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Abstract 

Applications running concurrently on a multicore system in­
terfere with each other at the main memory. This interference 
can slow down different applications differently. Accurately es­
timating the slowdown of each application in such a system can 
enable mechanisms that can enforce quality-of-service. While 
much prior work has focused on mitigating the performance 
degradation due to inter-application interference, there is lit­
tle work on estimating slowdown of individual applications in 
a multi-programmed environment. Dur goal in this work is to 
build such an estimation scheme. 

To this end, we present our simple Memory-Interference­
induced Slowdown Estimation (MISE) model that estimates 
slowdowns caused by memory interference. We build our model 
based on two observations. First, the performance of a memory­
bound application is roughly proportional to the rate at which 
its memory requests are served, suggesting that request-service­
rate can be used as a proxy for performance. Second, when 
an application's requests are prioritized over all other applica­
tions' requests, the application experiences very little interfer­
ence from other applications. This provides a means for esti­
mating the uninterfered request-service-rate of an application 
while it is run alongside other applications. Using the above 
observations, our model estimates the slowdown of an applica­
tion as the ratio of its uninterfered and interfered request service 
rates. We propose simple changes to the above model to estimate 
the slowdown of non-memory-bound applications. 

We demonstrate the effectiveness of our model by develop­
ing two new memory scheduling schemes: 1) one that provides 
soft quality-of-service guarantees and 2) another that explicitly 
attempts to minimize maximum slowdown (i.e., unfa irness) in 
the system. Evaluations show that our techniques perform sig­
nificantly better than state-of-the-art memory scheduling ap­
proaches to address the above problems. 

1. Introduction 

Main memory is a critical shared resource in modern multicore 
systems. Multiple applications running concurrently on a mul­
ticore system contend with each other for the available mem­
ory bandwidth. Tbis inter-application interference degrades 
both individual application and overall system performance. 
Moreover, the slowdown of each application depends on the 
other concurrently running applications and the available mem­
ory bandwidth. Hence, different applications experience differ­
ent and unpredictable slowdowns, as demonstrated by previ­
ous work [26, 28, 29, 30] . Accurately estimating tbis memory­
interference induced slowdown can enable mechanisms to bet­
ter enforce Quality of Service (QoS) and fairness in multicore 
systems. For exarnple, the memory controller could use accu­
rate slowdown estimates to manage memory bandwidth appro­
priately to provide soft QoS guarantees to applications. Alterna­
tively, conveying the slowdown of each application to the oper­
ating system (OS) may allow the OS to make better application 
scheduling decisions - e.g., the OS can co-schedule applications 
that interfere less with each other. 
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A considerable number ofprior works have proposed several 
different approaches to mitigate interference between applica­
tions at the main memory, with the goal of improving over­
all system performance and/or fairness. Examples of such ap­
proaches include new memory scheduling (e.g., [2 ,  19, 20, 28, 
29, 30]), memory channe1!bank partitioning [16, 27] , memory 
interleaving [18], and source throttling [6] techniques. 

Although these previous proposals are effective in mitigat­
ing the performance degradation due to memory interference, 
few of them, e.g., [5, 6, 28] attempt to estimate the actual slow­
down of each application compared to when the application is 
run alone. In tbis work, we find that the prior approaches [6, 28] 
to estimate individual application slowdown due to main mem­
ory interference are inaccurate. Part of the reason for their in­
accuracy is that these mechanisms were not designed to accu­
rately estimate slowdown of individual applications, with the 
goal of providing predictable performance. Rather, they use the 
estimated slowdown information to make informed prioritiza­
tion, throttling or scheduling decisions to improve system per­
formance and fairness. While system performance and fairness 
continue to be important considerations, the ability to achieve 
predictable performance for different applications is gaining im­
portance in today' s era of workload consolidation and concur­
rent execution of multiple applications, as exemplified by server 
consolidation where different users' jobs that are consolidated 
onto the same machine share resources. 

Our goal in this work is to provide predictable performance 
for individual applications. To tbis end, we design a model to 
accurately estimate memory-interference-induced slowdowns 
of individual applications running concurrently on a multicore 
system. Estimating the slowdown of an individual application 
requires two pieces of information: 1) the performance of the 
application when it is run concurrently with other applications, 
and 2) the performance of the application when it is run alone 
on the same system. While the former can be directly measured, 
the key challenge is to estimate the performance the application 
would have if it were running alone while it is actually running 
alongside other applications. This requires quantifying the ef­
fect of interference on performance. In this work, we make two 
observations that lead to a simple and effective mechanism to 
estimate the slowdown of individual applications. 

Our first observation is that performance of a memory­
bound application is roughly proportional to the rate at wbich 
its memory requests are served. Tbis observation suggests that 
we can use request-service-rate as a proxy for performance, for 
memory-bound applications. As a result, slowdown of such an 
application can be computed as the ratio of the request-service­
rate when the application is run alone on a system (alone­
request-service-rate) to that when it is run alongside other in­
terfering applications (shared-request-service-rate). Although 
the shared-request-service-rate can be measured in a straight­
forward manner using a few counters at the memory controller, 
tbis model still needs to estimate the alone-request-service-rate 
of an application while it is run alongside other applications. 

Our second observation is that the alone-request-service-rate 
of an application can be estimated by giving the application' s 



requests the highest priority in accessing memory. Giving an 
application' s requests the highest priority in accessing memory 
results in very little interference from other applications' re­
quests. As a result, most of the application's requests are served 
as though the application has all the memory bandwidth for it­
self, allowing the system to gather a good estimate for the alone­
request-service-rate of the application. We make our model 
more accurate by accounting for the little interference caused 
by other applications' requests due to queuing delays. 

Based on the above two observations, our proposed 
Memory-Interference-induced Slowdown Estimation (MISE) 
model works as follows. The memory controller assigns pri­
orities to applications such that every application executing 
on the system periodically receives the highest priority to ac­
cess memory. Every time an application receives the high­
est priority, the memory controller estimates the application' s 
alone-request-service-rate. This alone-request-service-rate esti­
mate along with the measured shared-request-service-rate can 
be used to estimate the slowdown of an application. 

Although the above model works weIl for memory-bound 
applications, we find that it is not accurate for non-memory­
bound applications. This is because a non-memory-bound ap­
plication spends a significant fraction of its execution time in 
the compute phase, in which the core does not stall waiting 
for a memory request. As a result, request-service-rate cannot 
be used as a direct proxy for performance of such applications. 
Therefore, to make our MISE model accurate for non-memory­
bound applications as weIl, we augment it to take into account 
the duration of the compute phase. Section 3 provides more 
details of our MISE model. 

Our slowdown estimation model can enable several mech­
anisms to provide QoS guarantees and achieve better fairness. 
We build two new memory scheduling mechanisms on top of 
our proposed model to demonstrate its effectiveness. 

The first mechanism, called MISE-QoS, provides soft QoS 
guarantees for applications of interest while trying to maximize 
the performance of all other applications in a best-effort man­
ner. The memory controller ensures that the applications of 
interest meet their slowdown requirements by allocating them 
just enough memory bandwidth, while scheduling the requests 
of other applications in a best-effort manner to improve over­
all system performance. First, we show that when there is one 
application of interest, MISE-QoS meets the target slowdown 
bound for 80.9% of our 3000 tested data points, while signif­
icantly improving overall system performance compared to a 
state-of-the-art approach that always prioritizes the requests of 
the application of interest [15] . Furthermore, MISE-QoS cor­
rectly predicts whether or not the bound was met for 95.7% of 
data points, whereas the state-of-the-art approach [15] has no 
provision to predict whether or not the bound was met. Next, 
we demonstrate that even when there are multiple applications 
of interest, MISE-QoS can meet the target slowdown bound for 
all applications of interest, while still providing significant sys­
tem performance improvement. 

The second mechanism, called MISE-Fair, attempts to min­
imize the maximum slowdown (Le., unfairness [4, 19, 20] ) 
across all applications. It does so by estimating the slow­
down of each application and redistributing bandwidth to re­
duce the slowdown of the most slowed-down applications. We 
show that our approach leads to better fairness than three 
state-of-the-art application-aware memory access scheduling 
approaches [ 19, 20, 28] . In this use case, the memory controller 
can also potentially convey the achievable maximum slowdown 

to the operating system (OS). The OS can in turn use this infor­
mation to make better scheduling decisions. 

Our paper makes the following contributions: 

• We propose a new model for estimating the slowdown of 
individual applications concurrently running on a multi­
core system. Implementing our model requires only simple 
changes to the memory controller hardware. 

• We compare the accuracy of our model to a previously pro­
posed slowdown estimation model, Stall-Time Fair Mem­
ory scheduling (STFM) [28] , and show that our model is 
significantly more accurate than STFM's model. 

• We show the effectiveness of our model by building 
and evaluating two new memory bandwidth management 
schemes on top of it, one that provides soft QoS guar­
antees, while optimizing for performance in a best-effort 
manner (MISE-QoS) and another that improves overall 
system fairness (MISE-Fair). Our proposed approaches 
perform better than state-of-the-art approaches [15 ,  19, 20, 
28] to address the respective problems. 

2. Background and Motivation 

In this section, we provide a brief background on DRAM or­
ganization and operation in order to understand the slowdown 
estimation mechanisms proposed by previous work. We then 
describe previous work on slowdown estimation and their key 
drawbacks that motivate our MISE model. 

2.1. DRAM Organization 

Modern DRAM main memory system is organized hierarchi­
cally into channels, ranks and banks. The main memory system 
consists of multiple channels that operate independently. Each 
channel consists of one or more ranks that share the channel' s 
address and data buses. Each rank consists of multiple banks 
that share rank-level peripheral circuitry. 

Banks can be viewed as arrays of DRAM cells, organized as 
rows and columns. To access a piece of data, the entire row 
containing the data is read into an internal buffer called the 
row-buffer. Subsequent accesses to the same row do not need 
to access the DRAM array, assuming the row is still in the row­
buffer, and can be served faster. 

2.2. Prior Work on Slowdown Estimation 

While a large body of previous work has focused on main mem­
ory interference reduction techniques such as memory request 
scheduling [2, 19, 20, 29, 30] , memory channel/bank partition­
ing [16, 27] and interleaving [18] to mitigate interference be­
tween applications at the DRAM channels, banks and row­
buffers, few previous works have proposed techniques to esti­
mate memory-interference-induced slowdowns. 

Stall Time Fair Memory Scheduling (STFM) [28] is one pre­
vious work that attempts to estimate each application's slow­
down, with the goal of improving fairness by prioritizing the 
most slowed down application. STFM estimates an applica­
tion's  slowdown as the ratio of its memory stall time when it 
is run alone versus when it is concurrently run alongside other 
applications. The challenge is in determining the alone-stall­
time of an application while the application is actually running 
alongside other applications. STFM proposes to address this 
challenge by counting the number of cydes an application is 
stalled due to interference from other applications at the DRAM 
channels, banks and row-buffers. STFM uses this interference 
cyde count to estimate the alone-stall-time of the application, 
and hence the application's slowdown. 



Fairness via Source Throttling (FST) [6] estimates application 
slowdowns due to inter-application interference at the shared 
caches and memory, as the ratio of uninterfered to interfered 
execution times. It uses the slowdown estimates to make in­
formed source throttling decisions, to improve fairness. The 
mechanism to ac count for memory interference to estimate un­
interfered execution time is similar to that employed in STFM. 

A concurrent work by Du Bois et al. [5] proposes a mech­
anism to determine an application's standalone execution time 
when it shares cache and memory with other applications in a 
multicore system. In order to quantify memory interference, the 
mechanism proposed in this paper counts the number of wait­
ing cycles due to inter-application interference and factors out 
these waiting cycles to estimate alone execution times, which is 
similar to STFM's alone stall time estimation mechanism. 

Both of these works, FST [6] and Du Bois et al:s mecha­
nism [5] , in principle, are similar to STFM from the perspec­
tive of quantifying the effect of memory interference on perfor­
mance in that they estimate the additional cycles due to mem­
ory interference while an application is running alongside other 
applications. Since our focus in this work is estimating applica­
tion slowdowns due to memory interference, we will focus on 
STFM in the next sections. 

2.3. Motivation and Dur Goal 

In this work, we find that STFM's slowdown estimation model 
is inaccurate. The main reason for this is that quantifying the 
effect of interference, especially in a modern system employ­
ing out-of-order execution, is difficult. This is because even if 
a request is delayed due to interference, it may not affect per­
formance due to memory-level parallelism, as the additional la­
tency can be hidden by another outstanding request' s latency. 
However, we note that the primary goal of STFM is not to esti­
mate the slowdown of applications accurately, rather to use the 
estimates to make prioritization/throttling decisions to improve 
overall fairness. We provide a detailed qualitative and quanti­
tative comparison between STFM and our model in Section 6. 

Dur goal, in this work, is to design a model to accurately es­
timate application slowdowns. Accurate slowdown estimates 
can enable various hardware/software techniques to enforce 
QoS guarantees. For instance, naive policies for QoS enforce­
ment either execute an application entirely by itself or always 
prioritize a QoS-critical application of interest in shared re­
sources [15] . However, accurate slowdown estimates can enable 
the memory controller to employ more intelligent and sophis­
ticated memory bandwidth management policies. For instance, 
the memory controller could provide soft QoS guarantees by al­
locating just enough bandwidth to QoS-critical applications of 
interest, while utilizing the remaining memory bandwidth to 
achieve high overall system performance, as we will demon­
strate in Section 8 .1 .  Furthermore, higher accuracy slowdown 
estimates enable the memory controller to enforce system fair­
ness more effectively than previous proposals, as we show in 
Section 8.2 .  Alternatively, information about application slow­
downs could also be conveyed to the OS, enabling it to make 
better job scheduling decisions. 

3. The MISE Model 

In this section, we provide a detailed description of our 
proposed Memory-Interference-induced Slowdown Estimation 
(MISE) model. For ease of understanding, we first describe 
the observations that lead to a simple model for estimating the 
slowdown of a memory-bound application when it is run con­
currently with other applications. In Section 3.2 ,  we describe 

how we extend the model to accommodate non-memory-bound 
applications. Section 4 describes the detailed implementation of 
our model in a memory controller. 

3.1. Memory-bound Application 

A memory-bound application is one that spends an overwhelm­
ingly large fraction of its execution time stalling on memory 
accesses. Therefore, the rate at which such an application' s 
requests are served has significant impact on its performance. 
More specifically, we make the following observation about a 
memory-bound application. 

Observation 1: The performance of a memory-bound 
application is roughly proportional to the rate at which 
its memory requests are served. 

For instance, for an application that is bottlenecked at mem­
ory, if the rate at which its requests are served is reduced by 
half, then the application will take twice as much time to fin­
ish the same amount of work. To validate this observation, we 
conducted a real-system experiment where we ran memory­
bound applications from SPEC CPU2006 [1]  on a 4-core Intel 
Core i7 [ 1 2] . Each SPEC application was run along with three 
copies of a microbenchmark whose memory intensity can be 
varied.! By varying the memory intensity of the microbench­
mark, we can change the rate at which the requests of the SPEC 
application are served. 

Figure 1 plots the results of this experiment for three 
memory-intensive SPEC benchmarks, namely, mcf, omnetpp, 
and astar. The figure shows the performance of each appli­
cation vs. the rate at which its requests are served. The re­
quest service rate and performance are normalized to the re­
quest service rate and performance respectively of each appli­
cation when it is run alone on the same system. 
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Figure 1 :  Request service rate vs. performance 

The results of our experiments validate our observation. The 
performance of a memory-bound application is directly propor­
tional to the rate at which its requests are served. This suggests 
that we can use the request-service-rate of an application as a 
proxy for its performance. More specifically, we can compute 
the slowdown of an application, Le., the ratio of its performance 
when it is run alone on a system vs. its performance when it is 
run alongside other applications on the same system, as folIows: 

I d f 
alone-request-service-rate 

S ow own 0 an App. = -:---:-----=-------­
shared-request-service-rate 

(1) 

Estimating the shared-request-service-rate (SRSR) of an applica­
tion is straightforward. It just requires the memory controller to 
keep track of how many requests of the application are served in 

lThe microbenchmark streams through a large region of memory (one block at 
a time). The memory intensity of the microbenchmark (LLC MPKI) is varied by 
changing the amount of computation performed between memory operations. 



a given number of cycles. However, the challenge is to estimate 
the alone-request-service-rate (ARSR) of an application while it 
is run alongside other applications. A naive way of estimating 
ARSR of an application would be to prevent all other applica­
tions from accessing memory for a length of time and measure 
the application's ARSR. While this would provide an accurate 
estimate of the application's ARSR, this approach would signifi­
cantly slow down other applications in the system. Our second 
observation helps us to address this problem. 

Observation 2: The ARSR of an application can be esti­
mated by giving the requests of the application the high­
est priority in accessing memory. 

Giving an application's requests the highest priority in ac­
cessing memory results in very little interference from the re­
quests of other applications. Therefore, many requests of the 
application are served as if the application were the only one 
running on the system. Based on the above observation, the 
ARSR of an application can be computed as folIows: 

f 
# Requests with Highest Priority ARSR 0 an App. = ---=------=------.:... # Cycles with Highest Priority 

(2) 

where # Requests with Highest Priority is the number of re­
quests served when the application is given highest priority, 
and # Cycles with Highest Priority is the number of cycles an 
application is given highest priority by the memory controller. 

The memory controller can use Equation 2 to periodically 
estimate the ARSR of an application and Equation 1 to measure 
the slowdown of the application using the estimated ARSR. Sec­
tion 4 provides a detailed description of the implementation of 
our model inside a memory controller. 

3.2. Non-memory-bound Application 

So far, we have described our MISE model for a memory-bound 
application. We find that the model presented above has low 
accuracy for non-memory-bound applications. This is because 
a non-memory-bound application spends significant fraction of 
its execution time in the compute phase (when the core is not 
stalled waiting for memory). Hence, varying the request ser­
vice rate for such an application will not affect the length of 
the large compute phase. Therefore, we take into account the 
duration of the compute phase to make the model accurate for 
non-memory-bound applications. 

Let a be the fraction of time spent by an application at mem­
ory. Therefore, the fraction of time spent by the application in 
the compute phase is 1 - a. Since changing the request service 
rate affects only the memory phase, we augment Equation 1 to 
take into account a as folIows: 

ARSR 
Slowdown of an App. = (1 - a) + a SRSR (3) 

In addition to estimating ARSR and SRSR required by Equa­
tion 1, the above equation requires estimating the parameter a, 
the fraction of time spent in memory phase. However, precisely 
computing a for a modern out-of-order processor is a challenge 
since such a processor overlaps computation with memory ac­
cesses. The processor stalls waiting for memory only when the 
oldest instruction in the reorder buffer is waiting on a memory 
request. For this reason, we estimate a as the fraction of time 
the processor spends stalling for memory. 

# Cycles spent stalling on memory requests a= --�--�=-� --���--��--�---
Total number of cycles 

(4) 

Setting a to 1 reduces Equation 3 to Equation 1. We find that 
even when an application is moderately memory-intensive, set­
ting a to 1 provides a better estimate of slowdown. Therefore, 
our final model for estimating slowdown takes into account the 
stall fraction (a) only when it is low. Algorithm 1 shows our 
final slowdown estimation model. 

Compute a; 
if a < Threshold then 

Slowdown = (1 - a) + a� 
else 

Slowdown = ��� 
end 

Algorithm 1: The MISE model 

4. Implementation 
In this section, we describe a detailed implementation of our 
MISE model in a memory controller. For each application in 
the system, our model requires the memory controller to com­
pute three parameters: 1) shared-request-service-rate (SRSR), 
2) alone-request-service-rate (ARSR), and 3) a (stall fraction).2 
First, we describe the scheduling algorithm employed by the 
memory controller. Then, we describe how the memory con­
troller computes each of the three parameters. 

4.1. Memory Scheduling Algorithm 

In order to implement our model, each application needs to 
be given the highest priority periodically, such that its alone­
request-service-rate can be measured. This can be achieved by 
simply assigning each application's requests highest priority in 
a round-robin manner. However, the mechanisms we build on 
top of our model allocate bandwidth to different applications to 
achieve QoS/fairness. Therefore, in order to facilitate the imple­
mentation of our mechanisms, we employ a lottery-scheduling­
like approach [32, 36] to schedule requests in the memory con­
troller. The basic idea of lottery scheduling is to probabilistically 
enforce a given bandwidth allocation, where each application is 
allocated a certain share of the system bandwidth. The exact 
bandwidth allocation policy depends on the goal of the system 
- e.g., QoS, high performance, high fairness, etc. In this section, 
we describe how a lottery-scheduling-like algorithm works to 
enforce a bandwidth allocation. 

The memory controller divides execution time into intervals 
(of M processor cycles each) . Each interval is further divided 
into small epochs (of N processor cycles each) . At the beginning 
of each interval, the memory controller estimates the slowdown 
of each application in the system. Based on the slowdown es­
timates and the final goal, the controller may change the band­
width allocation policy - Le., redistribute bandwidth amongst 
the concurrently running applications. At the beginning of each 
epoch, the memory controller probabilistically picks a single ap­
plication and prioritizes all the requests of that particular appli­
cation during that epoch. The probability distribution used to 
choose the prioritized application is such that an application 
with higher bandwidth allocation has a higher probability of 
getting the highest priority. For example, consider a system 
with two applications, A and B. If the memory controller al­
locates A 75% of the memory bandwidth and B the remaining 
25%, then A and B get the highest priority with probability 0.75 
and 0.25, respectively. 

'These three parameters need to be computed only for the active applications in 
the system. Hence, these need to be tracked only per hardware thread context. 



4.2. Computing shared-request-service-rate (SRSR) 
The shared-request-serviee-rate of an application is the rate at 
which the application's requests are served while it is running 
with other applications. This can be directly computed by the 
memory controller using a per-application counter that keeps 
track of the number of requests served for that application. At 
the beginning of each interval, the controller resets the counter 
for each application. Whenever a request of an application is 
served, the controller increments the counter corresponding to 
that application. At the end of each in terva I, the SRSR of an 
application is computed as 

# Requests served SRSR of an App = --..:....----,---.,..,. M (Interval Length) 

4.3. Computing alone-request-service-rate (ARSR) 
The alone-request-serviee-rate (ARSR) of an application is an es­
timate of the rate at which the application's requests would 
have been served had it been running alone on the same sys­
tem. Based on our observation (described in Section 3 .1), the 
ARSR can be estimated by using the request-serviee-rate of the 
application when its requests have the highest priority in ac­
cessing memory. Therefore, the memory controller estimates 
the ARSR of an application only during the epoehs in which the 
application has the highest priority. 

Ideally, the memory controller should be able to achieve this 
using two counters: one to keep track of the number of epoehs 
during which the application received highest priority and an­
other to keep track of the number of requests of the application 
served during its highest-priority epoehs. However, it is possi­
ble that even when an application's requests are given highest 
priority, they may receive interference from other applications' 
requests. This is because, our memory scheduling is work eon­
serving - if there are no requests from the highest priority appli­
cation, it schedules a ready request from some other application. 
Once a request is scheduled, it cannot be preempted because of 
the way DRAM operates. 

In order to account for this interference, the memory con­
troller uses a third counter for each application to track the 
number of cycles during whieh an application's request was 
blocked due to some other application's request, in spite of the 
former having highest priority. For an application with highest 
priority, a cycle is deemed to be an interferenee eycle if during 
that cycle, a command corresponding to a request of that ap­
plication is waiting in the request buffer and the previous com­
mand issued to any bank, was for a request from a different 
application. 

Based on the above discussion, the memory controller keeps 
track of three counters to compute the ARSR of an applica­
tion: 1) number of highest-priority epoehs of the application 
(# HPEs), 2) number of requests of that application served dur­
ing its highest-priority epoehs (# HPE Requests), and 3) num­
ber of interferenee eycles of the application during its highest­
priority epoehs (# Interference cycles) . All these counters are 
reset at the start of an interval and the ARSR is computed at the 
end of each interval as follows: 

# HPE Requests ARSR of an App. = ----:---:------,----,------'-----,----------:,------,­N.(# HPEs) - (# Interference cycles) 

Our model does not take into ac count bank level parallelism 
(BLP) or row-buffer interference when estimating # Interference 
cycles. We observe that this does not affect the accuracy of our 

model significantly. because we eliminate most of the interfer­
ence by measuring ARSR only when an application has highest 
priority. We leave a study of the effects of bank-level paral­
lelism and row-buffer interference on the accuracy of our model 
as part of future work. 

4.4. Computing stall-fraction a 
The stall-fraetion (a) is the fraction of the cycles spent by the 
application stalling for memory requests. The number of stall 
cycles can be easily computed by the core and communieated 
to the memory controller at the end of each interval. 

4.5. Hardware Cost 

Our implementation incurs additional storage cost due to 1) the 
counters that keep track of parameters required to compute 
slowdown (five per hardware thread context), and 2) a regis­
ter that keeps track of the current bandwidth allocation policy 
(one per hardware thread context). We find that using four byte 
registers for each counter is more than sufficient for the values 
they keep track of. Therefore, our model incurs a storage cost 
of at most 24 bytes per hardware thread context. 

5. Methodology 
Simulation Setup. We model the memory system using an in­
house cycle-accurate DDR3-SDRAM simulator. We have in­
tegrated this DDR3 simulator into an in-house cycle-Ievel x86 
simulator with a Pin [21]  frontend, whieh models out-of-order 
cores with a limited-size instruction window. Each core has 
a 5 1 2  KB private cache. We model main memory as the only 
shared resource, in order to isolate and analyze the effect of 
memory interference on application slowdowns. Table 1 pro­
vides more details of the simulated systems. 

Unless otherwise specified, the evaluated systems consist of 4 
cores and a memory subsystem with 1 channel, 1 rank/channel 
and 8 banks/rank. We use row-interleaving to map the physieal 
address space onto DRAM channels, ranks and banks. Data is 
striped across different channels, ranks and banks, at the gran­
ularity of a row. Our workloads are made up of 26 benchmarks 
from the SPEC CPU2006 [1]  suite. 
Workloads. We form multiprogrammed workloads using com­
binations of these 26 benchmarks. We extract a representative 
phase of each benchmark using PinPoints [31] and run that 
phase for 200 million cycles. We will provide more details about 
our workloads as and when required. 

Processor 

Last-level cache 

Memory controller 

Memory 

4-16 cores, 5.3GHz, 3-wide issue, 
8 MSHRs, 128-entry instruction window 

64B cache-Iine, 16-way associative, 
512kB private cache-slice per core 

64/64-entry read/write request queues per controller 

Timing: DDR3-I066 (8-8-8) [25] 
ürganization: 1 channeI, 1 rank-per-channel, 
8 banks-per-rank, 8 KB row-buffer 

Table 1: Configuration of the simulated system 

Metrics. We compute both weighted speedup [34] and har­
monie speedup [22] to measure system performance. How­
ever, since the goal of our mechanisms is to provide QoS/high 
fairness, while ensuring good system performance, we mainly 
present harmonie speedup throughout our evaluations, as the 
harmonie speedup metric provides a good balance between sys­
tem performance and fairness [22] . We use the maximum slow­
down [4, 19, 20] metric to measure unfairness. 



Parameters. We use an interval length (M) of 5 million cycles 
and an epoch length (N) of 10000 cycles for all our evaluations. 
Section 7 evaluates sensitivity of our model to these parameters. 

6. Comparison to STFM 
Stall-Time-Fair Memory scheduling (STFM) [28] is one of the 
few previous works that attempt to estimate main-memory­
induced slowdowns of individual applications when they are 
run concurrently on a multicore system. As we described in 
Section 2, STFM estimates the slowdown of an application by 
estimating the number of cycles it stalls due to interference from 
other applications' requests. In this section, we qualitatively 
and quantitatively compare MISE with STFM. 

There are two key differences between MISE and STFM for 
estimating slowdown. First, MISE uses request service rates 
rather than stall times to estimate slowdown. As we mentioned 
in Section 3, the alone-request-service-rate of an application can 
be fairly accurately estimated by giving the application highest 
priority in accessing memory. Giving the application highest 
priority in accessing memory results in very little interference 
from other applications. In contrast, STFM attempts to estimate 
the alone-stall-time of an application while it is receiving signif­
icant interference from other applications. Second, MISE takes 
into account the effect of the compute phase for non-memory­
bound applications. STFM, on the other hand, has no such pro­
vision to ac count for the compute phase. As a result, MISE's  
slowdown estimates for non-memory-bound applications are 
significantly more accurate than STFM's estimates. 

Figure 2 compares the accuracy of the MISE model with 
STFM for six representative memory-bound applications from 
the SPEC CPU2006 benchmark suite. Each application is run on 
a 4-core system along with three other applications: sphinx3, 
leslie3d, and mi/co The figure plots three curves: 1) actual slow­
down, 2) slowdown estimated by STFM, and 3) slowdown es­
timated by MISE. For most applications in the SPEC CPU2006 
suite, the slowdown estimated by MISE is significantly more 
accurate than STFM's slowdown estimates. All applications 
whose slowdowns are shown in Figure 2, except sphinx3, are 
representative of this behavior. For a few applications and 
workload combinations, STFM's estimates are comparable to 
the slowdown estimates from our model: sphinx3 is an exam­
pIe of such an application. However, as we will show below, 
across all workloads, the MISE model provides lower average 
slowdown estimation error for all applications. 

Figure 3 compares the accuracy of MISE with STFM for three 
representative non-memory-bound applications, when each ap­
plication is run on a 4-core system along with three other ap­
plications: sphinx3, leslie3d, and mi/co As shown in the figure, 
MISE's  estimates are significantly more accurate compared to 
STFM's estimates. As mentioned before, STFM does not ac­
count for the compute phase of these applications. However, 
these applications spend significant amount of their execution 
time in the compute phase. This is the reason why our model, 
which takes into account the effect of the compute phase of 
these applications, is able to provide more accurate slowdown 
estimates for non-memory-bound applications. 

Table 2 shows the average slowdown estimation error for 
each benchmark, with STFM and MISE, across all 300 4-core 
workloads of different memory intensities.3 As can be observed, 
MISE's  slowdown estimates have significantly lower error than 
STFM' s slowdown estimates across most benchmarks. Across 
300 workloads, STFM's estimates deviate from the actual slow-

3See Table 4 and Seetion 8.1.3 for more details about these 300 workloads. 

Benchmark STFM MISE Benchmark STFM MISE 
453.povray 56.3 0.1 473.astar 12.3 8.1 
454.ealculix 43.5 1.3 456.hmmer 17.9 8.1 

400.perlbeneh 26.8 1.6 464.h264ref 13.7 8.3 
447.dealII 37.5 2.4 401.bzip2 28.3 8.5 

436.eactusADM 18.4 2.6 458.sjeng 21.3 8.8 
450.soplex 29.8 3.5 433.mile 26.4 9.5 
444.namd 43.6 3.7 481.wrf 33.6 11.1 

437.1eslie3d 26.4 4.3 429.mef 83.74 11.5 
403.gee 25.4 4.5 445.gobmk 23.1 12.5 

462.libquantum 48.9 5.3 483.xalanebmk 18.0 13.6 
459.GemsFDTD 21.6 5.5 435.gromaes 31.4 15.6 

470.lbm 6.9 6.3 482.sphinx3 21 16.8 
473.astar 12.3 8.1 471.omnetpp 26.2 17.5 

456.hmmer 17.9 8.1 465.tonto 32.7 19.5 

Table 2: Average error for each benchmark (in %) 

down by 29.8%, whereas, our proposed MISE model's  estimates 
deviate from the actual slowdown by only 8 .1%.  Therefore, we 
conclude that our slowdown estimation model provides better 
accuracy than STFM. 

7. Sensitivity to Algorithm Parameters 

We evaluate the sensitivity of the MISE model to epoch and in­
terval lengths. Table 3 presents the average error (in %) of the 
MISE model for different values of epoch and interval lengths. 
Two major conclusions are in order. First, when the interval 
length is small (1 million cycles), the error is very high. This is 
because the request service rate is not stable at such small inter­
val lengths and varies significantly across intervals. Therefore, 
it cannot serve as an effective proxy for performance. On the 
other hand, when the interval length is larger, request service 
rate exhibits a more stable behavior and can serve as an effec­
tive measure of application slowdowns. Therefore, we conclude 
that except at very low interval lengths, the MISE model is ro­
bust. Second, the average error is high for high epoch lengths 
(1 million cycles) because the number of epochs in an interval 
reduces. As a result, some applications might not be assigned 
highest priority for any epoch during an interval, preventing 
estimation of their alone-request-service-rate. Note that the ef­
fect of this is mitigated as the interval length increases, as with 
a larger interval length the number of epochs in an interval in­
creases. For smaller epoch length values, however, the aver­
age error of MISE does not exhibit much variation and is ro­
bust. The lowest average error of 8 .1  % is achieved at an interval 
length of 5 million cycles and an epoch length of 10000 cycles. 
Furthermore, we observe that estimating slowdowns at an in­
terval length of 5 million cycles also enables enforcing QoS at 
fine time granularities, although, higher interval lengths exhibit 
similar average error. Therefore, we use these values of interval 
and epoch lengths for our evaluations. 

� Length 
1 mil. 5 mil. 10 mil. 25 mil. 50 mil. Epoeh 

Length 
1000 65.1% 9.1% 11.5% 10.7% 8.2% 
10000 64.1% 8.1% 9.6% 8.6% 8.5% 
100000 64.3% 11.2% 9.1% 8.9% 9% 
1000000 64.5% 31.3% 14.8% 14.9% 11.7% 

Table 3: Sensitivity of average error to epoch and interval lengths 

8. Leveraging the MISE Model 

Our MISE model for estimating individual application slow­
downs can be used to design different policies to better en-
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Figure 2: Comparison of our MISE model with STFM for representative memory-bound applications 
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Figure 3: Comparison of our MISE model with STFM for representative non-memory-bound applications 

force quality-of-service (QoS) and fairness. In this section, we 
describe and evaluate two such mechanisms: 1) a mechanism 
to provide soft QoS guarantees (MISE-QoS) and 2) a mecha­
nism that attempts to minimize maximum slowdown to im­
prove overall system fairness (MISE-Fair). 

8.1. MISE-QoS: Providing Soft QoS Guarantees 

MISE-QoS is a mechanism to provide soft QoS guarantees to 
one or more applications of interest in a workload with many 
applications, while trying to maximize overall performance for 
the remaining applications. By soft QoS guarantee, we mean 
that the applications of interest (Aols) should not be slowed 
down by more than an operating-system-specified bound. A 
naive way of achieving such a soft QoS guarantee is to always 
prioritize the Aols. However, such a mechanism has two short­
comings. First, the naive mechanism can work when there is 
only one Aol. With more than one Aol, prioritizing all Aols 
will cause them to interfere with each other making their slow­
downs uncontrollable. Second, even with just one Aol, the 
naive mechanism may unnecessarily slow down other appli­
cations in the system by excessively prioritizing the Aol. MISE­
QoS addresses these shortcomings by using slowdown estimates 
of the Aols to allocate them just enough memory bandwidth to 
meet their specified slowdown bound. We present the opera­
tion of MISE-QoS with one Aol and then describe how it can be 
extended to multiple Aols. 

8.1.1. Mechanism Description. The operation of MISE-QoS 
with one Aol is simple. As described in Section 4.1, the mem­
ory controller divides execution time into intervals of length 
M. The controller maintains the current bandwidth allocation 
for the Aol. At the end of each interval, it estimates the slow­
down of the Aol and compares it with the specified bound, say 
B. If the estimated slowdown is less than B, then the con­
troller reduces the bandwidth allocation for the Aol by a small 
amount (2% in our experiments). On the other hand, if the es­
timated slowdown is more than B, the controller increases the 
bandwidth allocation for the Aol (by 2%).4 The remaining band­
width is used by all other applications in the system in a free­
for-all manner. The above mechanism attempts to ensure that 
the Aol gets just enough bandwidth to meet its target slowdown 
bound. As a result, the other applications in the system are not 
unnecessarily slowed down. 

In some cases, it is possible that the target bound cannot be 
met even by allocating all the memory bandwidth to the Aol 
- Le., prioritizing its requests 100% of the time. This is be­
cause, even the application with the highest priority (Aol) could 
be subject to interference, slowing it down by some factor, as 
we describe in Section 4.3. Therefore, in scenarios when it is 

4We found that 2% increments in memory bandwidth work weil empirically, as 
our results indicate. Better techniques that dynamically adapt the increment are 
possible and are a part of our future work. 



Mix No. Benchmark 1 Benchmark 2 Benchmark 3 
1 sphinx3 leslie3d mHe 
2 sjeng gee perlbeneh 
3 tonto povray wrf 
4 perlbeneh gee povray 
5 gee povray leslie3d 
6 perlbeneh namd Ibm 
7 hef bzip2 libquantum 
8 hmmer Ibm omnetpp 
9 sjeng libquantum eaetusADM 
10 namd libquantum mef 
11 xalanebmk mef astar 
12 mef libquantum leslie3d 

Table 4: Workload mixes 

not possible to meet the target bound for the Aol, the memory 
controller can convey this information to the operating system, 
which can then take appropriate action (e.g., deschedule some 
other applications from the machine). 
8.1.2. MISE-QoS with Multiple Aols. The above described 
MISE-QoS mechanism can be easily extended to a system with 
multiple Aols. In such a system, the memory controller main­
tains the bandwidth allocation for each Aol. At the end of each 
interval, the controller checks if the slowdown estimate for each 
Aol meets the corresponding target bound. Based on the result, 
the controller either increases or decreases the bandwidth allo­
cation for each Aol (similar to the mechanism in Section 8 .1 .1) .  

With multiple Aols, it  may not be possible to meet the spec­
ified slowdown bound for any of the Aols. Our mechanism 
concludes that the specified slowdown bounds cannot be met if: 
1) all the available bandwidth is partitioned only between the 
Aols - i.e., no bandwidth is allocated to the other applications, 
and 2) any of the Aols does not meet its slowdown bound after 
R intervals (where R is empirically determined at design time) . 
Similar to the scenario with one Aol, the memory controller 
can convey this conclusion to the operating system (along with 
the estimated slowdowns), which can then take an appropriate 
action. Note that other potential mechanisms for determining 
whether slowdown bounds can be met are possible. 
8.1.3. Evaluation with Single Aol. To evaluate MISE-QoS 
with a single Aol, we run each benchmark as the Aol, along­
side 12 different workload mixes shown in Table 4. We run 
each workload with 10 different slowdown bounds for the Aol: 
\0 ,  120 , ... , ig .  These slowdown bounds are chosen so as to have 
more data points between the bounds of 1 x and 5 x .  5 In all, we 
present results for 3000 data points with different workloads and 
slowdown bounds. We compare MISE-QoS with a mechanism 
that always prioritizes the Aol [15] . 

Table 5 shows the effectiveness of MISE-QoS in meeting 
the prescribed slowdown bounds for the 3000 data points. As 
shown, for approximately 79% of the workloads, MISE-QoS 
meets the specified bound and correctly predicts that the bound 
is met. However, for 2 . 1% of the workloads, MISE-QoS does 
meet the specified bound but it incorrectly predicts that the 
bound is not met. This is because, in some cases, MISE-QoS 
slightly overestimates the slowdown of applications. Overall, 
MISE-QoS meets the specified slowdown bound for close to 
80.9% of the workloads, as compared to AlwaysPrioritize that 
meets the bound for 83% of the workloads. Therefore, we con­
clude that MISE-QoS meets the bound for 97.5% of the work­
loads where AlwaysPrioritize meets the bound. Furthermore, 
MISE-QoS correctly predicts whether or not the bound was met 

SMost applieations are not slowed down by more than 5 x  for our system eon­
figuration. 

for 95.7% of the workloads, whereas AlwaysPrioritize has no 
provision to predict whether or not the bound was met. 

Scenario # Workloads % Workloads 
Bound Met and Predieted Right 2364 78.8% 
Bound Met and Predieted Wrong 65 2.1% 
Bound Not Met and Predicted Right 509 16.9% 
Bound Not Met and Predicted Wrong 62 2.2% 

Table 5: Effectiveness of MISE-QoS 

To show the effectiveness of MISE-QoS, we compare the 
Aors slowdown due to MISE-QoS and the mechanism that 
always prioritizes the Aol (AlwaysPrioritize) [15] . Figure 4 
presents representative results for 8 different Aols when they 
are run alongside Mix 1 (Table 4). The label MISE-QoS-n corre­
sponds to a slowdown bound of � . (Note that AlwaysPrioritize 
does not take into account the slowdown bound) . Note that the 
slowdown bound decreases (i .e., becomes tighter) from left to 
right for each benchmark in Figure 4 (as weIl as in other fig­
ures). We draw three conclusions from the results. 
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Figure 4: Aol performance: MISE-QoS vs. AlwaysPrioritize 

First, for most applications, the slowdown of AlwaysPri­
oritize is considerably more than one. As described in Sec­
tion 8 .1 . 1 ,  always prioritizing the Aol does not completely pre­
vent other applications from interfering with the Aol. 

Second, as the slowdown bound for the Aol is decreased (left 
to right), MISE-QoS gradually increases the bandwidth alloca­
tion for the Aol, eventually allocating all the available band­
width to the Aol. At this point, MISE-QoS performs very simi­
larly to the AlwaysPrioritize mechanism. 

Third, in almost all cases (in this figure and across all oUf 
3000 data points), MISE-QoS meets the specified slowdown 
bound if AlwaysPrioritize is able to meet the bound. One ex­
ception to this is benchmark gromacs. For this benchmark, 
MISE-QoS meets the slowdown bound for values ranfting from 
\0 to 16° .6 For slowdown bound values of 1� and SO ,  MISE­
QoS does not meet the bound even though allocating all the 
bandwidth for gromacs would have achieved these slowdown 
bounds (since AlwaysPrioritize can meet the slowdown bound 
for these values) . This is because our MISE model underesti­
mates the slowdown for gromacs. Therefore, MISE-QoS incor­
rectly assurnes that the slowdown bound is met for gromacs. 

Overall, MISE-QoS accurately estimates the slowdown of the 
Aol and allocates just enough bandwidth to the Aol to meet a 

6Note that the slowdown bound beeomes tighter from left to right. 
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Figure 5: Average system performance and fairness across 300 workloads of different memory intensities 

slowdown bound. As a result, MISE-QoS is able to significantly 
improve the performance of the other applications in the system 
(as we show next) . 

System Performance and Fairness. Figure 5 compares the 
system performance (harmonie speedup) and fairness (maxi­
mum slowdown) of MISE-QoS and AlwaysPrioritize for differ­
ent values of the bound. We omit the Aol from the perfor­
mance and fairness calculations. The results are categorized 
into four workload categories (0, 1, 2, 3) indieating the number 
of memory-intensive benchmarks in the workload. For clarity, 
the figure shows results only for a few slowdown bounds. Three 
conclusions are in order. 

First, MISE-QoS significantly improves performance com­
pared to AlwaysPrioritize, especially when the slowdown 
bound for the Aol is large. On average, when the bound is 13° , 
MISE-QoS improves harmonie speedup by 12% and weighted 
speedup by 10% (not shown due to lack of space) over AI­
waysPrioritize, while reducing maximum slowdown by 13%.  
Second, as expected, the performance and fairness of MISE-QoS 
approach that of AlwaysPrioritize as the slowdown bound is de­
creased (going from left to right for a set of bars) . Finally, the 
benefits of MISE-QoS increase with increasing memory inten­
sity because always prioritizing a memory intensive application 
will cause significant interference to other applications. 

Based on our results, we conclude that MISE-QoS can effec­
tively ensure that the Aol meets the specified slowdown bound 
while achieving high system performance and fairness across 
the other applications. In Section 8.1 .4, we discuss a case study 
of a system with two Aols. 

Using STFM's Slowdown Estimates to Provide QoS. We 
evaluate the effectiveness of STFM in providing slowdown 
guarantees, by using slowdown estimates from STFM's model 
to drive our QoS-enforcement mechanism. Table 6 shows the 
effectiveness of STFM's slowdown estimation model in meeting 
the prescribed slowdown bounds for the 3000 data points. We 
draw two major conclusions. First, the slowdown bound is met 
and predieted right for only 63.7% of the workloads, whereas 
MISE-QoS meets the slowdown bound and prediets it right for 
78.8% of the workloads (as shown in Table 5). The reason is 
STFM's high slowdown estimation error. Second, the percent­
age of workloads for whieh the slowdown bound is met/not-met 
and is predieted wrong is 18.4%, as compared to 4.3% for MISE­
QoS. This is because STFM's slowdown estimation model over­
estimates the slowdown of the Aol and allocates it more band­
width than is required to meet the prescribed slowdown bound. 
Therefore, performance of the other applications in a workload 
suffers, as demonstrated in Figure 6 which shows the system 
performance for different values of the prescribed slowdown 
bound, for MISE and STFM. For instance, when the slowdown 
bound is 13° , STFM-QoS has 5% lower average system perfor-

mance than MISE-QoS. Therefore, we conclude that the pro­
posed MISE model enables more effective enforcement of QoS 
guarantees for the Aol, than the STFM model, while providing 
better average system performance. 

Scenario # Workloads % Workloads 
Bound Met and Predicted Right 1911 63.7% 
Bound Met and Predicted Wrang 480 16% 
Bound Not Met and Predicted Right 537 17.9% 
Bound Not Met and Predicted Wrang 72 2.4% 

Table 6: Effectiveness of STFM-QoS 
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Figure 6:  Average system performance using MISE and STFM's 

slowdown estimation models (across 300 workloads) 

8.1.4. Case Study: Two Aols. So far, we have discussed and 
analyzed the benefits of MISE-QoS for a system with one Aol. 
However, there could be scenarios with multiple Aols each with 
its own target slowdown bound. One can think of two naive ap­
proaches to possibly address this problem. In the first approach, 
the memory controller can prioritize the requests of all Aols 
in the system. This is similar to the AlwaysPrioritize mecha­
nism described in the previous section. In the second approach, 
the memory controller can equally partition the memory band­
width across all Aols. We call this approach EqualBandwidth. 
However, neither of these mechanisms can guarantee that the 
Aols meet their target bounds. On the other hand, using the 
mechanism described in Section 8 .1 .2 , MISE-QoS can be used to 
achieve the slowdown bounds for multiple Aols. 

To show the effectiveness of MISE-QoS with multiple Aols, 
we present a case study with two Aols. The two Aols, astar and 
mef are run in a 4-core system with leslie and another copy of 
mef Figure 7 compares the slowdowns of each of the four ap­
plications with the different mechanisms. The same slowdown 
bound is used for both Aols. 

Although AlwaysPrioritize prioritizes both Aols, mef (the 
more memory-intensive Aol) interferes significantly with as­
tar (slowing it down by more than 7 x ) . EqualBandwidth mit­
igates this interference problem by partitioning the bandwidth 
between the two applications. However, MISE-QoS intelligently 
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Figure 7: Meeting a target bound for two applications 

partitions the available memory bandwidth equally between 
the two applications to ensure that both of them meet a more 
stringent target bound. For example, for a slowdown bound of 
12 , MISE-QoS allocates more than 50% of the bandwidth to as­
tar, thereby reducing astar's  slowdown below the bound of 2 .5, 
while EqualBandwidth can only achieve a slowdown of 3.4 for 
astar, by equally partitioning the bandwidth between the two 
Aols. Furthermore, as a result of its intelligent bandwidth al­
location, MISE-QoS significantly reduces the slowdowns of the 
other applications in the system compared to AlwaysPrioritize 
and EqualBandwidth (as seen in Figure 7). 

We conclude, based on the evaluations presented above, that 
MISE-QoS manages memory bandwidth efficiently to achieve 
both high system performance and fairness while meeting per­
formance guarantees for one or more applications of interest. 

8.2. MISE-Fair: Minimizing Maximum Slowdown 

The second mechanism we build on top of our MISE model is 
one that seeks to improve overall system fairness. Specifically, 
this mechanism attempts to minimize the maximum slowdown 
across all applications in the system. Ensuring that no appli­
cation is unfairly slowed down while maintaining high system 
performance is an important goal in multicore systems where 
co-executing applications are similarly important. 
8.2.1. Mechanism. At a high level, our mechanism works as 
follows. The memory controller maintains two pieces of infor­
mation: 1) a target slowdown bound (B) for all applications, 
and 2) a bandwidth allocation policy that partitions the avail­
able memory bandwidth across all applications. The memory 
controller enforces the bandwidth allocation policy using the 
lottery-scheduling technique as described in Section 4 .1 .  The 
controller attempts to ensure that the slowdown of all appli­
cations is within the bound B. To this end, it modifies the 
bandwidth allocation policy so that applications that are slowed 
down more get more memory bandwidth. Should the memory 
controller find that bound B is not possible to meet, it increases 
the bound. On the other hand, if the bound is easily met, it 
decreases the bound. We describe the two components of this 
mechanism: 1) bandwidth redistribution policy, and 2) modify­
ing target bound (B). 

Bandwidth Redistribution Policy. As described in Sec­
tion 4.1, the memory controller divides execution into multiple 
in tervals. At the end of each interval, the controller estimates 
the slowdown of each application and possibly redistributes the 
available memory bandwidth amongst the applications, with 
the goal of minimizing the maximum slowdown. Specifically, 
the controller divides the set of applications into two clusters. 
The first cluster contains those applications whose estimated 
slowdown is less than B. The second cluster contains those 
applications whose estimated slowdown is more than B. The 
memory controller steals a small fixed amount of bandwidth 

allocation (2%) from each application in the first cluster and dis­
tributes it equally among the applications in the second cluster. 
This ensures that the applications that do not meet the target 
bound B get a larger share of the memory bandwidth. 

Modifying Target Bound. The target bound B may depend 
on the workload and the different phases within each workload. 
This is because different workloads, or phases within a work­
load, have varying demands from the memory system. As a 
result, a target bound that is easily met for one workload/phase 
may not be achievable for another workload/phase. Therefore, 
our mechanism dynamically varies the target bound B by pre­
dicting whether or not the current value of B is achievable. For 
this purpose, the memory controller keeps track of the num­
ber of applications that met the slowdown bound during the 
past N intervals (3 in our evaluations). If all the applications 
met the slowdown bound in all of the N intervals, the memory 
controller predicts that the bound is easily achievable. In this 
case, it sets the new bound to a slightly lower value than the 
estimated slowdown of the application that is the most slowed 
down (a more competitive target). On the other hand, if more 
than half the applications did not meet the slowdown bound 
in all of the N intervals, the controller predicts that the target 
bound is not achievable. It then increases the target slowdown 
bound to a slightly higher value than the estimated slowdown 
of the most slowed down application (a more achievable target). 
8.2.2. Interaction with the OS. As we will show in Sec­
tion 8.2 .3, our mechanism provides the best fairness com­
pared to three state-of-the-art approaches for memory request 
scheduling [ 19, 20, 28] . In addition to this, there is another ben­
efit to using our approach. Our mechanism, based on the MISE 
model, can accurately estimate the slowdown of each applica­
tion. Therefore, the memory controller can potentially com­
municate the estimated slowdown information to the operating 
system (OS). The OS can use this information to make more 
informed scheduling and mapping decisions so as to further 
improve system performance or fairness. Since prior memory 
scheduling approaches do not explicitly attempt to minimize 
maximum slowdown by accurately estimating the slowdown of 
individual applications, such a mechanism to interact with the 
OS is not possible with them. Evaluating the benefits of the 
interaction between our mechanism and the OS is beyond the 
scope of this paper. 
8.2.3. Evaluation. Figure 8 compares the system fairness (maxi­
mum slowdown) of different mechanisms with increasing num­
ber of cores. The figure shows results with four previously 
proposed memory scheduling policies (FRFCFS [33, 37] , AT­
LAS [19] ,  TCM [20] , and STFM [28]), and our proposed mech­
anism using the MISE model (MISE-Fair). We draw three con­
clusions from our results. 
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Figure 8 :  Fairness with different core counts 

First, MISE-Fair provides the best fairness compared to all 
other previous approaches. The reduction in the maximum 



slowdown due to MISE-Fair when compared to STFM (the 
best previous mechanism) increases with increasing number of 
cores. With 16 cores, MISE-Fair provides 7 .2% better fairness 
compared to STFM. 

Second, STFM, as a result of prioritizing the most slowed 
down application, provides better fairness than all other previ­
ous approaches. While the slowdown estimates of STFM are not 
as accurate as those of our mechanism, they are good enough 
to identify the most slowed down application. However, as the 
number of concurrently-running applications increases, simply 
prioritizing the most slowed down application may not lead to 
better fairness. MISE-Fair, on the other hand, works towards re­
ducing maximum slowdown by stealing bandwidth from those 
applications that are less slowed down compared to others. As 
a result, the fairness benefits of MISE-Fair compared to STFM 
increase with increasing number of cores. 

Tbird, ATLAS and TCM are more unfair compared to FR­
FCFS. As shown in prior work [ 19, 20] , ATLAS trades off fair­
ness to obtain better performance. TCM, on the other hand, is 
designed to provide high system performance and fairness. Fur­
ther analysis showed us that the cause of TCM's  unfairness is 
the striet ranking employed by TCM. TCM ranks all applica­
tions based on its clustering and shuffiing techniques [20] and 
strietly enforces these rankings. We found that such striet rank­
ing destroys the row-buffer locality of low-ranked applications. 
Tbis increases the slowdown of such applications, leading to 
high maximum slowdown. 

Effect of Workload Memory Intensity on Fairness. Fig­
ure 9 shows the maximum slowdown of the 16-core workloads 
categorized by workload intensity. While most trends are sim­
ilar to those in Figure 8, we draw the reader's attention to a 
specific point: for workloads with non-memory-intensive appli­
cations (25%, 50% and 75% in the figure), STFM is more unfair 
than MISE-Fair. As shown in Figure 3, STFM significantly over­
estimates the slowdown of non-memory-bound applications. 
Therefore, for these workloads, we find that STFM prioritizes 
such non-memory-bound applications whieh are not the most 
slowed down. On the other hand, MISE-Fair, with its more ac­
curate slowdown estimates, is able to provide better fairness for 
these workload categories. 
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System Performance. Figure 10 presents the harmonic 
speedup of the four previously proposed mechanisms (FRFCFS, 
ATLAS, TCM, STFM) and MISE-Fair, as the number of cores is 
varied. The results indieate that STFM provides the best har­
monie speedup for 4-core and 8-core systems. STFM achieves 
tbis by prioritizing the most slowed down application. How­
ever, as the number of cores increases, the harmonie speedup 
of MISE-Fair matches that of STFM. This is because, with in­
creasing number of cores, simply prioritizing the most slowed 
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down application can be unfair to other applications. In con­
trast, MISE-Fair takes into ac count slowdowns of all applica­
tions to manage memory bandwidth in a manner that enables 
good progress for all applications. We conclude that MISE-Fair 
achieves the best fairness compared to prior approaches, with­
out significantly degrading system performance. 

9. Related Work 
To our knowledge, this is the first paper to 1) provide a simple 
and accurate model to estimate application slowdowns in the 
presence of main memory interference, and 2) use this model to 
devise two new memory scheduling techniques that either aim 
to satisfy slowdown bounds of applications or improve system 
fairness and performance. We already described Stall Time Fair 
Memory scheduling [28] , Fairness via Source Throttling [6] and 
Du Bois et al.'s  mechanism [5] for estimating an application's 
alone execution time while it is run alongside other applications 
in Section 2, and provided qualitative and quantitative compar­
ison to STFM in Section 6. In tbis section, we present other 
related work. 

Prior Work on Slowdown Estimation. Eyerman and Eeck­
hout [8] and Cazorla et al. [3] propose mechanisms to determine 
an application's slowdown while it is running alongside other 
applications on an SMT processor. Luque et al. [23] estimate 
application slowdowns in the presence of shared cache interfer­
ence. These studies do not take into account inter-application 
interference at the main memory. Therefore, our proposed 
MISE model to estimate slowdown due to main memory inter­
ference can be favorably combined with the above approaches 
to quantify interference at the SMT processor and shared cache 
to build a comprehensive mechanism. 

Prior Work on QoS. Several prior works have attempted to 
provide QoS guarantees in shared memory CMP systems. Mars 
et al. [24] propose a mechanism to estimate an application's sen­
sitivity towards interference and its propensity to cause inter­
ference. They utilize this knowledge to make informed mapping 
decisions between applications and cores. However, this mecha­
nism 1) assurnes a priori knowledge of applications, whieh may 
not always be possible to have, and 2) is designed for only 2 
cores, and it is not clear how it can be extended to more than 
2 cores. In contrast, MISE does not assurne any a priori knowl­
edge of applications and works weIl with large core counts, as 
we have shown in this paper. That said, MISE can possibly be 
used to provide feedback to the mapping mechanism proposed 
by [24] to overcome the shortcomings of their mechanism. Iyer 
et al. [ 1 1, 14, 15] proposed mechanisms to provide guarantees 
on shared cache space, memory bandwidth or IPC for differ­
ent applications. The slowdown guarantee provided by MISE­
QoS is strieter than these mechanisms as MISE-QoS takes into 
account the alone-performance of each application. Nesbit et 
al. [30] proposed a mechanism to enforce a bandwidth alloca­
tion policy - partition the available bandwidth across concur-



rently running applications based on some policy. While we 
use a scheduling technique similar to lottery-scheduling [32, 36] 
to enforce the bandwidth allocation policies of MISE-QoS and 
MISE-Fair, the mechanism proposed by Nesbit et al. can also 
be used in our proposal to allocate bandwidth instead of our 
lottery-scheduling approach. 

Prior Work on Memory Interference Mitigation. Much 
prior work has focused on the problem of mitigating inter­
application interference at the main memory to improve sys­
tem performance and/or fairness. Most of the previous ap­
proaches address this problem by modifying the memory re­
quest scheduling algorithm [2, 7, 13, 19, 20, 28, 29, 30] . We 
quantitatively compare MISE-Fair to STFM [28] , ATLAS [19] , 
and TCM [20] , and show that MISE-Fair provides better fair­
ness than these prior approaches. Prior work has also ex­
amined source throttling [6] , memory channel/bank partition­
ing [ 16, 27] , and memory interleaving [18] techniques to miti­
gate inter-application interference. These approaches are com­
plementary to our proposed mechanisms and can be combined 
to achieve better fairness. 

Prior Work on Analytical Performance Modeling. Several 
previous works [9, 10, 17, 35] have proposed analytical mod­
els to estimate processor performance, as an alternative to time 
consuming simulations. The goal of our MISE model, in con­
trast, is to estimate slowdowns at runtime, in order to enable 
mechanisms to provide QoS and high fairness. Its use in simu­
lation is possible, but is left to future work. 

10. Conclusion 
We introduce a new, simple model, MISE, to estimate applica­
tion slowdowns due to inter-application interference in main 
memory. MISE is based on two simple observations: 1) the rate 
at which an application's memory requests are served can be 
used as a proxy for the application's performance, and 2) the 
uninterfered request-service-rate of an application can be accu­
rately estimated by giving the application's requests the high­
est priority in accessing main memory. Compared to the state­
of-the-art approach for estimating main memory slowdowns, 
Stall-Time Fair Memory scheduling [28] , MISE is simpler and 
more accurate, as our evaluations show. 

We develop two new main memory request scheduling 
mechanisms that use MISE to achieve two different goals: 
1) MISE-QoS aims to provide soft QoS guarantees to one or 
more applications of interest while ensuring high system perfor­
mance, 2) MISE-Fair attempts to minimize maximum slowdown 
to improve overall system fairness. Our extensive evaluations 
show that our proposed mechanisms are more effective than the 
state-of-the-art memory scheduling approaches [15 ,  19, 20, 28] 
in achieving their respective goals. 

We conclude that MISE is a promising substrate to build 
effective mechanisms that can enable the design of more pre­
dictable and more controllable systems where main memory is 
shared between multiple workloads. In future, we aim to de­
vise similar simple models for accurately estimating application 
slowdowns in other shared resources. 
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