ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

High-dimensional graphical models

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Given n data samples, $x_i \sim x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix} \in \mathbb{R}^p$, how to identity

interactions between x_i and x_j ?

Multivariate Gaussians

Consider a random vector $oldsymbol{x} \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma})$ with pdf

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2} \det(\boldsymbol{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x}\right\}$$

$$\propto \det(\boldsymbol{\Theta})^{1/2} \exp\left\{-\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{\Theta}\boldsymbol{x}\right\}$$

where $\Sigma = \mathbb{E}[xx^{\top}] \succ 0$ is $p \times p$ covariance matrix, and $\Theta = \Sigma^{-1}$ is inverse covariance matrix / precision matrix

Likelihood function for Gaussian models

Draw n i.i.d. samples $x_1, \cdots, x_n \sim \mathcal{N}(\mathbf{0}, \Sigma)$, then log-likelihood (up to additive constant) is

$$\ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^{n} \log f(\boldsymbol{x}_i) = \frac{1}{2} \log \det(\boldsymbol{\Theta}) - \frac{1}{2n} \sum_{i=1}^{n} \boldsymbol{x}_i^{\top} \boldsymbol{\Theta} \boldsymbol{x}_i$$
$$= \frac{1}{2} \log \det(\boldsymbol{\Theta}) - \frac{1}{2} \operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}),$$

where $\boldsymbol{S} := rac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{ op}$ is sample covariance matrix (SCM).

$$\begin{split} \text{Maximum likelihood estimation (MLE)} \\ \widehat{\Theta} = \text{argmax}_{\Theta \succeq 0} \quad \log \det \left(\Theta \right) - \operatorname{tr}(\boldsymbol{S}\Theta) \end{split}$$

The sample-rich regime

Fact 9.1

If the SCM old S is invertible, the MLE is given as

$$\widehat{\boldsymbol{\Theta}} = \boldsymbol{S}^{-1}.$$

When $n \gg p$, the SCM is invertible and classical theory says MLE converges to the truth as sample size $n \to \infty$ (consistency).

High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small, with n < p. Why?

- Our assumption may only hold for a small window of data collection;
- Our ability may only allow us to collect a few samples;
- The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.

Practically, we are often in the regime where sample size n is small, with n < p. Why?

- Our assumption may only hold for a small window of data collection;
- Our ability may only allow us to collect a few samples;
- The number of features/variables we care is much higher.

In this regime, \boldsymbol{S} is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.

Gaussian Graphical Model with Sparsity

Undirected graphical models

 $x_1 \perp \!\!\!\perp x_4 \mid \{x_2, x_3, x_5, x_6, x_7, x_8\}$

- Represent a collection of variables $\boldsymbol{x} = [x_1, \cdots, x_p]^\top$ by a vertex set $\mathcal{V} = \{1, \cdots, p\}$
- Encode conditional independence by a set *E* of edges
 For any pair of vertices *u* and *v*,

$$(u,v) \notin \mathcal{E} \iff x_u \perp \!\!\!\perp x_v \mid \boldsymbol{x}_{\mathcal{V} \setminus \{u,v\}}$$

Lemma 9.2

Consider a Gaussian vector $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$. For any u and v,

$$x_u \perp \!\!\!\perp x_v \mid \boldsymbol{x}_{\mathcal{V} \setminus \{u,v\}}$$

iff $\Theta_{u,v} = 0$, where $\Theta = \Sigma^{-1}$.

Many pairs of variables are conditionally independent many missing links in the graphical model (sparsity)

Inverse covariance matrix Θ is often (approximately) sparse

Problem definition: Given *n* i.i.d. samples, $x_i \sim \mathcal{N}(0, \Sigma)$, estimate the sparse inverse covariance matrix $\Theta = \Sigma^{-1}$.

Two approaches:

- Graphical Lasso
- CLIME

Key idea: regularizing the MLE by imposing ℓ_1 regularization (Yuan & Lin'07; Friedman, Hastie, & Tibshirani '08).

$$\begin{array}{l} \textbf{Graphical Lasso (GLasso)} \\ \\ \textbf{maximize}_{\pmb{\Theta} \succeq \pmb{0}} \quad \log \det \left(\pmb{\Theta} \right) - \mathrm{tr}(\pmb{S}\pmb{\Theta}) - \underbrace{\lambda \| \pmb{\Theta} \|_1}_{\textbf{lasso penalty}} \end{array}$$

- It is a convex program! (homework)
- First-order optimality condition

$$\Theta^{-1} - S - \lambda \underbrace{\partial \|\Theta\|_1}_{\text{subgradient}} = \mathbf{0}$$
(9.1)

$$\implies (\Theta^{-1})_{i,i} = S_{i,i} + \lambda, \quad 1 \le i \le p$$

Blockwise coordinate descent

Idea: repeatedly cycle through all columns/rows and, in each step, optimize only a single column/row

Notation: use W to denote working version of Θ^{-1} . Partition all matrices into 1 column/row vs. the rest

$$\boldsymbol{\Theta} = \left[\begin{array}{cc} \boldsymbol{\Theta}_{11} & \boldsymbol{\theta}_{12} \\ \boldsymbol{\theta}_{12}^\top & \boldsymbol{\theta}_{22} \end{array} \right] \quad \boldsymbol{S} = \left[\begin{array}{cc} \boldsymbol{S}_{11} & \boldsymbol{s}_{12} \\ \boldsymbol{s}_{12}^\top & \boldsymbol{s}_{22} \end{array} \right] \quad \boldsymbol{W} = \left[\begin{array}{cc} \boldsymbol{W}_{11} & \boldsymbol{w}_{12} \\ \boldsymbol{w}_{12}^\top & \boldsymbol{w}_{22} \end{array} \right]$$

Blockwise step: suppose we fix all but the last row / column. It follows from (9.1) that

$$\mathbf{0} \in \boldsymbol{W}_{11}\boldsymbol{\beta} - \boldsymbol{s}_{12} + \lambda \partial \|\boldsymbol{\theta}_{12}\|_1 = \boldsymbol{W}_{11}\boldsymbol{\beta} - \boldsymbol{s}_{12} + \lambda \partial \|\boldsymbol{\beta}_{12}\|_1 \qquad (9.2)$$

where $\boldsymbol{\beta} = -\boldsymbol{\theta}_{12} \cdot w_{22}$ (by matrix inverse formula)

This coincides with optimality condition for

minimize_{$$\beta$$} $\frac{1}{2} \| \boldsymbol{W}_{11}^{1/2} \boldsymbol{\beta} - \boldsymbol{W}_{11}^{-1/2} \boldsymbol{s}_{12} \|^2 + \lambda \| \boldsymbol{\beta} \|_1$ (9.3)

Algorithm 9.1 Block coordinate descent for graphical lasso

Initialize $W = S + \lambda I$ and fix its diagonals $\{w_{i,i}\}$.

Repeat until covergence:

for $t = 1, \cdots p$:

(i) Partition W (resp. S) into 4 parts, where the upper-left part consists of all but the jth row / column

(ii) Solve

minimize
$$_{oldsymbol{eta}} = rac{1}{2} \| oldsymbol{W}_{11}^{1/2} oldsymbol{eta} - oldsymbol{W}_{11}^{-1/2} oldsymbol{s}_{12} \|^2 + \lambda \| oldsymbol{eta} \|_1$$

(iii) Update $oldsymbol{w}_{12} = oldsymbol{W}_{11}oldsymbol{eta}$

Set
$$\hat{\theta}_{12} = -\hat{\theta}_{22}\boldsymbol{\beta}$$
 with $\hat{\theta}_{22} = 1/(w_{22} - \boldsymbol{w}_{12}^{\top}\boldsymbol{\beta})$

The only remaining thing is to ensure $W \succeq 0$. This is automatically satisfied:

Lemma 9.3 (Mazumder & Hastie, '12)

If we start with $W \succ 0$ satisfying $||W - S||_{\infty} \le \lambda$, then every row/column update maintains positive definiteness of W.

• If we start with ${m W}^{(0)}={m S}+\lambda {m I}$, then ${m W}^{(t)}$ will always be positive definite

A key observation for the proof of Lemma 9.3

Fact 9.4 (Lemma 2, Mazumder & Hastie, '12)

Solving (9.3) is equivalent to solving

minimize_{$$\gamma$$} $(s_{12} + \gamma)^{\top} W_{11}^{-1}(s_{12} + \gamma)$ s.t. $\|\gamma\|_{\infty} \leq \lambda$ (9.4)

where solutions to 2 problems are related by $\hat{oldsymbol{eta}} = oldsymbol{W}_{11}^{-1}(oldsymbol{s}_{12}+\hat{oldsymbol{\gamma}})$

• Check that optimality condition of (9.3) and that of (9.4) match

Proof of Lemma 9.3

Suppose in $t^{\sf th}$ iteration one has $\|m{W}^{(t)}-m{S}\|_\infty\leq\lambda$ and $m{W}^{(t)}\succm{0}$

 $\iff \boldsymbol{W}_{11}^{(t)} \succ \boldsymbol{0}; \quad w_{22} - \boldsymbol{w}_{12}^{(t)\top} \left(\boldsymbol{W}_{11}^{(t)} \right)^{-1} \boldsymbol{w}_{12}^{(t)} > 0 \quad (\text{Schur complement})$

We only update w_{12} , so it suffices to show

$$w_{22} - \boldsymbol{w}_{12}^{(t+1)\top} \left(\boldsymbol{W}_{11}^{(t)} \right)^{-1} \boldsymbol{w}_{12}^{(t+1)} > 0$$
(9.5)

Recall that $m{w}_{12}^{(t+1)} = m{W}_{11}^t m{eta}^{t+1}.$ It follows from Fact 9.4 that and

$$egin{aligned} \|m{w}_{12}^{(t+1)} - m{s}_{12}\|_{\infty} &\leq \lambda; \ m{w}_{12}^{(t+1) op} m{(m{W}_{11}^{(t)})^{-1}} m{w}_{12}^{(t+1)} &\leq m{w}_{12}^{(t) op} m{(m{W}_{11}^{(t)})^{-1}} m{w}_{12}^{(t)}. \end{aligned}$$

Since $w_{22} = s_{22} + \lambda$ remains unchanged, we establish (9.5).

CLIME

Key idea: Utilize two facts:

- $\Sigma \cdot \Theta = I$.
- The SCM S can be used as a surrogate of Σ .

CLIME (Cai, Liu & Luo, 2011) $ext{minimize}_{\boldsymbol{\Theta}} \| \boldsymbol{\Theta} \|_1 ext{ s.t. } \| \boldsymbol{S} \boldsymbol{\Theta} - \boldsymbol{I} \|_\infty \leq \lambda_n.$

- Note: $\|A\|_{\infty} = \max_{i,j} |A_{i,j}|.$
- Parallelizable for each column of Θ , thus very efficient.
- Post-processing step needed to guarantee symmetry and PSD.

Comparison with GLasso

Figure 1. Plot of the elementwise ℓ_{∞} constrained feasible set (shaded polygon) and the elementwise ℓ_1 norm objective (dashed diamond near the origin) from CLIME. The log-likelihood function as in Glasso is represented by the dotted line.

Figure credit: Cai, Liu & Luo, 2011.

Gaussian Graphical Model with Latent Variables

Latent variables in graphical models

Motivation: some of the variables are not directly observable.

We call the unobserved/missing variables the latent variables.

Graphical models with latent variables

What if one only observes a subset of variables?

Covariance and precision matrices can be partitioned as

$$\boldsymbol{\Sigma} = \begin{bmatrix} \overbrace{\boldsymbol{\Sigma}_{o}}^{\text{observed part}} & \boldsymbol{\Sigma}_{o,h} \\ \boldsymbol{\Sigma}_{o,h}^\top & \boldsymbol{\Sigma}_{h} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Theta}_{o} & \boldsymbol{\Theta}_{o,h} \\ \boldsymbol{\Theta}_{o,h}^\top & \boldsymbol{\Theta}_{h} \end{bmatrix}^{-1}$$

Graphical models with latent variables

What if one only observes a subset of variables?

sparse + low-rank decomposition

Problem definition: Given *n* i.i.d. samples, $x_i \sim \mathcal{N}(0, \Sigma)$, estimate the sparse - low-rank inverse covariance matrix $\Theta = \Sigma^{-1}$.

First write

$$\Theta = \Psi - L$$

where $\Psi \succeq 0$, $L \succeq 0$.

LVGGM (Chandrasekaran, Parrilo, Willsky, 2012)maximize_ Φ, L $\log \det (\Theta) - tr(S(\Phi - L))$ log-likelihoods.t. $\Phi - L \succeq 0$, $L \succeq 0$.

Reference

- "Sparse inverse covariance estimation with the graphical lasso," J. Friedman, T. Hastie, and R. Tibshirani, *Biostatistics*, 2008.
- [2] "The graphical lasso: new insights and alternatives," R. Mazumder and T. Hastie, Electronic journal of statistics, 2012.
- [3] "Statistical learning with sparsity: the Lasso and generalizations,"
 T. Hastie, R. Tibshirani, and M. Wainwright, 2015.
- [4] "A constrained ℓ_1 minimization approach to sparse precision matrix estimation," T. T. Cai, W. Liu, and X. Luo, JASA, 2011.
- [5] "Latent variable graphical model selection via convex optimization,"
 V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, The Annals of Statistics, 2012.