Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

1/25



Identifying Interactions in Data

x1

Z2
Given n data samples, x; ~x = | . | € R?, how to identity

Lp

interactions between x; and x;7




Multivariate Gaussians

Consider a random vector « ~ N (0, X) with pdf
1 { 1 11 }
xr) = exps ——x X x
M) = o aa ()2 ™1 2

1
x det (@)1/2 exp {—§mT@m}

where ¥ = E[zx "] = 0 is p x p covariance matrix, and @ = X! is
inverse covariance matrix / precision matrix



Likelihood function for Gaussian models

Draw n i.i.d. samples &1, -- , @, ~ N(0,X), then log-likelihood (up
to additive constant) is

1 & 1 1>
L(O) = - Zlog flx;) = 3 log det (@) — o leT(amz
i=1 i=1
1 1
= ilogdet (@) — §tr(S®),

where S := 15" ;x| is sample covariance matrix (SCM).

Maximum likelihood estimation (MLE)

~

© = argmaxg, o logdet (®) — tr(SO)




The sample-rich regime

Fact 9.1
If the SCM S is invertible, the MLE is given as

=51

When n > p, the SCM is invertible and classical theory says MLE
converges to the truth as sample size n — oo (consistency).



High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small,
with n < p. Why?

e Our assumption may only hold for a small window of data
collection;

e Our ability may only allow us to collect a few samples;

e The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.



High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small,
with n < p. Why?

e Our assumption may only hold for a small window of data
collection;

e Our ability may only allow us to collect a few samples;

e The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.



Gaussian Graphical Model with Sparsity



Undirected graphical models

X1 X5 X1 X5
Xy Xy

X Xg X2 Xg
X X6

X3 X7 X3 x;

T A T4 | {$2,$3,1’5,x6,x7,x8}

e Represent a collection of variables = [z1,- -+ , ;] by a vertex
set V={1,---,p}

e Encode conditional independence by a set £ of edges
o For any pair of vertices u and v,

(u,v) €€ = xy L2y | Ty\fu0)



Gaussian graphical models

Lemma 9.2
Consider a Gaussian vector x ~ N'(0,X). For any u and v,

Ty _J_va ‘ wv\{uyv}

iff Oy, =0, where © = >l

Many pairs of variables are conditionally independent
<= many missing links in the graphical model (sparsity)



Gaussian graphical models

X5
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Inverse covariance matrix © is often (approximately) sparse




Sparse inverse covariance estimation

Problem definition: Given n i.i.d. samples, z; ~ N(0,X), estimate
the sparse inverse covariance matrix ® = X1,

Two approaches:

e Graphical Lasso
e CLIME



Graphical lasso

Key idea: regularizing the MLE by imposing ¢; regularization (Yuan
& Lin'07; Friedman, Hastie, & Tibshirani '08).
Graphical Lasso (GLasso)
maximizeg=o logdet (®) —tr(SO®) — A||O|1
—

lasso penalty

e It is a convex program! (homework)
e First-order optimality condition
O 1-S5-)9|0|, =0 (9.1)
——

subgradient
= (@) =8,;+\ 1<i<p



Blockwise coordinate descent

Idea: repeatedly cycle through all columns/rows and, in each step,
optimize only a single column/row

- ~~o
~

S~o
~ -

Notation: use W to denote working version of @ 1. Partition all
matrices into 1 column/row vs. the rest

©; 02 11 812 W Wi wio
@ p— S p— p—
[ 0]—2 922 1 [ 81|—2 S22 ] l wi; w22 ]



Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. It
follows from (9.1) that

0ec WP —s12+ A0||012][1 = W18 — s12+ X0||Bi2i (9.2)

where 3 = —613 - wao (by matrix inverse formula)

This coincides with optimality condition for

o 1 -
minimizeg §||W111/26 — W111/2812||2 + MBI (9.3)



Blockwise coordinate descent

Algorithm 9.1 Block coordinate descent for graphical lasso

Initialize W = S + AI and fix its diagonals {w;;}.
Repeat until covergence:
fort=1,---p:
(i) Partition W (resp. S) into 4 parts, where the upper-left part
consists of all but the jth row / column

(i) Solve
o 1 —
minimizeg §HW111/2,3— Wlll/2812”2+)\”,3||1

(iii) Update w1z = W11

Set élg = —égg,@ with égg = 1/(’[022 — w]—Q,@)




Blockwise coordinate descent

The only remaining thing is to ensure W > 0. This is automatically
satisfied:

Lemma 9.3 (Mazumder & Hastie, '12)

If we start with W > 0 satisfying ||W — S|/ < A, then every
row/column update maintains positive definiteness of W'.

o If we start with W) = § + M, then W@ will always be
positive definite



Proof of Lemma 9.3

A key observation for the proof of Lemma 9.3
Fact 9.4 (Lemma 2, Mazumder & Hastie, '12)
Solving (9.3) is equivalent to solving
minimize, (s12 +7) W' (s12 +9) st [7]leo < A (9.4)

where solutions to 2 problems are related by 3 = Wit (s12 4+ 74)

e Check that optimality condition of (9.3) and that of (9.4) match




Proof of Lemma 9.3

Suppose in tt" iteration one has [|[W® — 8|, < X and

w® -0

— W1(f)>'0; w22*’w§2) (Wl(l)) 'wgt2)>0 (Schur complement)

We only update w12, so it suffices to show

w2 — wﬁtjm (Wl(?) w(tH) >0 (9.5)

Recall that w!5™) = W}, B1+1. It follows from Fact 9.4 that and

(t+1)

Jwiy ™ = s12flec < A;
nT 1 1 T —1
wit™ T W) Tl < wl T ) T wl.

Since wa2 = S22 + A remains unchanged, we establish (9.5).



CLIME

Key idea: Utilize two facts:
e X -O=1.
e The SCM S can be used as a surrogate of 3.

CLIME (Cai, Liu & Luo, 2011)

minimizeg ||O|1 s.t. [|SO — I < Ap.

e Note: ||AHoo = maxg j ‘Al,j‘
e Parallelizable for each column of @, thus very efficient.

e Post-processing step needed to guarantee symmetry and PSD.



Comparison with GLasso

loglikeliticod

X(=y)

Figure 1. Plot of the elementwise £, constrained feasible set
(shaded polygon) and the elementwise ¢ norm objective (dashed dia-
mond near the origin) from CLIME. The log-likelihood function as in
Glasso is represented by the dotted line.

Figure credit: Cai, Liu & Luo, 2011.



Gaussian Graphical Model with Latent Variables



Latent variables in graphical models

Motivation: some of the variables are not directly observable.

medical /biological economy

We call the unobserved/missing variables the latent variables.



Graphical models with latent variables

What if one only observes a subset of variables?

Xy X5
Xy
T, (observed variables) % . Xg
. . 6
Ty (hidden variables)
X3 X
@o = [z1, -+, w6] ", Tn = [w7, 28]

Covariance and precision matrices can be partitioned as

observed part

-1
~ =~ Q) ®
Y= 3, 2o,h = l@"ﬁ @Ol;h‘|
E(Ih zh o,h



Graphical models with latent variables

What if one only observes a subset of variables?

Xy X5
Xy
T, (observed variables) % . Xg
. . 6
Ty (hidden variables)
x5 A
@o = [z1, -+, w6] ", Tn = [w7, 28]
-1 -1
O,= X =0, — O, 10, O,
—— ~~~ —_———
observed ~ SParS€  |ow_rank if # latent vars is small

sparse + low-rank decomposition



Inverse covariance estimation for LVGGM

Problem definition: Given n i.i.d. samples, z; ~ N (0, X), estimate
the sparse - low-rank inverse covariance matrix ® = 3L,

First write

where ¥ = 0, L = 0.

LVGGM (Chandrasekaran, Parrilo, Willsky, 2012)
maximizeg 1, logdet (@) — tr(S(® — L)) =\, (|| ¥|l1 + ntr(L))

log-likelihood
st. —L*>0, L*>0.
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