 = Xt+1 + αt

(
Xt+1 −Xt

)
︸ ︷︷ ︸

momentum term

where µt: step size / learning rate, αt is the momentum.

• Convergence rate: O
(

1√
ε

)
iterations to reach ε-accuracy.

• Per-iteration cost is a (partial-)SVD.
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Frank-Wolfe for nuclear norm minimization

Consider the constrained problem:

minimizeX
1
2‖y −A(X)‖2F s.t. ‖X‖∗ ≤ τ.

which can be solved via conditional gradient method (Frank-Wolfe
1956).

• More generally, consider the problem:

minimizeβ f(β) s.t. β ∈ C,

where f(x) is smooth and convex, and C is a convex set.
• Recall projected gradient descent:

βt+1 = PC
(
βt − µt∇f(βt)

)
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Conditional Gradient Method

Algorithm 6.3 Frank-Wolfe
for t = 0, 1, · · · :

st = argmins∈C∇f(βt)>s

βt+1 = (1− γt)βt + γts
t

where γt := 2/(t+ 1) is the (default) step size.

• The first step is a constrained optimization of a linear
approximation at f(βt);
• The second step controls how much we move towards st.
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Figure illustration

Figure credit: Jaggi 2011
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Frank-Wolfe for nuclear norm minimization

Algorithm 6.4 Frank-Wolfe for nuclear norm minimization
for t = 0, 1, · · · :

St = argmin‖S‖∗≤τ 〈∇f(Xt),S〉,

Xt+1 = (1− γt)Xt + γtS
t;

where γt := 2/(t+ 1) is the (default) step size.

• (Homework) Note that ∇f(Xt) = A∗(A(Xt)− y)), and

St = τ · argmin‖S‖∗≤1〈∇f(Xt),S〉
= τuvT ,

where u, v are the left and right top singular vector of
−∇f(Xt).
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Further comments on Frank-Wolfe

• Extremely low per-iteration cost (only top singular vectors are
needed);
• Every iteration is a rank-1 update;
• Convergence rate: O(1

ε ) to reach ε-accuracy, which can be very
slow.
• Various ways to speed up; active research area.
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RIP and low-rank matrix recovery
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RIP for low-rank matrices

Almost parallel results to compressed sensing ...1

Definition 6.8
The r-restricted isometry constants δub

r (A) and δlb
r (A) are smallest

quantities s.t.

(1− δlb
r )‖X‖F ≤ ‖A(X)‖F ≤ (1 + δub

r )‖X‖F, ∀X : rank(X) ≤ r

1One can also define RIP w.r.t. ‖ · ‖2
F rather than ‖ · ‖F.



42/67

RIP and low-rank matrix recovery

Theorem 6.9 (Recht, Fazel, Parrilo ’10, Candes, Plan ’11)

Suppose rank(M) = r. For any fixed integer K > 0, if
1+δub

Kr

1−δlb
(2+K)r

<
√

K
2 , then nuclear norm minimization is exact

• Can be easily extended to account for noise and imperfect
structural assumption



43/67

Geometry of nuclear norm ball

Level set of nuclear norm ball:
∥∥∥∥∥
[
x y
y z

]∥∥∥∥∥
∗
≤ 1

Fig. credit: Candes ’14
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Some notation

Recall M = UΣV >

• Let T be span of matrices of the form (called tangent space)

T = {UX> + Y V > : X,Y ∈ Rn×r}

• Let PT be orthogonal projection onto T :

PT (X) = UU>X +XV V > −UU>XV V >

• Its complement PT⊥ = I − PT :

PT⊥(X) = (I −UU>)X(I − V V >)

◦ MP>T⊥(X) = 0 and M>PT⊥(X) = 0
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Proof of Theorem 6.9

Suppose X = M +H is feasible and obeys ‖M +H‖∗ ≤ ‖M‖∗.
The goal is to show that H = 0 under RIP.

The key is to decompose H into H0 +H1 +H2 + . . .︸ ︷︷ ︸
Hc

• H0 = PT (H) (rank 2r)
• Hc = P⊥T (H) (obeying MH>c = 0 and M>Hc = 0)
• H1: best rank-(Kr) approximation of Hc (K is const)
• H2: best rank-(Kr) approximation of Hc −H1

• ...
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Proof of Theorem 6.9

Informally, the proof proceeds by showing that

1. H0 dominates
∑
i≥2Hi (by objective function)

2. (converse)
∑
i≥2Hi dominates H0 +H1 (by RIP + feasibility)

These can happen simultaneously only when H = 0



Proof of Theorem 6.9
Step 1 (which does not rely on RIP). Show that∑

j≥2
‖Hj‖F ≤ ‖H0‖∗/

√
Kr. (6.2)

This follows immediately by combining the following 2 observations:
(i) Since M +H is assumed to be a better estimate:

‖M‖∗ ≥ ‖M +H‖∗ ≥ ‖M +Hc‖∗ − ‖H0‖∗ (6.3)
= ‖M‖∗ + ‖Hc‖∗︸ ︷︷ ︸

Fact 6.3 (MH>
c =0 and M>Hc=0)

− ‖H0‖∗

=⇒ ‖Hc‖∗ ≤ ‖H0‖∗ (6.4)

(ii) Since nonzero singular values of Hj−1 dominate those of Hj (j ≥ 2):

‖Hj‖F ≤
√
Kr‖Hj‖ ≤

√
Kr
[
‖Hj−1‖∗/(Kr)

]
≤ ‖Hj−1‖∗/

√
Kr

=⇒
∑
j≥2
‖Hj‖F ≤

1√
Kr

∑
j≥2
‖Hj−1‖∗ = 1√

Kr
‖Hc‖∗ (6.5)

47/67
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Proof of Theorem 6.9

Step 2 (using feasibility + RIP). Show that ∃ρ <
√
K/2 s.t.

‖H0 +H1‖F ≤ ρ
∑

j≥2
‖Hj‖F (6.6)

If this claim holds, then

‖H0 +H1‖F ≤ ρ
∑

j≥2
‖Hj‖F

(6.2)
≤ ρ

1√
Kr
‖H0‖∗

≤ ρ 1√
Kr

(√
2r‖H0‖F

)
= ρ

√
2
K
‖H0‖F

≤ ρ
√

2
K
‖H0 +H1‖F. (6.7)

This cannot hold with ρ <
√
K/2 unless H0 +H1 = 0︸ ︷︷ ︸

equivalently, H0=H1=0
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Proof of Theorem 6.9

We now prove (6.6). To connect H0 +H1 with
∑
j≥2Hj , we use feasibility:

A(H) = 0 ⇐⇒ A(H0 +H1) = −
∑

j≥2
A(Hj),

which taken collectively with RIP yields

(1− δlb
(2+K)r)‖H0 +H1‖F ≤

∥∥A(H0 +H1)
∥∥

F =
∥∥∥∑

j≥2
A(Hj)

∥∥∥
F

≤
∑

j≥2

∥∥A(Hj)
∥∥

F

≤
∑

j≥2
(1 + δub

Kr)‖Hj‖F

This establishes (6.6) as long as ρ := 1+δub
Kr

1−δlb
(2+K)r

<
√

K
2 .
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Gaussian sampling operators satisfy RIP

If entries of {Ai}mi=1 are i.i.d. N (0, 1/m), then

δ5r(A) <
√

3−
√

2√
3 +
√

2

with high prob., provided that

m & nr (near-optimal sample size)

This satisfies assumption of Theorem 6.9 with K = 3
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Precise phase transition

Using statistical dimension machienry, we can locate precise phase
transition (Amelunxen, Lotz, McCoy & Tropp ’13)

nuclear norm min
{

works if m > stat-dim
(
D (‖ · ‖∗,X)

)
fails if m < stat-dim

(
D (‖ · ‖∗,X)

)
where

stat-dim
(
D (‖ · ‖∗,X)

)
≈ n2ψ

(
r

n

)
and

ψ (ρ) = inf
τ≥0

{
ρ+ (1− ρ)

[
ρ(1 + τ2) + (1− ρ)

∫ 2

τ

(u− τ)2
√

4− u2

π
du
]}
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Numerical phase transition (n = 30)

Figure credit: Amelunxen, Lotz, McCoy, & Tropp ’13
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Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP
(e.g. none of the 4 motivating examples in this lecture satisfies RIP)
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Matrix completion
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Sampling operators for matrix completion
Observation operator (projection onto matrices supported on Ω)

Y = PΩ(M)

where (i, j) ∈ Ω with prob. p (random sampling)

• PΩ does NOT satisfy RIP when p� 1!
• For example,

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

M


? X ? X X
X ? X ? X
? X X ? ?
X ? ? X ?
X ? X ? X


︸ ︷︷ ︸

Ω

‖PΩ(M)‖F = 0, or equivalently, 1+δub
K

1−δlb
2+K

=∞
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Which sampling pattern?

Consider the following sampling pattern
X X X X X
? ? ? ? ?
X X X X X
X X X X X
X X X X X


• If some rows/columns are not sampled, recovery is impossible.
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Which low-rank matrices can we recover?

Compare following rank-1 matrices:
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0


︸ ︷︷ ︸

hard

vs.


1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1


︸ ︷︷ ︸

easy

Column / row spaces cannot be aligned with canonical basis vectors
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Coherence

Definition 6.10
Coherence parameter µ of M = UΣV > is smallest quantity s.t.

max
i
‖U>ei‖2 ≤

µr

n
and max

i
‖V >ei‖2 ≤

µr

n

• µ ≥ 1 (since
∑n
i=1 ‖U>ei‖2 = ‖U‖2F = r)

• µ = 1 if 1√
n

1 = U = V (most incoherent)

• µ = n
r if ei ∈ U (most coherent)
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Performance guarantee

Theorem 6.11 (Candes & Recht ’09, Candes & Tao ’10, Gross
’11, ...)
Nuclear norm minimization is exact and unique with high probability,
provided that

m & µnr log2 n

• This result is optimal up to a logarithmic factor

• Established via a RIPless theory
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Numerical performance of nuclear-norm
minimization

n = 50

Fig. credit: Candes, Recht ’09
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Subgradient of nuclear norm

Subdifferential (set of subgradients) of ‖ · ‖∗ at M is

∂‖M‖∗ =
{
UV > +W : PT (W ) = 0, ‖W ‖ ≤ 1

}

• Does not depend on singular values of M

• Z ∈ ∂‖M‖∗ iff

PT (Z) = UV >, ‖PT⊥(Z)‖ ≤ 1.
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KKT condition

Lagrangian:

L (X,Λ) = ‖X‖∗+〈Λ,PΩ(X)−PΩ(M)〉 = ‖X‖∗+〈PΩ(Λ),X−M〉

When M is minimizer, KKT condition reads

0 ∈ ∂XL(X,Λ)
∣∣
X=M ⇐⇒ ∃Λ s.t. − PΩ(Λ) ∈ ∂‖M‖∗

⇐⇒ ∃W s.t. UV > +W is supported on Ω,
PT (W ) = 0, and ‖W ‖ ≤ 1



63/67

Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:

Lemma 6.12

M is unique minimizer of nuclear norm minimization if
• sampling operator PΩ restricted to T is injective, i.e.

PΩ(H) 6= 0 ∀ nonzero H ∈ T

• ∃W s.t.

UV > +W is supported on Ω,
PT (W ) = 0, and ‖W ‖ < 1
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Proof of Lemma 6.12

For any W0 obeying ‖W0‖ ≤ 1 and PT (W ) = 0, one has

‖M +H‖∗ ≥ ‖M‖∗ +
〈
UV > +W0,H

〉
= ‖M‖∗ +

〈
UV > +W ,H

〉
+ 〈W0 −W ,H〉

= ‖M‖∗ +
〈
PΩ
(
UV > +W

)
,H
〉

+ 〈PT⊥(W0 −W ),H〉
= ‖M‖∗ +

〈
UV > +W ,PΩ(H)

〉
+ 〈W0 −W ,PT⊥(H)〉

if we take W0 s.t. 〈W0,PT⊥(H)〉 = ‖PT⊥(H)‖∗
≥ ‖M‖∗ + ‖PT⊥(H)‖∗ − ‖W ‖ · ‖PT⊥(H)‖∗
= ‖M‖∗ + (1− ‖W ‖) ‖PT⊥(H)‖∗ > ‖M‖∗

unless PT⊥(H) = 0.

But if PT⊥(H) = 0, then H = 0 by injectivity. Thus, ‖M +H‖∗ > ‖M‖∗
for any H 6= 0, concluding the proof.



65/67

Constructing dual certificates

Use “golfing scheme” to produce approximate dual certificate (Gross
’11)

• Think of it as an iterative algorithm (with sample splitting) to
solve KKT
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