ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference
 Low-rank matrix recovery via convex relaxations

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Outline

- Low-rank matrix completion and recovery
- Nuclear norm minimization (this lecture)
- RIP and low-rank matrix recovery
- Matrix completion
- Algorithms for nuclear norm minization
- Non-convex methods (next lecture)
- Spectral methods
- (Projected) gradient descent

Low-rank matrix completion and recovery: motivation

Motivation 1: recommendation systems

- Netflix challenge: Netflix provides highly incomplete ratings from 0.5 million users for \& 17,770 movies
- How to predict unseen user ratings for movies?

In general, we cannot infer missing ratings

Underdetermined system (more unknowns than observations)
... unless rating matrix has other structure

A few factors explain most of the data
... unless rating matrix has other structure

A few factors explain most of the data \longrightarrow low-rank approximation
How to exploit (approx.) low-rank structure in prediction?

Motivation 2: sensor localization

- n sensors / points $\boldsymbol{x}_{j} \in \mathbb{R}^{3}, j=1, \cdots, n$
- Observe partial information about pairwise distances

$$
D_{i, j}=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}=\left\|\boldsymbol{x}_{i}\right\|^{2}+\left\|\boldsymbol{x}_{j}\right\|^{2}-2 \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}
$$

- Want to infer distance between every pair of nodes

Motivation 2: sensor localization

Introduce

$$
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \\
\boldsymbol{x}_{2}^{\top} \\
\vdots \\
\boldsymbol{x}_{n}^{\top}
\end{array}\right] \in \mathbb{R}^{n \times 3}
$$

then distance matrix $\boldsymbol{D}=\left[D_{i, j}\right]_{1 \leq i, j \leq n}$ can be written as

$$
D=\underbrace{\boldsymbol{d}_{2} \boldsymbol{e}^{\top}+e \boldsymbol{d}_{2}^{\top}-2 \boldsymbol{X} \boldsymbol{X}^{\top}}_{\text {low rank }}
$$

where $\boldsymbol{d}_{2}:=\left[\left\|\boldsymbol{x}_{1}\right\|^{2}, \cdots,\left\|\boldsymbol{x}_{n}\right\|^{2}\right]^{\top}$

Motivation 3: structure from motion

Structure from motion: reconstruct $\underbrace{3 D \text { scene geometry }}_{\text {structure }}$ and camera poses from multiple images motion

Given multiple images and a few correspondences between image features, how to estimate locations of 3D points?

Motivation 3: structure from motion

Tomasi and Kanade's factorization:

- Consider n 3D points in m different 2D frames
- $\boldsymbol{x}_{i, j} \in \mathbb{R}^{2 \times 1}$: locations of $j^{\text {th }}$ point in $i^{\text {th }}$ frame

$$
\boldsymbol{x}_{i, j}=\underbrace{\boldsymbol{P}_{i}}_{\text {projection matrix } \in \mathbb{R}^{2 \times 3}} \underbrace{\boldsymbol{s}_{j}}_{\text {3D position } \in \mathbb{R}^{3}}
$$

- Matrix of all 2D locations $\operatorname{rank}(\boldsymbol{X})=3$.

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\boldsymbol{x}_{1,1} & \cdots & \boldsymbol{x}_{1, n} \\
\vdots & \ddots & \vdots \\
\boldsymbol{x}_{m, 1} & \cdots & \boldsymbol{x}_{m, n}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\boldsymbol{P}_{1} \\
\vdots \\
\boldsymbol{P}_{m}
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{s}_{1} & \cdots & \boldsymbol{s}_{n}
\end{array}\right] \in \mathbb{R}^{2 m \times n}}_{\text {low-rank factorization }}
$$

Due to occlusions, there are many missing entries in the matrix \boldsymbol{X}.
Goal: Can we complete the missing entries?

Motivation 4: missing phase problem

Detectors record intensities of diffracted rays

- electric field $x\left(t_{1}, t_{2}\right) \longrightarrow$ Fourier transform $\hat{x}\left(f_{1}, f_{2}\right)$

Fig credit: Stanford SLAC

intensity of electrical field: $\left|\hat{x}\left(f_{1}, f_{2}\right)\right|^{2}=\left|\int x\left(t_{1}, t_{2}\right) e^{-i 2 \pi\left(f_{1} t_{1}+f_{2} t_{2}\right)} \mathrm{d} t_{1} \mathrm{~d} t_{2}\right|^{2}$
Phase retrieval: recover signal $x\left(t_{1}, t_{2}\right)$ from intensity $\left|\hat{x}\left(f_{1}, f_{2}\right)\right|^{2}$

A discrete-time model: solving quadratic systems

$$
\boldsymbol{y}=|\boldsymbol{A} \boldsymbol{x}|^{2}
$$

Solve for $\boldsymbol{x} \in \mathbb{C}^{n}$ in m quadratic equations

$$
\begin{aligned}
y_{k} & =\left|\left\langle\boldsymbol{a}_{k}, \boldsymbol{x}\right\rangle\right|^{2}, \quad k=1, \ldots, m \\
\text { or } \quad \boldsymbol{y} & =|\boldsymbol{A} \boldsymbol{x}|^{2} \quad \text { where }|\boldsymbol{z}|^{2}:=\left\{\left|z_{1}\right|^{2}, \cdots,\left|z_{m}\right|^{2}\right\}
\end{aligned}
$$

An equivalent view: low-rank factorization

Lifting: introduce $\boldsymbol{X}=\boldsymbol{x} \boldsymbol{x}^{*}$ to linearize constraints

$$
\begin{equation*}
y_{k}=\left|\boldsymbol{a}_{k}^{*} \boldsymbol{x}\right|^{2}=\boldsymbol{a}_{k}^{*}\left(\boldsymbol{x} \boldsymbol{x}^{*}\right) \boldsymbol{a}_{k} \quad \Longrightarrow \quad y_{k}=\boldsymbol{a}_{k}^{*} \boldsymbol{X} \boldsymbol{a}_{k} \tag{6.1}
\end{equation*}
$$

find $\quad \boldsymbol{X} \succeq \mathbf{0}$

$$
\begin{array}{ll}
\text { s.t. } & y_{k}=\left\langle\boldsymbol{a}_{k} \boldsymbol{a}_{k}^{*}, \boldsymbol{X}\right\rangle, \quad k=1, \cdots, m \\
& \operatorname{rank}(\boldsymbol{X})=1
\end{array}
$$

The list continues

- system identification and time series analysis;
- spatial-temporal data: low-rank due to correlations, e.g. MRI video, network traffic, ..
- face recognition;
- quantum state tomography;
- community detection;

Low-rank matrix completion and recovery: setup and algorithms

Setup

- Consider $M \in \mathbb{R}^{n \times n}$ (square case for simplicity)
- $\operatorname{rank}(\boldsymbol{M})=r \ll n$
- The thin Singular value decomposition (SVD) of \boldsymbol{M} :

$$
\boldsymbol{M}=\underbrace{\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}}_{(2 n-r) r}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

where $\boldsymbol{\Sigma}=\left[\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{r}\end{array}\right]$ contain all singular values $\left\{\sigma_{i}\right\}$;
$\boldsymbol{U}:=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{r}\right], \boldsymbol{V}:=\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{r}\right]$ consist of singular vectors

Low-rank matrix completion

Observed entries

$$
M_{i, j}, \quad(i, j) \in \underbrace{\Omega}_{\text {sampling set }}
$$

Completion via rank minimization

$$
\operatorname{minimize}_{\boldsymbol{X}} \quad \operatorname{rank}(\boldsymbol{X}) \quad \text { s.t. } \quad X_{i, j}=M_{i, j}, \quad(i, j) \in \Omega
$$

Low-rank matrix completion

Observed entries

$$
M_{i, j}, \quad(i, j) \in \underbrace{\Omega}_{\text {sampling set }}
$$

- An operator \mathcal{P}_{Ω} : orthogonal projection onto subspace of matrices supported on Ω

$$
\left[\mathcal{P}_{\Omega}(\boldsymbol{X})\right]_{i, j}= \begin{cases}X_{i, j} & \text { if } \quad(i, j) \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

Completion via rank minimization

$$
\operatorname{minimize}_{\boldsymbol{X}} \operatorname{rank}(\boldsymbol{X}) \quad \text { s.t. } \quad \mathcal{P}_{\Omega}(\boldsymbol{X})=\mathcal{P}_{\Omega}(\boldsymbol{M})
$$

More general: low-rank matrix recovery

Linear measurements

$$
y_{i}=\left\langle\boldsymbol{A}_{i}, \boldsymbol{M}\right\rangle=\operatorname{Tr}\left(\boldsymbol{A}_{i}^{\top} \boldsymbol{M}\right), \quad i=1, \ldots m
$$

- An operator form, with $\mathcal{A}: \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{m}$:

$$
\boldsymbol{y}=\mathcal{A}(\boldsymbol{M}):=\left[\begin{array}{c}
\left\langle\boldsymbol{A}_{1}, \boldsymbol{M}\right\rangle \\
\vdots \\
\left\langle\boldsymbol{A}_{m}, \boldsymbol{M}\right\rangle
\end{array}\right]
$$

Recovery via rank minimization

$$
\operatorname{minimize}_{\boldsymbol{X}} \quad \operatorname{rank}(\boldsymbol{X}) \quad \text { s.t. } \quad \boldsymbol{y}=\mathcal{A}(\boldsymbol{X})
$$

Nuclear norm minimization

Convex relaxation

Low-rank matrix completion:

$\operatorname{minimize}_{\boldsymbol{X}}$	$\underbrace{\operatorname{rank}(\boldsymbol{X})}_{\text {nonconvex }}$
s.t.	$\mathcal{P}_{\Omega}(\boldsymbol{X})=\mathcal{P}_{\Omega}(\boldsymbol{M})$

Low-rank matrix recovery:

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{X}} & \underbrace{\operatorname{rank}(\boldsymbol{X})}_{\text {nonconvex }} \\
\text { s.t. } & \mathcal{A}(\boldsymbol{X})=\mathcal{A}(\boldsymbol{M})
\end{aligned}
$$

Question: what is convex surrogate for $\operatorname{rank}(\cdot)$?

Analogy with sparse recovery

For a given matrix $\boldsymbol{X} \in \mathbb{R}^{n \times n}$, take the full SVD of \boldsymbol{X} :

$$
\begin{aligned}
\boldsymbol{X} & =\widehat{\boldsymbol{U}} \widehat{\boldsymbol{\Sigma}} \widehat{\boldsymbol{V}}^{\top} \\
& =\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{n}\right] \underbrace{\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]}_{\operatorname{diag}(\boldsymbol{\sigma})}\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right]^{\top} .
\end{aligned}
$$

Then

$$
\operatorname{rank}(\boldsymbol{X})=\sum_{i=1}^{n} \mathbf{1}\left\{\sigma_{i} \neq 0\right\}=\|\boldsymbol{\sigma}\|_{0}
$$

Convex relaxation: from $\|\boldsymbol{\sigma}\|_{0}$ to $\|\boldsymbol{\sigma}\|_{1}$?

Nuclear norm

Definition 6.1

The nuclear norm of \boldsymbol{X} is

$$
\|\boldsymbol{X}\|_{*}:=\sum_{i=1}^{n} \underbrace{\sigma_{\text {largest singular value }}(\boldsymbol{X})}_{i^{\text {th }}}
$$

- Nuclear norm is a counterpart of ℓ_{1} norm for rank function
- Equivalence among different norms $(r=\operatorname{rank}(\boldsymbol{X}))$

$$
\|\boldsymbol{X}\| \leq\|\boldsymbol{X}\|_{\mathrm{F}} \leq\|\boldsymbol{X}\|_{*} \leq \sqrt{r}\|\boldsymbol{X}\|_{\mathrm{F}} \leq r\|\boldsymbol{X}\|
$$

where $\|\boldsymbol{X}\|=\sigma_{1}(\boldsymbol{X}) ;\|\boldsymbol{X}\|_{\mathrm{F}}=\left(\sum_{i=1}^{n} \sigma_{i}^{2}(\boldsymbol{X})\right)^{1 / 2}$.

Tightness of relaxation

Recall: the ℓ_{1} norm ball is convex hull of 1 -sparse, unit-norm vectors.

(a) ℓ_{1} norm ball

(b) nuclear norm ball

Fact 6.2

The nuclear norm ball $\left\{\boldsymbol{X}:\|\boldsymbol{X}\|_{*} \leq 1\right\}$ is the convex hull of rank-1 matrices, unit-norm matrices obeying $\left\|\boldsymbol{u} \boldsymbol{v}^{\top}\right\|=1$.

Additivity of nuclear norm

Fact 6.3

Let \boldsymbol{A} and \boldsymbol{B} be matrices of the same dimensions. If $\boldsymbol{A} \boldsymbol{B}^{\top}=\mathbf{0}$ and $\boldsymbol{A}^{\top} \boldsymbol{B}=\mathbf{0}$, then $\|\boldsymbol{A}+\boldsymbol{B}\|_{*}=\|\boldsymbol{A}\|_{*}+\|\boldsymbol{B}\|_{*}$.

- If row (resp. column) spaces of \boldsymbol{A} and \boldsymbol{B} are orthogonal, then

$$
\|\boldsymbol{A}+\boldsymbol{B}\|_{*}=\|\boldsymbol{A}\|_{*}+\|\boldsymbol{B}\|_{*}
$$

- Similar to ℓ_{1} norm: when \boldsymbol{x} and \boldsymbol{y} have disjoint support,

$$
\|\boldsymbol{x}+\boldsymbol{y}\|_{1}=\|\boldsymbol{x}\|_{1}+\|\boldsymbol{y}\|_{1}
$$

which is a key to study ℓ_{1}-min under RIP.

Proof of Fact 6.3

Suppose $\boldsymbol{A}=\boldsymbol{U}_{A} \boldsymbol{\Sigma}_{A} \boldsymbol{V}_{A}^{\top}$ and $\boldsymbol{B}=\boldsymbol{U}_{B} \boldsymbol{\Sigma}_{B} \boldsymbol{V}_{B}^{\top}$, which gives

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{B}^{\top}=\mathbf{0} \\
& \boldsymbol{A}^{\top} \boldsymbol{B}=\mathbf{0}
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& \boldsymbol{V}_{A}^{\top} \boldsymbol{V}_{B}=\mathbf{0} \\
& \boldsymbol{U}_{A}^{\top} \boldsymbol{U}_{B}=\mathbf{0}
\end{aligned}
$$

Thus, one can write

$$
\begin{aligned}
\boldsymbol{A} & =\left[\boldsymbol{U}_{A}, \boldsymbol{U}_{B}, \boldsymbol{U}_{C}\right] \\
\boldsymbol{B} & =\left[\boldsymbol{U}_{A}, \boldsymbol{U}_{B}, \boldsymbol{U}_{C}\right]
\end{aligned}\left[\begin{array}{cccc}
\boldsymbol{\Sigma}_{A} & & \\
& \mathbf{0} & \\
& & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
{\left[\boldsymbol{V}_{A}, \boldsymbol{V}_{B}, \boldsymbol{V}_{C}\right]^{\top}} \\
\\
\\
\\
\boldsymbol{\Sigma}_{B}
\end{array}\right]
$$

and hence
$\|\boldsymbol{A}+\boldsymbol{B}\|_{*}=\left\|\left[\boldsymbol{U}_{A}, \boldsymbol{U}_{B}\right]\left[\begin{array}{cc}\boldsymbol{\Sigma}_{A} & \\ & \boldsymbol{\Sigma}_{B}\end{array}\right]\left[\boldsymbol{V}_{A}, \boldsymbol{V}_{B}\right]^{\top}\right\|_{*}=\|\boldsymbol{A}\|_{*}+\|\boldsymbol{B}\|_{*}$

Dual norm

Definition 6.4 (Dual norm)

For a given norm $\|\cdot\|_{\mathcal{A}}$, the dual norm is defined as

$$
\|\boldsymbol{X}\|_{\mathcal{A}}^{\star}:=\max \left\{\langle\boldsymbol{X}, \boldsymbol{Y}\rangle:\|\boldsymbol{Y}\|_{\mathcal{A}} \leq 1\right\}
$$

- ℓ_{1} norm
$\stackrel{\text { dual }}{\longleftrightarrow} \ell_{\infty}$ norm
- ℓ_{2} norm
$\stackrel{\text { dual }}{\longleftrightarrow} \ell_{2}$ norm
- Frobenius norm $\stackrel{\text { dual }}{\longleftrightarrow}$ Frobenius norm
- nuclear norm $\stackrel{\text { dual }}{\longleftrightarrow}$ spectral norm

Schur complement

Given a block matrix

$$
\boldsymbol{D}=\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{B}^{\top} & \boldsymbol{C}
\end{array}\right] \in \mathbb{R}^{(p+q) \times(p+q)},
$$

where $\boldsymbol{A} \in \mathbb{R}^{p \times p}, \boldsymbol{B} \in \mathbb{R}^{p \times q}$ and $\boldsymbol{C} \in \mathbb{R}^{q \times q}$.

The Schur complement of the block \boldsymbol{A} (assume it's invertible) in \boldsymbol{D} is given as

$$
\boldsymbol{C}-\boldsymbol{B}^{\top} \boldsymbol{A}^{-1} \boldsymbol{B}
$$

Fact 6.5

$$
\boldsymbol{D} \succeq \mathbf{0} \quad \Longleftrightarrow \quad \boldsymbol{A} \succeq \mathbf{0}, \boldsymbol{C}-\boldsymbol{B}^{\top} \boldsymbol{A}^{-1} \boldsymbol{B} \succeq \mathbf{0}
$$

Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,

$$
\|\boldsymbol{X}\|_{*}=\max \{\langle\boldsymbol{X}, \boldsymbol{Y}\rangle:\|\boldsymbol{Y}\| \leq 1\}
$$

The constraint is equivalent to

$$
\|\boldsymbol{Y}\| \leq 1 \quad \Longleftrightarrow \quad \boldsymbol{Y} \boldsymbol{Y}^{\top} \preceq \boldsymbol{I} \xlongequal{\text { Schur complement }}\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{Y} \\
\boldsymbol{Y}^{\top} & \boldsymbol{I}
\end{array}\right] \succeq \mathbf{0}
$$

Fact 6.6

$$
\|\boldsymbol{X}\|_{*}=\max _{\boldsymbol{Y}}\left\{\langle\boldsymbol{X}, \boldsymbol{Y}\rangle \left\lvert\,\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{Y} \\
\boldsymbol{Y}^{\top} & \boldsymbol{I}
\end{array}\right] \succeq \mathbf{0}\right.\right\}
$$

Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,

$$
\|\boldsymbol{X}\|_{*}=\max \{\langle\boldsymbol{X}, \boldsymbol{Y}\rangle:\|\boldsymbol{Y}\| \leq 1\}
$$

The constraint is equivalent to

$$
\|\boldsymbol{Y}\| \leq 1 \quad \Longleftrightarrow \quad \boldsymbol{Y} \boldsymbol{Y}^{\top} \preceq \boldsymbol{I} \xlongequal{\text { Schur complement }}\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{Y} \\
\boldsymbol{Y}^{\top} & \boldsymbol{I}
\end{array}\right] \succeq \mathbf{0}
$$

Fact 6.7 (Dual characterization)

$$
\|\boldsymbol{X}\|_{*}=\min _{\boldsymbol{W}_{1}, \boldsymbol{W}_{2}}\left\{\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{W}_{1}\right)+\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{W}_{2}\right) \left\lvert\,\left[\begin{array}{cc}
\boldsymbol{W}_{1} & \boldsymbol{X} \\
\boldsymbol{X}^{\top} & \boldsymbol{W}_{2}
\end{array}\right] \succeq \mathbf{0}\right.\right\}
$$

- Optimal point: $\boldsymbol{W}_{1}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{U}^{\top}, \boldsymbol{W}_{2}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ (where $\left.\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}\right)$

Aside: dual of semidefinite program

$$
\begin{aligned}
\text { (primal) } \begin{aligned}
\text { minimize }_{\boldsymbol{X}} & \langle\boldsymbol{C}, \boldsymbol{X}\rangle \\
\text { s.t. } & \left\langle\boldsymbol{A}_{i}, \boldsymbol{X}\right\rangle=b_{i}, \quad 1 \leq i \leq m \\
& \boldsymbol{X} \succeq \mathbf{0} \\
& \Uparrow \\
\text { (dual) maximize }{ }_{y} & \boldsymbol{b}^{\top} \boldsymbol{y} \\
\text { s.t. } & \sum_{i=1}^{m} y_{i} \boldsymbol{A}_{i}+\boldsymbol{S}=\boldsymbol{C} \\
& \boldsymbol{S} \succeq \mathbf{0}
\end{aligned}
\end{aligned}
$$

Exercise: use this to verify Fact 6.7

Nuclear norm minimization via SDP

Nuclear norm minization

$$
\hat{\boldsymbol{M}}=\operatorname{argmin}_{\boldsymbol{X}}\|\boldsymbol{X}\|_{*} \quad \text { s.t. } \quad \boldsymbol{y}=\mathcal{A}(\boldsymbol{X})
$$

This is solvable via SDP

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{X}, \boldsymbol{W}_{1}, \boldsymbol{W}_{2}} & \frac{1}{2} \operatorname{Tr}\left(\boldsymbol{W}_{1}\right)+\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{W}_{2}\right) \\
\text { s.t. } & \boldsymbol{y}=\mathcal{A}(\boldsymbol{X}), \\
& {\left[\begin{array}{cc}
\boldsymbol{W}_{1} & \boldsymbol{X} \\
\boldsymbol{X}^{\top} & \boldsymbol{W}_{2}
\end{array}\right] \succeq \mathbf{0} }
\end{aligned}
$$

Rank minimization vs Cardinality minimization

parsimony concept	cardinality	rank
Hilbert Space norm	Euclidean	Frobenius
sparsity inducing norm	ℓ_{1}	nuclear
dual norm	ℓ_{∞}	operator
norm additivity	disjoint support	orthogonal row and column spaces
convex optimization	linear programming	semidefinite programming

Table 1: A dictionary relating the concepts of cardinality and rank minimization.

Fig. credit: Fazel et.al. '10

Proximal algorithm

In the presence of noise, one needs to solve

$$
\operatorname{minimize}_{\boldsymbol{X}} \quad \frac{1}{2}\|\boldsymbol{y}-\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}^{2}+\lambda\|\boldsymbol{X}\|_{*}
$$

which can be solved via proximal methods.

Algorithm 6.1 Proximal gradient methods

$$
\text { for } t=0,1, \cdots \text { : }
$$

$$
\boldsymbol{X}^{t+1}=\operatorname{prox}_{\mu_{t} \lambda\|\cdot\|_{*}}\left(\boldsymbol{X}^{t}-\mu_{t} \mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{X}^{t}\right)-\boldsymbol{y}\right)\right)
$$

where μ_{t} : step size / learning rate

Proximal operator for nuclear norm

Proximal operator:

$$
\begin{aligned}
\operatorname{prox}_{\lambda\|\cdot\|_{*}}(\boldsymbol{X}) & =\arg \min _{\boldsymbol{Z}}\left\{\frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{X}\|_{\mathbf{F}}^{2}+\lambda\|\boldsymbol{Z}\|_{*}\right\} \\
& =\boldsymbol{U} \mathcal{T}_{\lambda}(\boldsymbol{\Sigma}) \boldsymbol{V}^{\top}
\end{aligned}
$$

where SVD of \boldsymbol{X} is $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ with $\boldsymbol{\Sigma}=\operatorname{diag}\left(\left\{\sigma_{i}\right\}\right)$, and

$$
\mathcal{T}_{\lambda}(\boldsymbol{\Sigma})=\operatorname{diag}\left(\left\{\left(\sigma_{i}-\lambda\right)_{+}\right\}\right)
$$

Accelerated proximal gradient

Algorithm 6.2 Accelerated proximal gradient methods for $t=0,1, \cdots$:

$$
\begin{gathered}
\boldsymbol{X}^{t+1}=\operatorname{prox}_{\mu_{t} \lambda\|\cdot\|_{*}}\left(\boldsymbol{Z}^{t}-\mu_{t} \mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{Z}^{t}\right)-\boldsymbol{y}\right)\right) \\
\boldsymbol{Z}^{t+1}=\boldsymbol{X}^{t+1}+\underbrace{\alpha_{t}\left(\boldsymbol{X}^{t+1}-\boldsymbol{X}^{t}\right)}_{\text {momentum term }}
\end{gathered}
$$

where μ_{t} : step size / learning rate, α_{t} is the momentum.

- Convergence rate: $O\left(\frac{1}{\sqrt{\epsilon}}\right)$ iterations to reach ϵ-accuracy.
- Per-iteration cost is a (partial-)SVD.

Frank-Wolfe for nuclear norm minimization

Consider the constrained problem:

$$
\operatorname{minimize}_{\boldsymbol{X}} \quad \frac{1}{2}\|\boldsymbol{y}-\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad\|\boldsymbol{X}\|_{*} \leq \tau
$$

which can be solved via conditional gradient method (Frank-Wolfe 1956).

- More generally, consider the problem:

$$
\operatorname{minimize}_{\boldsymbol{\beta}} \quad f(\boldsymbol{\beta}) \quad \text { s.t. } \quad \boldsymbol{\beta} \in \mathcal{C}
$$

where $f(\boldsymbol{x})$ is smooth and convex, and \mathcal{C} is a convex set.

- Recall projected gradient descent:

$$
\boldsymbol{\beta}^{t+1}=\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{\beta}^{t}-\mu_{t} \nabla f\left(\boldsymbol{\beta}^{t}\right)\right)
$$

Conditional Gradient Method

Algorithm 6.3 Frank-Wolfe

$$
\text { for } t=0,1, \cdots:
$$

$$
\begin{gathered}
\boldsymbol{s}^{t}=\operatorname{argmin}_{\boldsymbol{s} \in \mathcal{C}} \nabla f\left(\boldsymbol{\beta}^{t}\right)^{\top} \boldsymbol{s} \\
\boldsymbol{\beta}^{t+1}=\left(1-\gamma_{t}\right) \boldsymbol{\beta}^{t}+\gamma_{t} \boldsymbol{s}^{t}
\end{gathered}
$$

where $\gamma_{t}:=2 /(t+1)$ is the (default) step size.

- The first step is a constrained optimization of a linear approximation at $f\left(\boldsymbol{\beta}^{t}\right)$;
- The second step controls how much we move towards s^{t}.

Figure illustration

Figure credit: Jaggi 2011

Frank-Wolfe for nuclear norm minimization

Algorithm 6.4 Frank-Wolfe for nuclear norm minimization
for $t=0,1, \cdots$:

$$
\begin{gathered}
\boldsymbol{S}^{t}=\operatorname{argmin}_{\|\boldsymbol{S}\|_{*} \leq \tau}\left\langle\nabla f\left(\boldsymbol{X}^{t}\right), \boldsymbol{S}\right\rangle \\
\boldsymbol{X}^{t+1}=\left(1-\gamma_{t}\right) \boldsymbol{X}^{t}+\gamma_{t} \boldsymbol{S}^{t}
\end{gathered}
$$

where $\gamma_{t}:=2 /(t+1)$ is the (default) step size.

- (Homework) Note that $\left.\nabla f\left(\boldsymbol{X}^{t}\right)=\mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{X}^{t}\right)-\boldsymbol{y}\right)\right)$, and

$$
\begin{aligned}
\boldsymbol{S}^{t} & =\tau \cdot \operatorname{argmin}_{\|\boldsymbol{S}\|_{*} \leq 1}\left\langle\nabla f\left(\boldsymbol{X}^{t}\right), \boldsymbol{S}\right\rangle \\
& =\tau \boldsymbol{u} \boldsymbol{v}^{T}
\end{aligned}
$$

where $\boldsymbol{u}, \boldsymbol{v}$ are the left and right top singular vector of $-\nabla f\left(\boldsymbol{X}^{t}\right)$.

Further comments on Frank-Wolfe

- Extremely low per-iteration cost (only top singular vectors are needed);
- Every iteration is a rank-1 update;
- Convergence rate: $O\left(\frac{1}{\epsilon}\right)$ to reach ϵ-accuracy, which can be very slow.
- Various ways to speed up; active research area.

RIP and low-rank matrix recovery

RIP for low-rank matrices

Almost parallel results to compressed sensing ... ${ }^{1}$

Definition 6.8

The r-restricted isometry constants $\delta_{r}^{\mathrm{ub}}(\mathcal{A})$ and $\delta_{r}^{\mathrm{lb}}(\mathcal{A})$ are smallest quantities s.t.

$$
\left(1-\delta_{r}^{\mathrm{lb}}\right)\|\boldsymbol{X}\|_{\mathrm{F}} \leq\|\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}} \leq\left(1+\delta_{r}^{\mathrm{ub}}\right)\|\boldsymbol{X}\|_{\mathrm{F}}, \quad \forall \boldsymbol{X}: \operatorname{rank}(\boldsymbol{X}) \leq r
$$

[^0]
RIP and low-rank matrix recovery

Theorem 6.9 (Recht, Fazel, Parrilo '10, Candes, Plan '11)
Suppose $\operatorname{rank}(\boldsymbol{M})=r$. For any fixed integer $K>0$, if $\frac{1+\delta_{K r}^{\mathrm{ub}}}{1-\delta_{(2+K) r}^{\mathrm{L}}}<\sqrt{\frac{K}{2}}$, then nuclear norm minimization is exact

- Can be easily extended to account for noise and imperfect structural assumption

Geometry of nuclear norm ball

Level set of nuclear norm ball: $\left\|\left[\begin{array}{ll}x & y \\ y & z\end{array}\right]\right\|_{*} \leq 1$
Fig. credit: Candes '14

Some notation

Recall $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{\top}}$

- Let T be span of matrices of the form (called tangent space)

$$
T=\left\{\boldsymbol{U} \boldsymbol{X}^{\top}+\boldsymbol{Y} \boldsymbol{V}^{\top}: \boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times r}\right\}
$$

- Let \mathcal{P}_{T} be orthogonal projection onto T :

$$
\mathcal{P}_{T}(\boldsymbol{X})=\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{X}+\boldsymbol{X} \boldsymbol{V} \boldsymbol{V}^{\top}-\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{X} \boldsymbol{V} \boldsymbol{V}^{\top}
$$

- Its complement $\mathcal{P}_{T^{\perp}}=\mathcal{I}-\mathcal{P}_{T}$:

$$
\begin{gathered}
\mathcal{P}_{T^{\perp}}(\boldsymbol{X})=\left(\boldsymbol{I}-\boldsymbol{U} \boldsymbol{U}^{\top}\right) \boldsymbol{X}\left(\boldsymbol{I}-\boldsymbol{V} \boldsymbol{V}^{\top}\right) \\
\circ \boldsymbol{M} \mathcal{P}_{T^{\perp}}^{\top}(\boldsymbol{X})=\mathbf{0} \text { and } \boldsymbol{M}^{\top} \mathcal{P}_{T^{\perp}}(\boldsymbol{X})=\mathbf{0}
\end{gathered}
$$

Proof of Theorem 6.9

Suppose $\boldsymbol{X}=\boldsymbol{M}+\boldsymbol{H}$ is feasible and obeys $\|\boldsymbol{M}+\boldsymbol{H}\|_{*} \leq\|\boldsymbol{M}\|_{*}$. The goal is to show that $\boldsymbol{H}=\mathbf{0}$ under RIP.

The key is to decompose \boldsymbol{H} into $\boldsymbol{H}_{0}+\underbrace{\boldsymbol{H}_{1}+\boldsymbol{H}_{2}+\ldots}_{\boldsymbol{H}_{\mathrm{c}}}$

- $\boldsymbol{H}_{0}=\mathcal{P}_{T}(\boldsymbol{H}) \quad($ rank $2 r)$
- $\boldsymbol{H}_{\mathrm{c}}=\mathcal{P}_{T}^{\perp}(\boldsymbol{H}) \quad$ (obeying $\boldsymbol{M} \boldsymbol{H}_{\mathrm{c}}^{\top}=\mathbf{0}$ and $\boldsymbol{M}^{\top} \boldsymbol{H}_{\mathrm{c}}=\mathbf{0}$)
- \boldsymbol{H}_{1} : best rank- $(K r)$ approximation of $\boldsymbol{H}_{\mathrm{c}} \quad$ (K is const)
- \boldsymbol{H}_{2} : best rank- $(K r)$ approximation of $\boldsymbol{H}_{\mathrm{c}}-\boldsymbol{H}_{1}$

Proof of Theorem 6.9

Informally, the proof proceeds by showing that

1. \boldsymbol{H}_{0} dominates $\sum_{i \geq 2} \boldsymbol{H}_{i}$
(by objective function)
2. (converse) $\sum_{i \geq 2} \boldsymbol{H}_{i}$ dominates $\boldsymbol{H}_{0}+\boldsymbol{H}_{1}$
(by RIP + feasibility)

These can happen simultaneously only when $\boldsymbol{H}=\mathbf{0}$

Proof of Theorem 6.9

Step 1 (which does not rely on RIP). Show that

$$
\begin{equation*}
\sum_{j \geq 2}\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}} \leq\left\|\boldsymbol{H}_{0}\right\|_{*} / \sqrt{K r} \tag{6.2}
\end{equation*}
$$

This follows immediately by combining the following 2 observations:
(i) Since $\boldsymbol{M}+\boldsymbol{H}$ is assumed to be a better estimate:

$$
\begin{align*}
\|\boldsymbol{M}\|_{*} \geq\|\boldsymbol{M}+\boldsymbol{H}\|_{*} & \geq\left\|\boldsymbol{M}+\boldsymbol{H}_{\mathrm{c}}\right\|_{*}-\left\|\boldsymbol{H}_{0}\right\|_{*} \tag{6.3}\\
& =\underbrace{\|\boldsymbol{M}\|_{*}+\left\|\boldsymbol{H}_{\mathrm{c}}\right\|_{*}}_{\text {Fact } 6.3} \\
& \Longrightarrow\left\|\boldsymbol{H}_{\mathrm{c}}\right\|_{*} \leq\left\|\boldsymbol{H}_{0}\right\|_{*} \tag{6.4}
\end{align*}
$$

(ii) Since nonzero singular values of \boldsymbol{H}_{j-1} dominate those of $\boldsymbol{H}_{j}(j \geq 2)$:

$$
\begin{gather*}
\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}} \leq \sqrt{K r}\left\|\boldsymbol{H}_{j}\right\| \leq \sqrt{K r}\left[\left\|\boldsymbol{H}_{j-1}\right\|_{*} /(K r)\right] \leq\left\|\boldsymbol{H}_{j-1}\right\|_{*} / \sqrt{K r} \\
\Longrightarrow \quad \sum_{j \geq 2}\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}} \leq \frac{1}{\sqrt{K r}} \sum_{j \geq 2}\left\|\boldsymbol{H}_{j-1}\right\|_{*}=\frac{1}{\sqrt{K r}}\left\|\boldsymbol{H}_{\mathrm{c}}\right\|_{*} \tag{6.5}
\end{gather*}
$$

Proof of Theorem 6.9

Step 2 (using feasibility + RIP). Show that $\exists \rho<\sqrt{K / 2}$ s.t.

$$
\begin{equation*}
\left\|\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right\|_{\mathrm{F}} \leq \rho \sum_{j \geq 2}\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}} \tag{6.6}
\end{equation*}
$$

If this claim holds, then

$$
\begin{align*}
\left\|\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right\|_{\mathrm{F}} & \leq \rho \sum_{j \geq 2}\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}} \stackrel{(6.2)}{\leq} \rho \frac{1}{\sqrt{K r}}\left\|\boldsymbol{H}_{0}\right\|_{*} \\
& \leq \rho \frac{1}{\sqrt{K r}}\left(\sqrt{2 r}\left\|\boldsymbol{H}_{0}\right\|_{\mathrm{F}}\right)=\rho \sqrt{\frac{2}{K}}\left\|\boldsymbol{H}_{0}\right\|_{\mathrm{F}} \\
& \leq \rho \sqrt{\frac{2}{K}}\left\|\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right\|_{\mathrm{F}} . \tag{6.7}
\end{align*}
$$

This cannot hold with $\rho<\sqrt{K / 2}$ unless $\underbrace{\boldsymbol{H}_{0}+\boldsymbol{H}_{1}=\mathbf{0}}$ equivalently, $\boldsymbol{H}_{0}=\boldsymbol{H}_{1}=\mathbf{0}$

Proof of Theorem 6.9

We now prove (6.6). To connect $\boldsymbol{H}_{0}+\boldsymbol{H}_{1}$ with $\sum_{j \geq 2} \boldsymbol{H}_{j}$, we use feasibility:

$$
\mathcal{A}(\boldsymbol{H})=\mathbf{0} \quad \Longleftrightarrow \mathcal{A}\left(\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right)=-\sum_{j \geq 2} \mathcal{A}\left(\boldsymbol{H}_{j}\right)
$$

which taken collectively with RIP yields

$$
\begin{aligned}
\left(1-\delta_{(2+K) r}^{\mathrm{lb}}\right)\left\|\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right\|_{\mathrm{F}} & \leq\left\|\mathcal{A}\left(\boldsymbol{H}_{0}+\boldsymbol{H}_{1}\right)\right\|_{\mathrm{F}}=\left\|\sum_{j \geq 2} \mathcal{A}\left(\boldsymbol{H}_{j}\right)\right\|_{\mathrm{F}} \\
& \leq \sum_{j \geq 2}\left\|\mathcal{A}\left(\boldsymbol{H}_{j}\right)\right\|_{\mathrm{F}} \\
& \leq \sum_{j \geq 2}\left(1+\delta_{K r}^{\mathrm{ub}}\right)\left\|\boldsymbol{H}_{j}\right\|_{\mathrm{F}}
\end{aligned}
$$

This establishes (6.6) as long as $\rho:=\frac{1+\delta_{K r}^{\mathrm{ub}}}{1-\delta_{(2+K) r}^{(1)}}<\sqrt{\frac{K}{2}}$.

Gaussian sampling operators satisfy RIP

If entries of $\left\{\boldsymbol{A}_{i}\right\}_{i=1}^{m}$ are i.i.d. $\mathcal{N}(0,1 / m)$, then

$$
\delta_{5 r}(\mathcal{A})<\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
$$

with high prob., provided that

$$
m \gtrsim n r \quad \text { (near-optimal sample size) }
$$

This satisfies assumption of Theorem 6.9 with $K=3$

Precise phase transition

Using statistical dimension machienry, we can locate precise phase transition (Amelunxen, Lotz, McCoy \& Tropp '13)

$$
\text { nuclear norm min } \begin{cases}\text { works if } & m>\operatorname{stat-\operatorname {dim}(\mathcal {D}(\| \cdot \| _{*},\boldsymbol {X}))} \\ \text { fails if } & m<\operatorname{stat-\operatorname {dim}(\mathcal {D}(\| \cdot \| _{*},\boldsymbol {X}))}\end{cases}
$$

where
and

$$
\psi(\rho)=\inf _{\tau \geq 0}\left\{\rho+(1-\rho)\left[\rho\left(1+\tau^{2}\right)+(1-\rho) \int_{\tau}^{2}(u-\tau)^{2} \frac{\sqrt{4-u^{2}}}{\pi} \mathrm{~d} u\right]\right\}
$$

Numerical phase transition ($n=30$)

Low-rank matrix recovery via Schatten 1-norm minimization

Figure credit: Amelunxen, Lotz, McCoy, \& Tropp '13

Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP (e.g. none of the 4 motivating examples in this lecture satisfies RIP)

Matrix completion

Sampling operators for matrix completion

Observation operator (projection onto matrices supported on Ω)

$$
\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{M})
$$

where $(i, j) \in \Omega$ with prob. p (random sampling)

- \mathcal{P}_{Ω} does NOT satisfy RIP when $p \ll 1$!
- For example,

$\left\|\mathcal{P}_{\Omega}(\boldsymbol{M})\right\|_{\mathrm{F}}=0$, or equivalently, $\frac{1+\delta_{K}^{\mathrm{ub}}}{1-\delta_{2+K}^{\mathrm{L}}}=\infty$

Which sampling pattern?

Consider the following sampling pattern

$$
\left[\begin{array}{lllll}
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
? & ? & ? & ? & ? \\
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\checkmark & \checkmark & \checkmark & \checkmark & \checkmark
\end{array}\right]
$$

- If some rows/columns are not sampled, recovery is impossible.

Which low-rank matrices can we recover?

Compare following rank-1 matrices:

Column / row spaces cannot be aligned with canonical basis vectors

Coherence

Definition 6.10

Coherence parameter μ of $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ is smallest quantity s.t.

$$
\max _{i}\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|^{2} \leq \frac{\mu r}{n} \quad \text { and } \quad \max _{i}\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{i}\right\|^{2} \leq \frac{\mu r}{n}
$$

- $\mu \geq 1 \quad\left(\right.$ since $\left.\sum_{i=1}^{n}\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|^{2}=\|\boldsymbol{U}\|_{\mathrm{F}}^{2}=r\right)$
- $\mu=1$ if $\frac{1}{\sqrt{n}} \mathbf{1}=\boldsymbol{U}=\boldsymbol{V} \quad$ (most incoherent)
- $\mu=\frac{n}{r}$ if $\boldsymbol{e}_{i} \in \boldsymbol{U}$
(most coherent)

Performance guarantee

Theorem 6.11 (Candes \& Recht '09, Candes \& Tao '10, Gross '11, ...)
Nuclear norm minimization is exact and unique with high probability, provided that

$$
m \gtrsim \mu n r \log ^{2} n
$$

- This result is optimal up to a logarithmic factor
- Established via a RIPless theory

Numerical performance of nuclear-norm minimization

Fig. credit: Candes, Recht '09

Subgradient of nuclear norm

Subdifferential (set of subgradients) of $\|\cdot\|_{*}$ at M is

$$
\partial\|\boldsymbol{M}\|_{*}=\left\{\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W}: \quad \mathcal{P}_{T}(\boldsymbol{W})=0,\|\boldsymbol{W}\| \leq 1\right\}
$$

- Does not depend on singular values of \boldsymbol{M}
- $\boldsymbol{Z} \in \partial\|\boldsymbol{M}\|_{*}$ iff

$$
\mathcal{P}_{T}(\boldsymbol{Z})=\boldsymbol{U} \boldsymbol{V}^{\top}, \quad\left\|\mathcal{P}_{T^{\perp}}(\boldsymbol{Z})\right\| \leq 1 .
$$

KKT condition

Lagrangian:
$\mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda})=\|\boldsymbol{X}\|_{*}+\left\langle\boldsymbol{\Lambda}, \mathcal{P}_{\Omega}(\boldsymbol{X})-\mathcal{P}_{\Omega}(\boldsymbol{M})\right\rangle=\|\boldsymbol{X}\|_{*}+\left\langle\mathcal{P}_{\Omega}(\boldsymbol{\Lambda}), \boldsymbol{X}-\boldsymbol{M}\right\rangle$

When M is minimizer, KKT condition reads

$$
\begin{gathered}
\mathbf{0} \in \partial_{\boldsymbol{X}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda}) \mid \boldsymbol{X}=\boldsymbol{M} \\
\Longleftrightarrow \quad \exists \boldsymbol{\Lambda} \text { s.t. }-\mathcal{P}_{\Omega}(\boldsymbol{\Lambda}) \in \partial\|\boldsymbol{M}\|_{*} \\
\Longleftrightarrow \quad \exists \boldsymbol{W} \text { s.t. } \quad \begin{array}{l}
\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W} \text { is supported on } \Omega, \\
\\
\\
\mathcal{P}_{T}(\boldsymbol{W})=\mathbf{0}, \text { and }\|\boldsymbol{W}\| \leq 1
\end{array}
\end{gathered}
$$

Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:
Lemma 6.12
M is unique minimizer of nuclear norm minimization if

- sampling operator \mathcal{P}_{Ω} restricted to T is injective, i.e.

$$
\mathcal{P}_{\Omega}(\boldsymbol{H}) \neq \mathbf{0} \quad \forall \text { nonzero } \boldsymbol{H} \in T
$$

- $\exists \boldsymbol{W}$ s.t.

$$
\begin{aligned}
& \boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W} \text { is supported on } \Omega \text {, } \\
& \mathcal{P}_{T}(\boldsymbol{W})=\mathbf{0}, \text { and }\|\boldsymbol{W}\|<1
\end{aligned}
$$

Proof of Lemma 6.12

For any \boldsymbol{W}_{0} obeying $\left\|\boldsymbol{W}_{0}\right\| \leq 1$ and $\mathcal{P}_{T}(\boldsymbol{W})=\mathbf{0}$, one has

$$
\begin{aligned}
\|\boldsymbol{M}+\boldsymbol{H}\|_{*} \geq\|\boldsymbol{M}\|_{*}+\left\langle\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W}_{0}, \boldsymbol{H}\right\rangle \\
=\|\boldsymbol{M}\|_{*}+\left\langle\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W}, \boldsymbol{H}\right\rangle+\left\langle\boldsymbol{W}_{0}-\boldsymbol{W}, \boldsymbol{H}\right\rangle \\
=\|\boldsymbol{M}\|_{*}+\left\langle\mathcal{P}_{\Omega}\left(\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W}\right), \boldsymbol{H}\right\rangle+\left\langle\mathcal{P}_{T^{\perp}}\left(\boldsymbol{W}_{0}-\boldsymbol{W}\right), \boldsymbol{H}\right\rangle \\
=\|\boldsymbol{M}\|_{*}+\left\langle\boldsymbol{U} \boldsymbol{V}^{\top}+\boldsymbol{W}, \mathcal{P}_{\Omega}(\boldsymbol{H})\right\rangle+\left\langle\boldsymbol{W}_{0}-\boldsymbol{W}, \mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\rangle \\
\quad \text { if we take } \boldsymbol{W}_{0} \text { s.t. }\left\langle\boldsymbol{W}_{0}, \mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\rangle=\left\|\mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\|_{*} \\
\geq\|\boldsymbol{M}\|_{*}+\left\|\mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\|_{*}-\|\boldsymbol{W}\| \cdot\left\|\mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\|_{*} \\
=\|\boldsymbol{M}\|_{*}+(1-\|\boldsymbol{W}\|)\left\|\mathcal{P}_{T^{\perp}}(\boldsymbol{H})\right\|_{*}>\|\boldsymbol{M}\|_{*}
\end{aligned}
$$

unless $\mathcal{P}_{T^{\perp}}(\boldsymbol{H})=\mathbf{0}$.

But if $\mathcal{P}_{T^{\perp}}(\boldsymbol{H})=\mathbf{0}$, then $\boldsymbol{H}=\mathbf{0}$ by injectivity. Thus, $\|\boldsymbol{M}+\boldsymbol{H}\|_{*}>\|\boldsymbol{M}\|_{*}$ for any $\boldsymbol{H} \neq \mathbf{0}$, concluding the proof.

Constructing dual certificates

Use "golfing scheme" to produce approximate dual certificate (Gross '11)

- Think of it as an iterative algorithm (with sample splitting) to solve KKT

Reference

[1] "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," B. Recht, M. Fazel, P. Parrilo, SIAM Review, 2010.
[2] "Exact matrix completion via convex optimization," E. Candes, and B. Recht, Foundations of Computational Mathematics, 2009
[3] "Matrix rank minimization with applications," M. Fazel, Ph.D. Thesis, 2002.
[4] "The power of convex relaxation: Near-optimal matrix completion," E. Candes, and T. Tao, 2010.
[5] "Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements," E. Candes, and Y. Plan, IEEE Transactions on Information Theory, 2011.
[6] "Shape and motion from image streams under orthography: a factorization method," C. Tomasi and T. Kanade, International Journal of Computer Vision, 1992.

Reference

[7] "An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems," K. C. Toh and S. Yun, S, Pacific Journal of optimization, 2010.
[8] "Topics in random matrix theory," T. Tao, American mathematical society, 2012.
[9] "A singular value thresholding algorithm for matrix completion," J. Cai, E. Candes, Z. Shen, SIAM Journal on Optimization, 2010.
[10] "Recovering low-rank matrices from few coefficients in any basis," D. Gross, IEEE Transactions on Information Theory, 2011.
[11] "Incoherence-optimal matrix completion," Y. Chen, IEEE Transactions on Information Theory, 2015.
[12] "Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization," M. Jaggi, ICML, 2013.

[^0]: ${ }^{1}$ One can also define RIP w.r.t. $\|\cdot\|_{\mathrm{F}}^{2}$ rather than $\|\cdot\|_{\mathrm{F}}$.

