ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

Introduction

Yuejie Chi
Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018*

[^0]
What is sparsity?

A signal is said to be sparse when most of its components vanish.

- Formally, $\boldsymbol{x} \in \mathbb{R}^{p}$ is said to be k-sparse if it has at most k nonzero entries

What is sparsity?

A signal is said to be sparse when most of its components vanish.

- Formally, $\boldsymbol{x} \in \mathbb{R}^{p}$ is said to be k-sparse if it has at most k nonzero entries
- Think of a k-sparse signal as having k degrees of freedom

Engineers wish to describe / approximate data in the most parsimonious terms!

Only a small number of parameters matter

Only a small number of parameters matter

Only a small number of parameters matter

throw
away
85\%
coeffi-
cients

Only a small number of parameters matter

Signal is very sparse in some transform domain (e.g. wavelet)

Only a small number of parameters matter

- Compute 10^{6} wavelet coeffients
- Keep only the $25 K$ largest coefficients
- Inverse wavelet transform

1 megapixel image

25 k term approximation

Only a small number of parameters matter

Raw: 15MB

Only a small number of parameters matter

Raw: 15MB

JPEG: 150KB

There is (almost) no loss in quality between the raw image and its JPEG compressed form

General philosophy

We are drowning in information and starving for knowledge

Rutherford Roger

- Massive data acquisition
- Most data is redundant and can be thrown away

General philosophy

We are drowning in data and starving for information

Rutherford Roger

- Massive data acquisition
- Most data is redundant and can be thrown away

General philosophy

We are drowning in data and starving for information

Rutherford Roger

- Massive data acquisition
- Most data is redundant and can be thrown away

Will such "information sparsity" be useful in data acquisition, statistical inference and information recovery?

Advantages of sparsity

- Interpretability of our estimate / fitted model
- particularly important when sample size $\ll \#$ unknowns

Advantages of sparsity

- Interpretability of our estimate / fitted model
- particularly important when sample size $\ll \#$ unknowns
- Computational convenience
- in many cases we have scalable procedures to promote sparsity

Advantages of sparsity

- Interpretability of our estimate / fitted model
- particularly important when sample size $\ll \#$ unknowns
- Computational convenience
- in many cases we have scalable procedures to promote sparsity
- "Bet on sparsity" principle
- use a procedure that does well in sparse problems, since no procedure does well in dense problems
- "less is more": sparse model might be easier to estimate than dense models
- Occam's razor

Example: compressed sensing

Magnetic Resonance Imaging (MRI)

MR scanner

MR image
K. Pauly, G. Gold, RAD220

What an MRI machine sees

Measured data $y\left(k_{1}, k_{2}\right) \longleftarrow$ Fourier transform of image $f\left(x_{1}, x_{2}\right)$

Fourier transform

$$
y\left(k_{1}, k_{2}\right) \approx \sum_{x_{1}} \sum_{x_{2}} f\left(x_{1}, x_{2}\right) \mathrm{e}^{-i 2 \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)}
$$

How do we form an image?

image $f\left(x_{1}, x_{2}\right) \longleftarrow \quad$ inverse Fourier transform of measurements

$$
f\left(x_{1}, x_{2}\right) \approx \sum \sum y\left(k_{1}, k_{2}\right) \mathrm{e}^{i 2 \pi\left(k_{1} x_{1}+k_{2} x_{2}\right)}
$$

MRI data collection is inherently slow

Done!

M. Lustig

Fact: impact of MRI on children health is limited

Children cannot stay still or breathhold!

- (deep) anesthesia required
- respiration suspension

Is it possible to take fewer samples to reduce scan time?

uniform undersampling by a factor of 2

Is it possible to take fewer samples to reduce scan time?

Fewer equations than unknowns!

How can we possibly solve an underdetermined system?

Fewer equations than unknowns!

How can we possibly solve an underdetermined system?

We need at least as many equations as unknowns!

Carl Friedrich Gauss

A surprising experiment

A surprising experiment

Fourier transform

A surprising experiment

Fourier transform

highly subsampled

A surprising experiment

highly subsampled

A surprising experiment

A surprising experiment

classical
reconstruction
Fourier transform

compressed sensing reconstruction
highly subsampled
CS algorithm:
$\min \quad \sum_{x}\|\nabla f(x)\|_{1}$ subj. to data constraints

Structured solutions

How can we possibly solve?
Need some structure
\boldsymbol{x} is k-sparse \rightarrow at most k degrees of freedom

Ingredients for success

- Exploit signal structure: sparsity
- Recovery via efficient algorithms (e.g. convex optimization)
- Incoherent sensing mechanism

Translation to practice...

Rather than taking nearly six minutes with multiple breath-holds, a Cardiac Cine scan can now be done within 25 seconds - in free-breathing.

News | February 21, 2017
FDA Clears Compressed Sensing MRI Acceleration Technology From Siemens Healthineers

- New technology employs iterative reconstruction to produce high-quality MR images at a rapid rate with zero diagnostic information loss
- Compressed Sensing Cardiac Cine - the technology's first application - enables diagnostic cardiac imaging of patients with arrhythmias or respiratory problems

Siemens Healthineers has announced that the Food and Drug Administration (FDA) has cleared the company's revolutionary Compressed Sensing technology, which slashes the long acquisition times

Going beyond sparsity

Netflix challenge: predict unseen ratings

Can we infer the missing entries?

- Underdetermined system (more unknowns than revealed entries)
- Seems hopeless

What if unknown matrix has structure?

A few factors explain most of the data

What if unknown matrix has structure?

A few factors explain most of the data $\quad \longrightarrow$ low-rank approximation

Big data

Huge data sizes but often low-dimensional structure

Engineering applications: unknown matrix is often (approx.) low rank

Low-rank matrix completion?

Ground truth

50×50 low-rank

Another surprising experiment

Observed samples

Another surprising experiment

Observed samples
minimize $\underbrace{\text { sum-of-singular-values }}_{\text {nuclear norm }}$

3	2	4	2	1
4	2	6	4	2
3	1	5	4	2
3	1	4	3	1
1	0	3	3	2

Estimate via nuclear norm min
subj. to data constraints

Another surprising experiment

Ground truth
minimize sum-of-singular-values nuclear norm

Estimate via nuclear norm min

3	2	4	2	1
4	2	6	4	2
3	1	5	4	2
3	1	4	3	1
1	0	3	3	2

Another problem: principal component analysis

$$
\begin{aligned}
& \boldsymbol{X}=\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{n}
\end{array}\right]
\end{aligned}
$$

Another problem: principal component analysis

minimize $\|\boldsymbol{X}-\boldsymbol{L}\|$ subject to $\operatorname{rank}(\boldsymbol{L}) \leq k$

Another problem: principal component analysis

minimize $\|\boldsymbol{X}-\boldsymbol{L}\|$ subject to $\operatorname{rank}(\boldsymbol{L}) \leq k$

Robust principal component analysis

Recover low-dimensional structure from corrupted data

$$
\boldsymbol{Y}=\boldsymbol{L}+\boldsymbol{S}
$$

- \boldsymbol{Y} : data matrix (observed)
- L: low-rank component (unobserved)
- \boldsymbol{S} : sparse outliers (unobserved)

Robust principal component analysis

Recover low-dimensional structure from corrupted data

$$
\boldsymbol{Y}=\boldsymbol{L}+\boldsymbol{S}
$$

- \boldsymbol{Y} : data matrix (observed)
- L: low-rank component (unobserved)
- \boldsymbol{S} : sparse outliers (unobserved)

Robust principal component analysis

Recover low-dimensional structure from corrupted data

$$
\boldsymbol{Y}=\boldsymbol{L}+\boldsymbol{S}
$$

- \boldsymbol{Y} : data matrix (observed)
- L: low-rank component (unobserved)
- \boldsymbol{S} : sparse outliers (unobserved)

Can we separate \boldsymbol{L} and \boldsymbol{S} ?

De-mixing by (non)convex programming

Spoiler: convex relaxation often enables perfect separation; nonconvex ones might work even better!

Example: separation of background (low-rank) and foreground (sparse) in videos

Keywords of this course

- Low-dimensional structure (e.g. sparsity, low rank)

Keywords of this course

- Low-dimensional structure (e.g. sparsity, low rank)
- Statistical models of data collection (incoherent sensing mechanism, often has some"randomness")

Keywords of this course

- Low-dimensional structure (e.g. sparsity, low rank)
- Statistical models of data collection (incoherent sensing mechanism, often has some"randomness")
- Efficient algorithms (convex optimization, numerical methods, gradient descent, etc.)

Keywords of this course

- Low-dimensional structure (e.g. sparsity, low rank)
- Statistical models of data collection (incoherent sensing mechanism, often has some"randomness")
- Efficient algorithms (convex optimization, numerical methods, gradient descent, etc.)

We can recover many low-dimensional structures of interest from highly incomplete data by efficient algorithms

Logistics

Basic information

- Mon/Wed: 4:30-6:00 pm
- Instructor's office hours: Thursday 2-3:30pm, PH B25
- TA's office hours: Rohan Varma, Monday 10-12, PH B44

Why you should consider taking this course

Why you should consider taking this course

- There will be quite a few THEOREMS and PROOFS ...

Why you should consider taking this course

- There will be quite a few THEOREMS and PROOFS ...
- Promote deeper understanding of scientific results

Why you should consider taking this course

- There will be quite a few THEOREMS and PROOFS ...
- Promote deeper understanding of scientific results
- Nonrigorous / heuristic from time to time

Why you should consider taking this course

- There will be quite a few THEOREMS and PROOFS ...
- Promote deeper understanding of scientific results
- Nonrigorous / heuristic from time to time
- "Nonrigorous" but grounded in rigorous theory
- Help develop intuition

Why you should consider taking this course

- There will be quite a few THEOREMS and PROOFS ...
- Promote deeper understanding of scientific results
- Nonrigorous / heuristic from time to time
- "Nonrigorous" but grounded in rigorous theory
- Help develop intuition
- No exams!

Tentative topics

First half: Fundamentals:

- Sparse representation
- Sparse linear regression and model selection
- Sparsity in graphical models
- Compressed sensing and sparse recovery
- Low-rank matrix recovery and matrix completion

Tentative topics

First half: Fundamentals:

- Sparse representation
- Sparse linear regression and model selection
- Sparsity in graphical models
- Compressed sensing and sparse recovery
- Low-rank matrix recovery and matrix completion

Second half: Special topics:

- phase retrieval / solving systems of quadratic equations
- Super-resolution and spectral estimation
- dictionary learning
- Neural networks
- implicit regularization: how optimization interacts with statistical inference

Textbooks

We recommend these two books, but will not follow them closely ...

Statistical Learning with Sparsity
The Lasso and
Generalizations

Trevor Hastie
Robert Tibshirani
Martin Wainwright

Other useful references

- Mathematics of sparsity (and a few other things), Emmanuel Candes, International Congress of Mathematicians, 2014.
- Sparse and redundant representations: from theory to applications in signal and image processing, Michael Elad, Springer, 2010.
- Graphical models, exponential families, and variational inference, Martin Wainwright, and Michael Jordan, Foundations and Trends in Machine Learning, 2008.
- Introduction to the non-asymptotic analysis of random matrices, Roman Vershynin, Compressed Sensing: Theory and Applications, 2010.
- Convex optimization, Stephen Boyd, and Lieven Vandenberghe, Cambridge University Press, 2004.
- Topics in random matrix theory, Terence Tao, American Mathematical Society, 2012.

More references will be provided at each lecture.

Prerequisites

- linear algebra
- probability
- a programming language (e.g. Matlab, Python, ...)
- knowledge in basic convex optimization is a plus

Prerequisites

- linear algebra
- probability
- a programming language (e.g. Matlab, Python, ...)
- knowledge in basic convex optimization is a plus
- Concentration inequalities and non-asymptotic random matrix theory

Grading

- Homeworks (30\%): ~4 problem sets
- Midterm Paper Presentations (20\%)
- An in-class presentation on a selected paper from a given pool is arranged in lieu of the midterm.
- About 20 min each, highlight at least one key result
- Term project (50\%)

Term project

Two forms

- literature review on a research topic (individual)
- original research (can be individual or a group of two)
- You are strongly encouraged to combine it with your own research

Term project

Two forms

- literature review on a research topic (individual)
- original research (can be individual or a group of two)
- You are strongly encouraged to combine it with your own research

Three milestones

- Proposal (March 28): up to 2 pages (NIPS format). Plan early!
- Presentation (last week of class)
- Report (May 14): up to 4 pages with unlimited appendix

Reference

[1] "Mathematics of sparsity (and a few other things)," E. Candes, International Congress of Mathematicians, 2014.
[2] "Statistical learning with sparsity: the Lasso and generalizations," T. Hastie, R. Tibshirani, and M. Wainwright, 2015.

[^0]: *Slides adapted from Yuxin Chen@Princeton.

