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Identifying Interactions in Data

Given n data samples, xi ∼ x =


x1
x2
...
xp

 ∈ Rp, how to identity

interactions between xi and xj?

=⇒
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Multivariate Gaussians

Consider a random vector x ∼ N (0,Σ) with pdf

f(x) = 1
(2π)p/2 det (Σ)1/2 exp

{
−1

2x
>Σ−1x

}
∝ det (Θ)1/2 exp

{
−1

2x
>Θx

}
where Σ = E[xx>] � 0 is p× p covariance matrix, and Θ = Σ−1 is
inverse covariance matrix / precision matrix
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Likelihood function for Gaussian models

Draw n i.i.d. samples x1, · · · ,xn ∼ N (0,Σ), then log-likelihood (up
to additive constant) is

` (Θ) = 1
n

n∑
i=1

log f(xi) = 1
2 log det (Θ)− 1

2n

n∑
i=1
x>i Θxi

= 1
2 log det (Θ)− 1

2tr(SΘ),

where S := 1
n

∑n
i=1 xix

>
i is sample covariance matrix (SCM).

Maximum likelihood estimation (MLE)

Θ̂ = argmaxΘ�0 log det (Θ)− tr(SΘ)
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The sample-rich regime

Fact 9.1
If the SCM S is invertible, the MLE is given as

Θ̂ = S−1.

When n� p, the SCM is invertible and classical theory says MLE
converges to the truth as sample size n→∞ (consistency).
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High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small,
with n < p. Why?

• Our assumption may only hold for a small window of data
collection;

• Our ability may only allow us to collect a few samples;

• The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.
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Gaussian Graphical Model with Sparsity
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Undirected graphical models

x1 ⊥⊥ x4 | {x2, x3, x5, x6, x7, x8}

• Represent a collection of variables x = [x1, · · · , xp]> by a vertex
set V = {1, · · · , p}
• Encode conditional independence by a set E of edges

◦ For any pair of vertices u and v,

(u, v) /∈ E ⇐⇒ xu ⊥⊥ xv | xV\{u,v}
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Gaussian graphical models

Lemma 9.2
Consider a Gaussian vector x ∼ N (0,Σ). For any u and v,

xu ⊥⊥ xv | xV\{u,v}

iff Θu,v = 0, where Θ = Σ−1.

Many pairs of variables are conditionally independent
⇐⇒ many missing links in the graphical model (sparsity)
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Gaussian graphical models



∗ ∗ 0 0 ∗ 0 0 0
∗ ∗ 0 0 0 ∗ ∗ 0
0 0 ∗ 0 ∗ 0 0 ∗
0 0 0 ∗ 0 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 0 ∗
0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0
0 0 ∗ 0 ∗ 0 0 ∗


︸ ︷︷ ︸

Θ

Inverse covariance matrix Θ is often (approximately) sparse
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Sparse inverse covariance estimation

Problem definition: Given n i.i.d. samples, xi ∼ N (0,Σ), estimate
the sparse inverse covariance matrix Θ = Σ−1.

Two approaches:
• Graphical Lasso
• CLIME
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Graphical lasso

Key idea: regularizing the MLE by imposing `1 regularization (Yuan
& Lin’07; Friedman, Hastie, &Tibshirani ’08).

Graphical Lasso (GLasso)

maximizeΘ�0 log det (Θ)− tr(SΘ)− λ‖Θ‖1︸ ︷︷ ︸
lasso penalty

• It is a convex program! (homework)
• First-order optimality condition

Θ−1 − S − λ ∂‖Θ‖1︸ ︷︷ ︸
subgradient

= 0 (9.1)

=⇒ (Θ−1)i,i = Si,i + λ, 1 ≤ i ≤ p
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Blockwise coordinate descent

Idea: repeatedly cycle through all columns/rows and, in each step,
optimize only a single column/row

Notation: use W to denote working version of Θ−1. Partition all
matrices into 1 column/row vs. the rest

Θ =
[

Θ11 θ12
θ>12 θ22

]
S =

[
S11 s12
s>12 s22

]
W =

[
W11 w12
w>12 w22

]
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Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. It
follows from (9.1) that

0 ∈W11β − s12 + λ∂‖θ12‖1 = W11β − s12 + λ∂‖β12‖1 (9.2)

where β = −θ12 · w22 (by matrix inverse formula)

This coincides with optimality condition for

minimizeβ
1
2‖W

1/2
11 β −W

−1/2
11 s12‖2 + λ‖β‖1 (9.3)



15/25

Blockwise coordinate descent

Algorithm 9.1 Block coordinate descent for graphical lasso
Initialize W = S + λI and fix its diagonals {wi,i}.
Repeat until covergence:

for t = 1, · · · p:
(i) Partition W (resp. S) into 4 parts, where the upper-left part

consists of all but the jth row / column
(ii) Solve

minimizeβ
1
2‖W

1/2
11 β −W

−1/2
11 s12‖2 + λ‖β‖1

(iii) Update w12 = W11β

Set θ̂12 = −θ̂22β with θ̂22 = 1/(w22 −w>12β)
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Blockwise coordinate descent

The only remaining thing is to ensure W � 0. This is automatically
satisfied:

Lemma 9.3 (Mazumder & Hastie, ’12)

If we start with W � 0 satisfying ‖W − S‖∞ ≤ λ, then every
row/column update maintains positive definiteness of W .

• If we start with W (0) = S + λI, then W (t) will always be
positive definite



17/25

Proof of Lemma 9.3

A key observation for the proof of Lemma 9.3

Fact 9.4 (Lemma 2, Mazumder & Hastie, ’12)

Solving (9.3) is equivalent to solving

minimizeγ (s12 + γ)>W−1
11 (s12 + γ) s.t. ‖γ‖∞ ≤ λ (9.4)

where solutions to 2 problems are related by β̂ = W−1
11 (s12 + γ̂)

• Check that optimality condition of (9.3) and that of (9.4) match
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Proof of Lemma 9.3

Suppose in tth iteration one has ‖W (t) − S‖∞ ≤ λ and

W (t) � 0

⇐⇒ W
(t)
11 � 0; w22−w(t)>

12

(
W

(t)
11

)−1
w

(t)
12 > 0 (Schur complement)

We only update w12, so it suffices to show

w22 −w(t+1)>
12

(
W

(t)
11

)−1
w

(t+1)
12 > 0 (9.5)

Recall that w(t+1)
12 = W t

11β
t+1. It follows from Fact 9.4 that and

‖w(t+1)
12 − s12‖∞ ≤ λ;

w
(t+1)>
12

(
W

(t)
11
)−1
w

(t+1)
12 ≤ w(t)>

12
(
W

(t)
11
)−1
w

(t)
12 .

Since w22 = s22 + λ remains unchanged, we establish (9.5).
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CLIME

Key idea: Utilize two facts:
• Σ ·Θ = I.
• The SCM S can be used as a surrogate of Σ.

CLIME (Cai, Liu & Luo, 2011)

minimizeΘ ‖Θ‖1 s.t. ‖SΘ− I‖∞ ≤ λn.

• Note: ‖A‖∞ = maxi,j |Ai,j |.
• Parallelizable for each column of Θ, thus very efficient.
• Post-processing step needed to guarantee symmetry and PSD.



20/25

Comparison with GLasso

Figure credit: Cai, Liu & Luo, 2011.
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Gaussian Graphical Model with Latent Variables
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Latent variables in graphical models

Motivation: some of the variables are not directly observable.

medical/biological economy

We call the unobserved/missing variables the latent variables.
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Graphical models with latent variables

What if one only observes a subset of variables?

[
xo
xh

]
(observed variables)
(hidden variables)

xo = [x1, · · · , x6]>,xh = [x7, x8]>

Covariance and precision matrices can be partitioned as

Σ =

observed part︷︸︸︷
Σo Σo,h

Σ>o,h Σh

 =
[

Θo Θo,h
Θ>o,h Θh

]−1

Θo = Σ−1
o︸︷︷︸

observed

= Θo︸︷︷︸
sparse

− Θo,hΘ−1
h Θh,o︸ ︷︷ ︸

low-rank if # latent vars is small

sparse + low-rank decomposition
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Inverse covariance estimation for LVGGM

Problem definition: Given n i.i.d. samples, xi ∼ N (0,Σ), estimate
the sparse - low-rank inverse covariance matrix Θ = Σ−1.

First write
Θ = Ψ−L

where Ψ � 0, L � 0.

LVGGM (Chandrasekaran, Parrilo, Willsky, 2012)

maximizeΦ,L log det (Θ)− tr(S(Φ−L))︸ ︷︷ ︸
log-likelihood

−λn (‖Ψ‖1 + ηtr(L))

s.t. Φ−L � 0, L � 0.
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