ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

High-dimensional graphical models

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Identifying Interactions in Data

Given n data samples, $\boldsymbol{x}_{i} \sim \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right] \in \mathbb{R}^{p}$, how to identity interactions between x_{i} and x_{j} ?

Multivariate Gaussians

Consider a random vector $\boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ with pdf

$$
\begin{aligned}
f(\boldsymbol{x}) & =\frac{1}{(2 \pi)^{p / 2} \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}} \exp \left\{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}\right\} \\
& \propto \operatorname{det}(\boldsymbol{\Theta})^{1 / 2} \exp \left\{-\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Theta} \boldsymbol{x}\right\}
\end{aligned}
$$

where $\boldsymbol{\Sigma}=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{\top}\right] \succ \mathbf{0}$ is $p \times p$ covariance matrix, and $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$ is inverse covariance matrix / precision matrix

Likelihood function for Gaussian models

Draw n i.i.d. samples $\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$, then log-likelihood (up to additive constant) is

$$
\begin{aligned}
\ell(\boldsymbol{\Theta}) & =\frac{1}{n} \sum_{i=1}^{n} \log f\left(\boldsymbol{x}_{i}\right)=\frac{1}{2} \log \operatorname{det}(\boldsymbol{\Theta})-\frac{1}{2 n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\top} \boldsymbol{\Theta} \boldsymbol{x}_{i} \\
& =\frac{1}{2} \log \operatorname{det}(\boldsymbol{\Theta})-\frac{1}{2} \operatorname{tr}(\boldsymbol{S} \boldsymbol{\Theta})
\end{aligned}
$$

where $\boldsymbol{S}:=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}$ is sample covariance matrix (SCM).

Maximum likelihood estimation (MLE)

$$
\widehat{\boldsymbol{\Theta}}=\operatorname{argmax}_{\boldsymbol{\Theta} \succeq \mathbf{0}} \quad \log \operatorname{det}(\boldsymbol{\Theta})-\operatorname{tr}(\boldsymbol{S} \boldsymbol{\Theta})
$$

The sample-rich regime

Fact 9.1

If the SCM S is invertible, the MLE is given as

$$
\widehat{\boldsymbol{\Theta}}=\boldsymbol{S}^{-1}
$$

When $n \gg p$, the SCM is invertible and classical theory says MLE converges to the truth as sample size $n \rightarrow \infty$ (consistency).

High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small, with $n<p$. Why?

- Our assumption may only hold for a small window of data collection;
- Our ability may only allow us to collect a few samples;
- The number of features/variables we care is much higher.

In this regime, \boldsymbol{S} is rank-deficient, and MLE does not even exist.

High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small, with $n<p$. Why?

- Our assumption may only hold for a small window of data collection;
- Our ability may only allow us to collect a few samples;
- The number of features/variables we care is much higher.

In this regime, \boldsymbol{S} is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.

Gaussian Graphical Model with Sparsity

Undirected graphical models

- Represent a collection of variables $\boldsymbol{x}=\left[x_{1}, \cdots, x_{p}\right]^{\top}$ by a vertex set $\mathcal{V}=\{1, \cdots, p\}$
- Encode conditional independence by a set \mathcal{E} of edges
- For any pair of vertices u and v,

$$
(u, v) \notin \mathcal{E} \quad \Longleftrightarrow \quad x_{u} \Perp x_{v} \mid \boldsymbol{x}_{\mathcal{V} \backslash\{u, v\}}
$$

Gaussian graphical models

Lemma 9.2
Consider a Gaussian vector $\boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. For any u and v,

$$
x_{u} \Perp x_{v} \mid \boldsymbol{x}_{\mathcal{V} \backslash\{u, v\}}
$$

iff $\Theta_{u, v}=0$, where $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$.

Many pairs of variables are conditionally independent $\Longleftrightarrow \quad$ many missing links in the graphical model (sparsity)

Gaussian graphical models

Inverse covariance matrix Θ is often (approximately) sparse

Sparse inverse covariance estimation

Problem definition: Given n i.i.d. samples, $\boldsymbol{x}_{i} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$, estimate the sparse inverse covariance matrix $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$.

Two approaches:

- Graphical Lasso
- CLIME

Graphical lasso

Key idea: regularizing the MLE by imposing ℓ_{1} regularization (Yuan \& Lin'07; Friedman, Hastie, \&Tibshirani '08).

Graphical Lasso (GLasso)

$$
\operatorname{maximize}_{\boldsymbol{\Theta} \succeq \mathbf{0}} \quad \log \operatorname{det}(\boldsymbol{\Theta})-\operatorname{tr}(\boldsymbol{S} \boldsymbol{\Theta})-\underbrace{\lambda\|\boldsymbol{\Theta}\|_{1}}_{\text {lasso penalty }}
$$

- It is a convex program! (homework)
- First-order optimality condition

$$
\begin{gather*}
\mathbf{\Theta}^{-1}-\boldsymbol{S}-\lambda \underbrace{\partial\|\boldsymbol{\Theta}\|_{1}}_{\text {subgradient }}=\mathbf{0} \tag{9.1}\\
\Longrightarrow \quad\left(\boldsymbol{\Theta}^{-1}\right)_{i, i}=S_{i, i}+\lambda, \quad 1 \leq i \leq p
\end{gather*}
$$

Blockwise coordinate descent

Idea: repeatedly cycle through all columns/rows and, in each step, optimize only a single column/row

Notation: use \boldsymbol{W} to denote working version of $\boldsymbol{\Theta}^{-1}$. Partition all matrices into 1 column/row vs. the rest

$$
\boldsymbol{\Theta}=\left[\begin{array}{cc}
\boldsymbol{\Theta}_{11} & \boldsymbol{\theta}_{12} \\
\boldsymbol{\theta}_{12}^{\top} & \theta_{22}
\end{array}\right] \quad \boldsymbol{S}=\left[\begin{array}{ll}
\boldsymbol{S}_{11} & \boldsymbol{s}_{12} \\
\boldsymbol{s}_{12}^{\top} & s_{22}
\end{array}\right] \quad \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{11} & \boldsymbol{w}_{12} \\
\boldsymbol{w}_{12}^{\top} & w_{22}
\end{array}\right]
$$

Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. It follows from (9.1) that

$$
\begin{equation*}
\mathbf{0} \in \boldsymbol{W}_{11} \boldsymbol{\beta}-\boldsymbol{s}_{12}+\lambda \partial\left\|\boldsymbol{\theta}_{12}\right\|_{1}=\boldsymbol{W}_{11} \boldsymbol{\beta}-\boldsymbol{s}_{12}+\lambda \partial\left\|\boldsymbol{\beta}_{12}\right\|_{1} \tag{9.2}
\end{equation*}
$$

where $\boldsymbol{\beta}=-\boldsymbol{\theta}_{12} \cdot w_{22}$ (by matrix inverse formula)

This coincides with optimality condition for

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\beta}} \quad \frac{1}{2}\left\|\boldsymbol{W}_{11}^{1 / 2} \boldsymbol{\beta}-\boldsymbol{W}_{11}^{-1 / 2} \boldsymbol{s}_{12}\right\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1} \tag{9.3}
\end{equation*}
$$

Blockwise coordinate descent

Algorithm 9.1 Block coordinate descent for graphical lasso
Initialize $\boldsymbol{W}=\boldsymbol{S}+\lambda \boldsymbol{I}$ and fix its diagonals $\left\{w_{i, i}\right\}$.
Repeat until covergence:
for $t=1, \cdots p$:
(i) Partition \boldsymbol{W} (resp. \boldsymbol{S}) into 4 parts, where the upper-left part consists of all but the j th row / column
(ii) Solve

$$
\operatorname{minimize}_{\boldsymbol{\beta}} \quad \frac{1}{2}\left\|\boldsymbol{W}_{11}^{1 / 2} \boldsymbol{\beta}-\boldsymbol{W}_{11}^{-1 / 2} \boldsymbol{s}_{12}\right\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}
$$

(iii) Update $\boldsymbol{w}_{12}=\boldsymbol{W}_{11} \boldsymbol{\beta}$

Set $\hat{\boldsymbol{\theta}}_{12}=-\hat{\theta}_{22} \boldsymbol{\beta}$ with $\hat{\theta}_{22}=1 /\left(w_{22}-\boldsymbol{w}_{12}^{\top} \boldsymbol{\beta}\right)$

Blockwise coordinate descent

The only remaining thing is to ensure $\boldsymbol{W} \succeq \mathbf{0}$. This is automatically satisfied:

Lemma 9.3 (Mazumder \& Hastie, '12)

If we start with $\boldsymbol{W} \succ \mathbf{0}$ satisfying $\|\boldsymbol{W}-\boldsymbol{S}\|_{\infty} \leq \lambda$, then every row/column update maintains positive definiteness of \boldsymbol{W}.

- If we start with $\boldsymbol{W}^{(0)}=\boldsymbol{S}+\lambda \boldsymbol{I}$, then $\boldsymbol{W}^{(t)}$ will always be positive definite

Proof of Lemma 9.3

A key observation for the proof of Lemma 9.3

Fact 9.4 (Lemma 2, Mazumder \& Hastie, '12)

Solving (9.3) is equivalent to solving

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{\gamma}}\left(s_{12}+\boldsymbol{\gamma}\right)^{\top} \boldsymbol{W}_{11}^{-1}\left(s_{12}+\gamma\right) \quad \text { s.t. }\|\gamma\|_{\infty} \leq \lambda \tag{9.4}
\end{equation*}
$$

where solutions to 2 problems are related by $\hat{\boldsymbol{\beta}}=\boldsymbol{W}_{11}^{-1}\left(\boldsymbol{s}_{12}+\hat{\boldsymbol{\gamma}}\right)$

- Check that optimality condition of (9.3) and that of (9.4) match

Proof of Lemma 9.3

Suppose in $t^{\text {th }}$ iteration one has $\left\|\boldsymbol{W}^{(t)}-\boldsymbol{S}\right\|_{\infty} \leq \lambda$ and

$$
\boldsymbol{W}^{(t)} \succ \mathbf{0}
$$

$\Longleftrightarrow \quad \boldsymbol{W}_{11}^{(t)} \succ \mathbf{0} ; \quad w_{22}-\boldsymbol{w}_{12}^{(t) \top}\left(\boldsymbol{W}_{11}^{(t)}\right)^{-1} \boldsymbol{w}_{12}^{(t)}>0 \quad$ (Schur complement)
We only update \boldsymbol{w}_{12}, so it suffices to show

$$
\begin{equation*}
w_{22}-\boldsymbol{w}_{12}^{(t+1) \top}\left(\boldsymbol{W}_{11}^{(t)}\right)^{-1} \boldsymbol{w}_{12}^{(t+1)}>0 \tag{9.5}
\end{equation*}
$$

Recall that $\boldsymbol{w}_{12}^{(t+1)}=\boldsymbol{W}_{11}^{t} \boldsymbol{\beta}^{t+1}$. It follows from Fact 9.4 that and

$$
\begin{aligned}
& \left\|\boldsymbol{w}_{12}^{(t+1)}-\boldsymbol{s}_{12}\right\|_{\infty} \leq \lambda ; \\
& \boldsymbol{w}_{12}^{(t+1) \top}\left(\boldsymbol{W}_{11}^{(t)}\right)^{-1} \boldsymbol{w}_{12}^{(t+1)} \leq \boldsymbol{w}_{12}^{(t) \top}\left(\boldsymbol{W}_{11}^{(t)}\right)^{-1} \boldsymbol{w}_{12}^{(t)} .
\end{aligned}
$$

Since $w_{22}=s_{22}+\lambda$ remains unchanged, we establish (9.5).

CLIME

Key idea: Utilize two facts:

- $\boldsymbol{\Sigma} \cdot \boldsymbol{\Theta}=\boldsymbol{I}$.
- The SCM \boldsymbol{S} can be used as a surrogate of $\boldsymbol{\Sigma}$.

CLIME (Cai, Liu \& Luo, 2011)

```
minimize}\mp@subsup{\boldsymbol{\Theta}}{|}{|\Theta|}\mp@subsup{|}{1}{}\quad\mathrm{ s.t. }|S\boldsymbol{\Theta}-\boldsymbol{I}\mp@subsup{|}{\infty}{}\leq\mp@subsup{\lambda}{n}{}
```

- Note: $\|\boldsymbol{A}\|_{\infty}=\max _{i, j}\left|A_{i, j}\right|$.
- Parallelizable for each column of Θ, thus very efficient.
- Post-processing step needed to guarantee symmetry and PSD.

Comparison with GLasso

Figure 1. Plot of the elementwise ℓ_{∞} constrained feasible set (shaded polygon) and the elementwise ℓ_{1} norm objective (dashed diamond near the origin) from CLIME. The log-likelihood function as in Glasso is represented by the dotted line.
Figure credit: Cai, Liu \& Luo, 2011.

Gaussian Graphical Model with Latent Variables

Latent variables in graphical models

Motivation: some of the variables are not directly observable.

medical/biological

economy

We call the unobserved/missing variables the latent variables.

Graphical models with latent variables

What if one only observes a subset of variables?

$$
\left[\begin{array}{c}
\boldsymbol{x}_{\mathrm{o}} \\
\boldsymbol{x}_{\mathrm{h}}
\end{array}\right] \quad \begin{gathered}
\text { (observed variables) } \\
\text { (hidden variables) }
\end{gathered}
$$

Covariance and precision matrices can be partitioned as

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\overbrace{\boldsymbol{\Sigma}_{\mathrm{o}}}^{\text {observed part }} & \boldsymbol{\Sigma}_{\mathrm{o}, \mathrm{~h}} \\
\boldsymbol{\Sigma}_{\mathrm{o}, \mathrm{~h}}^{\top} & \boldsymbol{\Sigma}_{\mathrm{h}}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\Theta}_{\mathrm{o}} & \boldsymbol{\Theta}_{\mathrm{o}, \mathrm{~h}} \\
\boldsymbol{\Theta}_{\mathrm{o}, \mathrm{~h}}^{\top} & \boldsymbol{\Theta}_{\mathrm{h}}
\end{array}\right]^{-1}
$$

Graphical models with latent variables

What if one only observes a subset of variables?

$$
\left[\begin{array}{c}
\boldsymbol{x}_{\mathrm{o}} \\
\boldsymbol{x}_{\mathrm{h}}
\end{array}\right] \quad \begin{gathered}
\text { (observed variables) } \\
\text { (hidden variables) }
\end{gathered}
$$

$$
\Theta_{\mathrm{o}}=\underbrace{\boldsymbol{\Sigma}_{\mathrm{o}}^{-1}}_{\text {observed }}=\underbrace{\Theta_{\mathrm{o}}}_{\text {sparse }}-\underbrace{\Theta_{\mathrm{o}, \mathrm{~h}} \Theta_{\mathrm{h}}^{-1} \Theta_{\mathrm{h}, \mathrm{o}}}_{\text {low-rank if \# latent vars is small }}
$$

sparse + low-rank decomposition

Inverse covariance estimation for LVGGM

Problem definition: Given n i.i.d. samples, $\boldsymbol{x}_{i} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$, estimate the sparse - low-rank inverse covariance matrix $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$.

First write

$$
\Theta=\boldsymbol{\Psi}-\boldsymbol{L}
$$

where $\mathbf{\Psi} \succeq \mathbf{0}, \boldsymbol{L} \succeq \mathbf{0}$.

LVGGM (Chandrasekaran, Parrilo, Willsky, 2012)

$$
\operatorname{maximize}_{\boldsymbol{\Phi}, \boldsymbol{L}} \quad \underbrace{\log \operatorname{det}(\boldsymbol{\Theta})-\operatorname{tr}(\boldsymbol{S}(\boldsymbol{\Phi}-\boldsymbol{L}))}_{\text {log-likelihood }}-\lambda_{n}\left(\|\boldsymbol{\Psi}\|_{1}+\eta \operatorname{tr}(\boldsymbol{L})\right)
$$

$$
\text { s.t. } \quad \mathbf{\Phi}-\boldsymbol{L} \succeq \mathbf{0}, \quad \boldsymbol{L} \succeq \mathbf{0} \text {. }
$$

Reference

[1] "Sparse inverse covariance estimation with the graphical lasso," J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics, 2008.
[2] "The graphical lasso: new insights and alternatives," R. Mazumder and T. Hastie, Electronic journal of statistics, 2012.
[3] "Statistical learning with sparsity: the Lasso and generalizations," T. Hastie, R. Tibshirani, and M. Wainwright, 2015.
[4] "A constrained ℓ_{1} minimization approach to sparse precision matrix estimation," T. T. Cai, W. Liu, and X. Luo, JASA, 2011.
[5] "Latent variable graphical model selection via convex optimization," V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, The Annals of Statistics, 2012.

