
MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian Vivek Seshadri Yoongu Kim Ben Jaiyen Onur Mutlu

Carnegie Mellon University

Abstract

Applications running concurrently on a multicore system in­
terfere with each other at the main memory. This interference
can slow down different applications differently. Accurately es­
timating the slowdown of each application in such a system can
enable mechanisms that can enforce quality-of-service. While
much prior work has focused on mitigating the performance
degradation due to inter-application interference, there is lit­
tle work on estimating slowdown of individual applications in
a multi-programmed environment. Dur goal in this work is to
build such an estimation scheme.

To this end, we present our simple Memory-Interference­
induced Slowdown Estimation (MISE) model that estimates
slowdowns caused by memory interference. We build our model
based on two observations. First, the performance of a memory­
bound application is roughly proportional to the rate at which
its memory requests are served, suggesting that request-service­
rate can be used as a proxy for performance. Second, when
an application's requests are prioritized over all other applica­
tions' requests, the application experiences very little interfer­
ence from other applications. This provides a means for esti­
mating the uninterfered request-service-rate of an application
while it is run alongside other applications. Using the above
observations, our model estimates the slowdown of an applica­
tion as the ratio of its uninterfered and interfered request service
rates. We propose simple changes to the above model to estimate
the slowdown of non-memory-bound applications.

We demonstrate the effectiveness of our model by develop­
ing two new memory scheduling schemes: 1) one that provides
soft quality-of-service guarantees and 2) another that explicitly
attempts to minimize maximum slowdown (i.e., unfa irness) in
the system. Evaluations show that our techniques perform sig­
nificantly better than state-of-the-art memory scheduling ap­
proaches to address the above problems.

1. Introduction

Main memory is a critical shared resource in modern multicore
systems. Multiple applications running concurrently on a mul­
ticore system contend with each other for the available mem­
ory bandwidth. Tbis inter-application interference degrades
both individual application and overall system performance.
Moreover, the slowdown of each application depends on the
other concurrently running applications and the available mem­
ory bandwidth. Hence, different applications experience differ­
ent and unpredictable slowdowns, as demonstrated by previ­
ous work [26, 28, 29, 30] . Accurately estimating tbis memory­
interference induced slowdown can enable mechanisms to bet­
ter enforce Quality of Service (QoS) and fairness in multicore
systems. For exarnple, the memory controller could use accu­
rate slowdown estimates to manage memory bandwidth appro­
priately to provide soft QoS guarantees to applications. Alterna­
tively, conveying the slowdown of each application to the oper­
ating system (OS) may allow the OS to make better application
scheduling decisions - e.g., the OS can co-schedule applications
that interfere less with each other.

978-1-4673-5587-2/13/$31.00 ©20 13 IEEE

A considerable number ofprior works have proposed several
different approaches to mitigate interference between applica­
tions at the main memory, with the goal of improving over­
all system performance and/or fairness. Examples of such ap­
proaches include new memory scheduling (e.g., [2 , 19, 20, 28,
29, 30]), memory channe1!bank partitioning [16, 27] , memory
interleaving [18], and source throttling [6] techniques.

Although these previous proposals are effective in mitigat­
ing the performance degradation due to memory interference,
few of them, e.g., [5, 6, 28] attempt to estimate the actual slow­
down of each application compared to when the application is
run alone. In tbis work, we find that the prior approaches [6, 28]
to estimate individual application slowdown due to main mem­
ory interference are inaccurate. Part of the reason for their in­
accuracy is that these mechanisms were not designed to accu­
rately estimate slowdown of individual applications, with the
goal of providing predictable performance. Rather, they use the
estimated slowdown information to make informed prioritiza­
tion, throttling or scheduling decisions to improve system per­
formance and fairness. While system performance and fairness
continue to be important considerations, the ability to achieve
predictable performance for different applications is gaining im­
portance in today' s era of workload consolidation and concur­
rent execution of multiple applications, as exemplified by server
consolidation where different users' jobs that are consolidated
onto the same machine share resources.

Our goal in this work is to provide predictable performance
for individual applications. To tbis end, we design a model to
accurately estimate memory-interference-induced slowdowns
of individual applications running concurrently on a multicore
system. Estimating the slowdown of an individual application
requires two pieces of information: 1) the performance of the
application when it is run concurrently with other applications,
and 2) the performance of the application when it is run alone
on the same system. While the former can be directly measured,
the key challenge is to estimate the performance the application
would have if it were running alone while it is actually running
alongside other applications. This requires quantifying the ef­
fect of interference on performance. In this work, we make two
observations that lead to a simple and effective mechanism to
estimate the slowdown of individual applications.

Our first observation is that performance of a memory­
bound application is roughly proportional to the rate at wbich
its memory requests are served. Tbis observation suggests that
we can use request-service-rate as a proxy for performance, for
memory-bound applications. As a result, slowdown of such an
application can be computed as the ratio of the request-service­
rate when the application is run alone on a system (alone­
request-service-rate) to that when it is run alongside other in­
terfering applications (shared-request-service-rate). Although
the shared-request-service-rate can be measured in a straight­
forward manner using a few counters at the memory controller,
tbis model still needs to estimate the alone-request-service-rate
of an application while it is run alongside other applications.

Our second observation is that the alone-request-service-rate
of an application can be estimated by giving the application' s

requests the highest priority in accessing memory. Giving an
application' s requests the highest priority in accessing memory
results in very little interference from other applications' re­
quests. As a result, most of the application's requests are served
as though the application has all the memory bandwidth for it­
self, allowing the system to gather a good estimate for the alone­
request-service-rate of the application. We make our model
more accurate by accounting for the little interference caused
by other applications' requests due to queuing delays.

Based on the above two observations, our proposed
Memory-Interference-induced Slowdown Estimation (MISE)
model works as follows. The memory controller assigns pri­
orities to applications such that every application executing
on the system periodically receives the highest priority to ac­
cess memory. Every time an application receives the high­
est priority, the memory controller estimates the application' s
alone-request-service-rate. This alone-request-service-rate esti­
mate along with the measured shared-request-service-rate can
be used to estimate the slowdown of an application.

Although the above model works weIl for memory-bound
applications, we find that it is not accurate for non-memory­
bound applications. This is because a non-memory-bound ap­
plication spends a significant fraction of its execution time in
the compute phase, in which the core does not stall waiting
for a memory request. As a result, request-service-rate cannot
be used as a direct proxy for performance of such applications.
Therefore, to make our MISE model accurate for non-memory­
bound applications as weIl, we augment it to take into account
the duration of the compute phase. Section 3 provides more
details of our MISE model.

Our slowdown estimation model can enable several mech­
anisms to provide QoS guarantees and achieve better fairness.
We build two new memory scheduling mechanisms on top of
our proposed model to demonstrate its effectiveness.

The first mechanism, called MISE-QoS, provides soft QoS
guarantees for applications of interest while trying to maximize
the performance of all other applications in a best-effort man­
ner. The memory controller ensures that the applications of
interest meet their slowdown requirements by allocating them
just enough memory bandwidth, while scheduling the requests
of other applications in a best-effort manner to improve over­
all system performance. First, we show that when there is one
application of interest, MISE-QoS meets the target slowdown
bound for 80.9% of our 3000 tested data points, while signif­
icantly improving overall system performance compared to a
state-of-the-art approach that always prioritizes the requests of
the application of interest [15] . Furthermore, MISE-QoS cor­
rectly predicts whether or not the bound was met for 95.7% of
data points, whereas the state-of-the-art approach [15] has no
provision to predict whether or not the bound was met. Next,
we demonstrate that even when there are multiple applications
of interest, MISE-QoS can meet the target slowdown bound for
all applications of interest, while still providing significant sys­
tem performance improvement.

The second mechanism, called MISE-Fair, attempts to min­
imize the maximum slowdown (Le., unfairness [4, 19, 20])
across all applications. It does so by estimating the slow­
down of each application and redistributing bandwidth to re­
duce the slowdown of the most slowed-down applications. We
show that our approach leads to better fairness than three
state-of-the-art application-aware memory access scheduling
approaches [19, 20, 28] . In this use case, the memory controller
can also potentially convey the achievable maximum slowdown

to the operating system (OS). The OS can in turn use this infor­
mation to make better scheduling decisions.

Our paper makes the following contributions:

• We propose a new model for estimating the slowdown of
individual applications concurrently running on a multi­
core system. Implementing our model requires only simple
changes to the memory controller hardware.

• We compare the accuracy of our model to a previously pro­
posed slowdown estimation model, Stall-Time Fair Mem­
ory scheduling (STFM) [28] , and show that our model is
significantly more accurate than STFM's model.

• We show the effectiveness of our model by building
and evaluating two new memory bandwidth management
schemes on top of it, one that provides soft QoS guar­
antees, while optimizing for performance in a best-effort
manner (MISE-QoS) and another that improves overall
system fairness (MISE-Fair). Our proposed approaches
perform better than state-of-the-art approaches [15 , 19, 20,
28] to address the respective problems.

2. Background and Motivation

In this section, we provide a brief background on DRAM or­
ganization and operation in order to understand the slowdown
estimation mechanisms proposed by previous work. We then
describe previous work on slowdown estimation and their key
drawbacks that motivate our MISE model.

2.1. DRAM Organization

Modern DRAM main memory system is organized hierarchi­
cally into channels, ranks and banks. The main memory system
consists of multiple channels that operate independently. Each
channel consists of one or more ranks that share the channel' s
address and data buses. Each rank consists of multiple banks
that share rank-level peripheral circuitry.

Banks can be viewed as arrays of DRAM cells, organized as
rows and columns. To access a piece of data, the entire row
containing the data is read into an internal buffer called the
row-buffer. Subsequent accesses to the same row do not need
to access the DRAM array, assuming the row is still in the row­
buffer, and can be served faster.

2.2. Prior Work on Slowdown Estimation

While a large body of previous work has focused on main mem­
ory interference reduction techniques such as memory request
scheduling [2, 19, 20, 29, 30] , memory channel/bank partition­
ing [16, 27] and interleaving [18] to mitigate interference be­
tween applications at the DRAM channels, banks and row­
buffers, few previous works have proposed techniques to esti­
mate memory-interference-induced slowdowns.

Stall Time Fair Memory Scheduling (STFM) [28] is one pre­
vious work that attempts to estimate each application's slow­
down, with the goal of improving fairness by prioritizing the
most slowed down application. STFM estimates an applica­
tion's slowdown as the ratio of its memory stall time when it
is run alone versus when it is concurrently run alongside other
applications. The challenge is in determining the alone-stall­
time of an application while the application is actually running
alongside other applications. STFM proposes to address this
challenge by counting the number of cydes an application is
stalled due to interference from other applications at the DRAM
channels, banks and row-buffers. STFM uses this interference
cyde count to estimate the alone-stall-time of the application,
and hence the application's slowdown.

Fairness via Source Throttling (FST) [6] estimates application
slowdowns due to inter-application interference at the shared
caches and memory, as the ratio of uninterfered to interfered
execution times. It uses the slowdown estimates to make in­
formed source throttling decisions, to improve fairness. The
mechanism to ac count for memory interference to estimate un­
interfered execution time is similar to that employed in STFM.

A concurrent work by Du Bois et al. [5] proposes a mech­
anism to determine an application's standalone execution time
when it shares cache and memory with other applications in a
multicore system. In order to quantify memory interference, the
mechanism proposed in this paper counts the number of wait­
ing cycles due to inter-application interference and factors out
these waiting cycles to estimate alone execution times, which is
similar to STFM's alone stall time estimation mechanism.

Both of these works, FST [6] and Du Bois et al:s mecha­
nism [5] , in principle, are similar to STFM from the perspec­
tive of quantifying the effect of memory interference on perfor­
mance in that they estimate the additional cycles due to mem­
ory interference while an application is running alongside other
applications. Since our focus in this work is estimating applica­
tion slowdowns due to memory interference, we will focus on
STFM in the next sections.

2.3. Motivation and Dur Goal

In this work, we find that STFM's slowdown estimation model
is inaccurate. The main reason for this is that quantifying the
effect of interference, especially in a modern system employ­
ing out-of-order execution, is difficult. This is because even if
a request is delayed due to interference, it may not affect per­
formance due to memory-level parallelism, as the additional la­
tency can be hidden by another outstanding request' s latency.
However, we note that the primary goal of STFM is not to esti­
mate the slowdown of applications accurately, rather to use the
estimates to make prioritization/throttling decisions to improve
overall fairness. We provide a detailed qualitative and quanti­
tative comparison between STFM and our model in Section 6.

Dur goal, in this work, is to design a model to accurately es­
timate application slowdowns. Accurate slowdown estimates
can enable various hardware/software techniques to enforce
QoS guarantees. For instance, naive policies for QoS enforce­
ment either execute an application entirely by itself or always
prioritize a QoS-critical application of interest in shared re­
sources [15] . However, accurate slowdown estimates can enable
the memory controller to employ more intelligent and sophis­
ticated memory bandwidth management policies. For instance,
the memory controller could provide soft QoS guarantees by al­
locating just enough bandwidth to QoS-critical applications of
interest, while utilizing the remaining memory bandwidth to
achieve high overall system performance, as we will demon­
strate in Section 8 .1 . Furthermore, higher accuracy slowdown
estimates enable the memory controller to enforce system fair­
ness more effectively than previous proposals, as we show in
Section 8.2 . Alternatively, information about application slow­
downs could also be conveyed to the OS, enabling it to make
better job scheduling decisions.

3. The MISE Model

In this section, we provide a detailed description of our
proposed Memory-Interference-induced Slowdown Estimation
(MISE) model. For ease of understanding, we first describe
the observations that lead to a simple model for estimating the
slowdown of a memory-bound application when it is run con­
currently with other applications. In Section 3.2 , we describe

how we extend the model to accommodate non-memory-bound
applications. Section 4 describes the detailed implementation of
our model in a memory controller.

3.1. Memory-bound Application

A memory-bound application is one that spends an overwhelm­
ingly large fraction of its execution time stalling on memory
accesses. Therefore, the rate at which such an application' s
requests are served has significant impact on its performance.
More specifically, we make the following observation about a
memory-bound application.

Observation 1: The performance of a memory-bound
application is roughly proportional to the rate at which
its memory requests are served.

For instance, for an application that is bottlenecked at mem­
ory, if the rate at which its requests are served is reduced by
half, then the application will take twice as much time to fin­
ish the same amount of work. To validate this observation, we
conducted a real-system experiment where we ran memory­
bound applications from SPEC CPU2006 [1] on a 4-core Intel
Core i7 [1 2] . Each SPEC application was run along with three
copies of a microbenchmark whose memory intensity can be
varied.! By varying the memory intensity of the microbench­
mark, we can change the rate at which the requests of the SPEC
application are served.

Figure 1 plots the results of this experiment for three
memory-intensive SPEC benchmarks, namely, mcf, omnetpp,
and astar. The figure shows the performance of each appli­
cation vs. the rate at which its requests are served. The re­
quest service rate and performance are normalized to the re­
quest service rate and performance respectively of each appli­
cation when it is run alone on the same system.

Ci)
c:
.!2 '"

CDC: 0.9
O:::J c:�
"'c: 0.8 E'" �.<:: o�
'i� 0.7
a.c:
-0'" 0.6 CDE N� =0 "'t 0.5 E", �a. �g 0.4

E i5 0.3
.s 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normal ized Request Service Rate
(norm. to request service rate when run alone)

Figure 1 : Request service rate vs. performance

The results of our experiments validate our observation. The
performance of a memory-bound application is directly propor­
tional to the rate at which its requests are served. This suggests
that we can use the request-service-rate of an application as a
proxy for its performance. More specifically, we can compute
the slowdown of an application, Le., the ratio of its performance
when it is run alone on a system vs. its performance when it is
run alongside other applications on the same system, as folIows:

I d f
alone-request-service-rate

S ow own 0 an App. = -:---:-----=-------­
shared-request-service-rate

(1)

Estimating the shared-request-service-rate (SRSR) of an applica­
tion is straightforward. It just requires the memory controller to
keep track of how many requests of the application are served in

lThe microbenchmark streams through a large region of memory (one block at
a time). The memory intensity of the microbenchmark (LLC MPKI) is varied by
changing the amount of computation performed between memory operations.

a given number of cycles. However, the challenge is to estimate
the alone-request-service-rate (ARSR) of an application while it
is run alongside other applications. A naive way of estimating
ARSR of an application would be to prevent all other applica­
tions from accessing memory for a length of time and measure
the application's ARSR. While this would provide an accurate
estimate of the application's ARSR, this approach would signifi­
cantly slow down other applications in the system. Our second
observation helps us to address this problem.

Observation 2: The ARSR of an application can be esti­
mated by giving the requests of the application the high­
est priority in accessing memory.

Giving an application's requests the highest priority in ac­
cessing memory results in very little interference from the re­
quests of other applications. Therefore, many requests of the
application are served as if the application were the only one
running on the system. Based on the above observation, the
ARSR of an application can be computed as folIows:

f
Requests with Highest Priority ARSR 0 an App. = ---=------=------.:... # Cycles with Highest Priority

(2)

where # Requests with Highest Priority is the number of re­
quests served when the application is given highest priority,
and # Cycles with Highest Priority is the number of cycles an
application is given highest priority by the memory controller.

The memory controller can use Equation 2 to periodically
estimate the ARSR of an application and Equation 1 to measure
the slowdown of the application using the estimated ARSR. Sec­
tion 4 provides a detailed description of the implementation of
our model inside a memory controller.

3.2. Non-memory-bound Application

So far, we have described our MISE model for a memory-bound
application. We find that the model presented above has low
accuracy for non-memory-bound applications. This is because
a non-memory-bound application spends significant fraction of
its execution time in the compute phase (when the core is not
stalled waiting for memory). Hence, varying the request ser­
vice rate for such an application will not affect the length of
the large compute phase. Therefore, we take into account the
duration of the compute phase to make the model accurate for
non-memory-bound applications.

Let a be the fraction of time spent by an application at mem­
ory. Therefore, the fraction of time spent by the application in
the compute phase is 1 - a. Since changing the request service
rate affects only the memory phase, we augment Equation 1 to
take into account a as folIows:

ARSR
Slowdown of an App. = (1 - a) + a SRSR (3)

In addition to estimating ARSR and SRSR required by Equa­
tion 1, the above equation requires estimating the parameter a,
the fraction of time spent in memory phase. However, precisely
computing a for a modern out-of-order processor is a challenge
since such a processor overlaps computation with memory ac­
cesses. The processor stalls waiting for memory only when the
oldest instruction in the reorder buffer is waiting on a memory
request. For this reason, we estimate a as the fraction of time
the processor spends stalling for memory.

Cycles spent stalling on memory requests a= --�--�=-� --���--��--�---
Total number of cycles

(4)

Setting a to 1 reduces Equation 3 to Equation 1. We find that
even when an application is moderately memory-intensive, set­
ting a to 1 provides a better estimate of slowdown. Therefore,
our final model for estimating slowdown takes into account the
stall fraction (a) only when it is low. Algorithm 1 shows our
final slowdown estimation model.

Compute a;
if a < Threshold then

Slowdown = (1 - a) + a�
else

Slowdown = ���
end

Algorithm 1: The MISE model

4. Implementation
In this section, we describe a detailed implementation of our
MISE model in a memory controller. For each application in
the system, our model requires the memory controller to com­
pute three parameters: 1) shared-request-service-rate (SRSR),
2) alone-request-service-rate (ARSR), and 3) a (stall fraction).2
First, we describe the scheduling algorithm employed by the
memory controller. Then, we describe how the memory con­
troller computes each of the three parameters.

4.1. Memory Scheduling Algorithm

In order to implement our model, each application needs to
be given the highest priority periodically, such that its alone­
request-service-rate can be measured. This can be achieved by
simply assigning each application's requests highest priority in
a round-robin manner. However, the mechanisms we build on
top of our model allocate bandwidth to different applications to
achieve QoS/fairness. Therefore, in order to facilitate the imple­
mentation of our mechanisms, we employ a lottery-scheduling­
like approach [32, 36] to schedule requests in the memory con­
troller. The basic idea of lottery scheduling is to probabilistically
enforce a given bandwidth allocation, where each application is
allocated a certain share of the system bandwidth. The exact
bandwidth allocation policy depends on the goal of the system
- e.g., QoS, high performance, high fairness, etc. In this section,
we describe how a lottery-scheduling-like algorithm works to
enforce a bandwidth allocation.

The memory controller divides execution time into intervals
(of M processor cycles each) . Each interval is further divided
into small epochs (of N processor cycles each) . At the beginning
of each interval, the memory controller estimates the slowdown
of each application in the system. Based on the slowdown es­
timates and the final goal, the controller may change the band­
width allocation policy - Le., redistribute bandwidth amongst
the concurrently running applications. At the beginning of each
epoch, the memory controller probabilistically picks a single ap­
plication and prioritizes all the requests of that particular appli­
cation during that epoch. The probability distribution used to
choose the prioritized application is such that an application
with higher bandwidth allocation has a higher probability of
getting the highest priority. For example, consider a system
with two applications, A and B. If the memory controller al­
locates A 75% of the memory bandwidth and B the remaining
25%, then A and B get the highest priority with probability 0.75
and 0.25, respectively.

'These three parameters need to be computed only for the active applications in
the system. Hence, these need to be tracked only per hardware thread context.

4.2. Computing shared-request-service-rate (SRSR)
The shared-request-serviee-rate of an application is the rate at
which the application's requests are served while it is running
with other applications. This can be directly computed by the
memory controller using a per-application counter that keeps
track of the number of requests served for that application. At
the beginning of each interval, the controller resets the counter
for each application. Whenever a request of an application is
served, the controller increments the counter corresponding to
that application. At the end of each in terva I, the SRSR of an
application is computed as

Requests served SRSR of an App = --..:....----,---.,..,. M (Interval Length)

4.3. Computing alone-request-service-rate (ARSR)
The alone-request-serviee-rate (ARSR) of an application is an es­
timate of the rate at which the application's requests would
have been served had it been running alone on the same sys­
tem. Based on our observation (described in Section 3 .1), the
ARSR can be estimated by using the request-serviee-rate of the
application when its requests have the highest priority in ac­
cessing memory. Therefore, the memory controller estimates
the ARSR of an application only during the epoehs in which the
application has the highest priority.

Ideally, the memory controller should be able to achieve this
using two counters: one to keep track of the number of epoehs
during which the application received highest priority and an­
other to keep track of the number of requests of the application
served during its highest-priority epoehs. However, it is possi­
ble that even when an application's requests are given highest
priority, they may receive interference from other applications'
requests. This is because, our memory scheduling is work eon­
serving - if there are no requests from the highest priority appli­
cation, it schedules a ready request from some other application.
Once a request is scheduled, it cannot be preempted because of
the way DRAM operates.

In order to account for this interference, the memory con­
troller uses a third counter for each application to track the
number of cycles during whieh an application's request was
blocked due to some other application's request, in spite of the
former having highest priority. For an application with highest
priority, a cycle is deemed to be an interferenee eycle if during
that cycle, a command corresponding to a request of that ap­
plication is waiting in the request buffer and the previous com­
mand issued to any bank, was for a request from a different
application.

Based on the above discussion, the memory controller keeps
track of three counters to compute the ARSR of an applica­
tion: 1) number of highest-priority epoehs of the application
(# HPEs), 2) number of requests of that application served dur­
ing its highest-priority epoehs (# HPE Requests), and 3) num­
ber of interferenee eycles of the application during its highest­
priority epoehs (# Interference cycles) . All these counters are
reset at the start of an interval and the ARSR is computed at the
end of each interval as follows:

HPE Requests ARSR of an App. = ----:---:------,----,------'-----,----------:,------,­N.(# HPEs) - (# Interference cycles)

Our model does not take into ac count bank level parallelism
(BLP) or row-buffer interference when estimating # Interference
cycles. We observe that this does not affect the accuracy of our

model significantly. because we eliminate most of the interfer­
ence by measuring ARSR only when an application has highest
priority. We leave a study of the effects of bank-level paral­
lelism and row-buffer interference on the accuracy of our model
as part of future work.

4.4. Computing stall-fraction a
The stall-fraetion (a) is the fraction of the cycles spent by the
application stalling for memory requests. The number of stall
cycles can be easily computed by the core and communieated
to the memory controller at the end of each interval.

4.5. Hardware Cost

Our implementation incurs additional storage cost due to 1) the
counters that keep track of parameters required to compute
slowdown (five per hardware thread context), and 2) a regis­
ter that keeps track of the current bandwidth allocation policy
(one per hardware thread context). We find that using four byte
registers for each counter is more than sufficient for the values
they keep track of. Therefore, our model incurs a storage cost
of at most 24 bytes per hardware thread context.

5. Methodology
Simulation Setup. We model the memory system using an in­
house cycle-accurate DDR3-SDRAM simulator. We have in­
tegrated this DDR3 simulator into an in-house cycle-Ievel x86
simulator with a Pin [21] frontend, whieh models out-of-order
cores with a limited-size instruction window. Each core has
a 5 1 2 KB private cache. We model main memory as the only
shared resource, in order to isolate and analyze the effect of
memory interference on application slowdowns. Table 1 pro­
vides more details of the simulated systems.

Unless otherwise specified, the evaluated systems consist of 4
cores and a memory subsystem with 1 channel, 1 rank/channel
and 8 banks/rank. We use row-interleaving to map the physieal
address space onto DRAM channels, ranks and banks. Data is
striped across different channels, ranks and banks, at the gran­
ularity of a row. Our workloads are made up of 26 benchmarks
from the SPEC CPU2006 [1] suite.
Workloads. We form multiprogrammed workloads using com­
binations of these 26 benchmarks. We extract a representative
phase of each benchmark using PinPoints [31] and run that
phase for 200 million cycles. We will provide more details about
our workloads as and when required.

Processor

Last-level cache

Memory controller

Memory

4-16 cores, 5.3GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

64B cache-Iine, 16-way associative,
512kB private cache-slice per core

64/64-entry read/write request queues per controller

Timing: DDR3-I066 (8-8-8) [25]
ürganization: 1 channeI, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Table 1: Configuration of the simulated system

Metrics. We compute both weighted speedup [34] and har­
monie speedup [22] to measure system performance. How­
ever, since the goal of our mechanisms is to provide QoS/high
fairness, while ensuring good system performance, we mainly
present harmonie speedup throughout our evaluations, as the
harmonie speedup metric provides a good balance between sys­
tem performance and fairness [22] . We use the maximum slow­
down [4, 19, 20] metric to measure unfairness.

Parameters. We use an interval length (M) of 5 million cycles
and an epoch length (N) of 10000 cycles for all our evaluations.
Section 7 evaluates sensitivity of our model to these parameters.

6. Comparison to STFM
Stall-Time-Fair Memory scheduling (STFM) [28] is one of the
few previous works that attempt to estimate main-memory­
induced slowdowns of individual applications when they are
run concurrently on a multicore system. As we described in
Section 2, STFM estimates the slowdown of an application by
estimating the number of cycles it stalls due to interference from
other applications' requests. In this section, we qualitatively
and quantitatively compare MISE with STFM.

There are two key differences between MISE and STFM for
estimating slowdown. First, MISE uses request service rates
rather than stall times to estimate slowdown. As we mentioned
in Section 3, the alone-request-service-rate of an application can
be fairly accurately estimated by giving the application highest
priority in accessing memory. Giving the application highest
priority in accessing memory results in very little interference
from other applications. In contrast, STFM attempts to estimate
the alone-stall-time of an application while it is receiving signif­
icant interference from other applications. Second, MISE takes
into account the effect of the compute phase for non-memory­
bound applications. STFM, on the other hand, has no such pro­
vision to ac count for the compute phase. As a result, MISE's
slowdown estimates for non-memory-bound applications are
significantly more accurate than STFM's estimates.

Figure 2 compares the accuracy of the MISE model with
STFM for six representative memory-bound applications from
the SPEC CPU2006 benchmark suite. Each application is run on
a 4-core system along with three other applications: sphinx3,
leslie3d, and mi/co The figure plots three curves: 1) actual slow­
down, 2) slowdown estimated by STFM, and 3) slowdown es­
timated by MISE. For most applications in the SPEC CPU2006
suite, the slowdown estimated by MISE is significantly more
accurate than STFM's slowdown estimates. All applications
whose slowdowns are shown in Figure 2, except sphinx3, are
representative of this behavior. For a few applications and
workload combinations, STFM's estimates are comparable to
the slowdown estimates from our model: sphinx3 is an exam­
pIe of such an application. However, as we will show below,
across all workloads, the MISE model provides lower average
slowdown estimation error for all applications.

Figure 3 compares the accuracy of MISE with STFM for three
representative non-memory-bound applications, when each ap­
plication is run on a 4-core system along with three other ap­
plications: sphinx3, leslie3d, and mi/co As shown in the figure,
MISE's estimates are significantly more accurate compared to
STFM's estimates. As mentioned before, STFM does not ac­
count for the compute phase of these applications. However,
these applications spend significant amount of their execution
time in the compute phase. This is the reason why our model,
which takes into account the effect of the compute phase of
these applications, is able to provide more accurate slowdown
estimates for non-memory-bound applications.

Table 2 shows the average slowdown estimation error for
each benchmark, with STFM and MISE, across all 300 4-core
workloads of different memory intensities.3 As can be observed,
MISE's slowdown estimates have significantly lower error than
STFM' s slowdown estimates across most benchmarks. Across
300 workloads, STFM's estimates deviate from the actual slow-

3See Table 4 and Seetion 8.1.3 for more details about these 300 workloads.

Benchmark STFM MISE Benchmark STFM MISE
453.povray 56.3 0.1 473.astar 12.3 8.1
454.ealculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbeneh 26.8 1.6 464.h264ref 13.7 8.3
447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.eactusADM 18.4 2.6 458.sjeng 21.3 8.8
450.soplex 29.8 3.5 433.mile 26.4 9.5
444.namd 43.6 3.7 481.wrf 33.6 11.1

437.1eslie3d 26.4 4.3 429.mef 83.74 11.5
403.gee 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalanebmk 18.0 13.6
459.GemsFDTD 21.6 5.5 435.gromaes 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8
473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5

Table 2: Average error for each benchmark (in %)

down by 29.8%, whereas, our proposed MISE model's estimates
deviate from the actual slowdown by only 8 .1%. Therefore, we
conclude that our slowdown estimation model provides better
accuracy than STFM.

7. Sensitivity to Algorithm Parameters

We evaluate the sensitivity of the MISE model to epoch and in­
terval lengths. Table 3 presents the average error (in %) of the
MISE model for different values of epoch and interval lengths.
Two major conclusions are in order. First, when the interval
length is small (1 million cycles), the error is very high. This is
because the request service rate is not stable at such small inter­
val lengths and varies significantly across intervals. Therefore,
it cannot serve as an effective proxy for performance. On the
other hand, when the interval length is larger, request service
rate exhibits a more stable behavior and can serve as an effec­
tive measure of application slowdowns. Therefore, we conclude
that except at very low interval lengths, the MISE model is ro­
bust. Second, the average error is high for high epoch lengths
(1 million cycles) because the number of epochs in an interval
reduces. As a result, some applications might not be assigned
highest priority for any epoch during an interval, preventing
estimation of their alone-request-service-rate. Note that the ef­
fect of this is mitigated as the interval length increases, as with
a larger interval length the number of epochs in an interval in­
creases. For smaller epoch length values, however, the aver­
age error of MISE does not exhibit much variation and is ro­
bust. The lowest average error of 8 .1 % is achieved at an interval
length of 5 million cycles and an epoch length of 10000 cycles.
Furthermore, we observe that estimating slowdowns at an in­
terval length of 5 million cycles also enables enforcing QoS at
fine time granularities, although, higher interval lengths exhibit
similar average error. Therefore, we use these values of interval
and epoch lengths for our evaluations.

� Length
1 mil. 5 mil. 10 mil. 25 mil. 50 mil. Epoeh

Length
1000 65.1% 9.1% 11.5% 10.7% 8.2%
10000 64.1% 8.1% 9.6% 8.6% 8.5%
100000 64.3% 11.2% 9.1% 8.9% 9%
1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Table 3: Sensitivity of average error to epoch and interval lengths

8. Leveraging the MISE Model

Our MISE model for estimating individual application slow­
downs can be used to design different policies to better en-

4
����

-

����Actu
-

a�1 ===�
STFM ..

3.5 MISE

3

I" �
1.5

1 ����-����-���

....... J

Actual -­

STFM ..
MISE ..

4
Actual -­

STFM ..
3.5 MISE

�
" 2.5 �
(j'j 2 �l.

1.5

1
o m � 00 00 100 1m WO 100 100 mo

Million Cycles
20 40 60 00 100 120 140 160 180 200

Million Cycles
0 20 40 60 80 100 120 140 160 180 200

Million Cycles

(a) Ibm (b)leslie3d (c) sphinx3
4

����
-

����Ac�w-a�I===-'
STFM ..

3.5 MISE ..

3

" �
1.5 1.5

Ac!ual -­

STFM ..
MISE ..

4

3.5

2.5

Ac!ual -­

STFM ..
MISE ..

1 : �
l L-���-����-��---' 1 L-���_����_��� 1

o m � 00 00 100 1m WO 100 100 mo
Million Cycles

o m � 00 00 ffiO 1m WOffiO 100 200
Million Cycles

o 20 � 60 80 100 120 140 160 180 200
Million Cycles

(d) GemsFDTD (e) soplex (f) cactusADM

Figure 2: Comparison of our MISE model with STFM for representative memory-bound applications

4 4 4
Ac!ual -- Actual --

STFM .. STFM ..
3.5 MISE .. 3.5 3.5 MISE ..

3
c � �
0 0

2.5 " 2.5 " 2.5 � � 12 12 VJ VJ

1.5 1.5 1.5

1 1 1
0 20 40 60 80 100 120 140 160 100 200 0 20 40 60 00 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Million Cycles Million Cycles Million Cycles

(a) wrf (b) povray (c) calculix

Figure 3: Comparison of our MISE model with STFM for representative non-memory-bound applications

force quality-of-service (QoS) and fairness. In this section, we
describe and evaluate two such mechanisms: 1) a mechanism
to provide soft QoS guarantees (MISE-QoS) and 2) a mecha­
nism that attempts to minimize maximum slowdown to im­
prove overall system fairness (MISE-Fair).

8.1. MISE-QoS: Providing Soft QoS Guarantees

MISE-QoS is a mechanism to provide soft QoS guarantees to
one or more applications of interest in a workload with many
applications, while trying to maximize overall performance for
the remaining applications. By soft QoS guarantee, we mean
that the applications of interest (Aols) should not be slowed
down by more than an operating-system-specified bound. A
naive way of achieving such a soft QoS guarantee is to always
prioritize the Aols. However, such a mechanism has two short­
comings. First, the naive mechanism can work when there is
only one Aol. With more than one Aol, prioritizing all Aols
will cause them to interfere with each other making their slow­
downs uncontrollable. Second, even with just one Aol, the
naive mechanism may unnecessarily slow down other appli­
cations in the system by excessively prioritizing the Aol. MISE­
QoS addresses these shortcomings by using slowdown estimates
of the Aols to allocate them just enough memory bandwidth to
meet their specified slowdown bound. We present the opera­
tion of MISE-QoS with one Aol and then describe how it can be
extended to multiple Aols.

8.1.1. Mechanism Description. The operation of MISE-QoS
with one Aol is simple. As described in Section 4.1, the mem­
ory controller divides execution time into intervals of length
M. The controller maintains the current bandwidth allocation
for the Aol. At the end of each interval, it estimates the slow­
down of the Aol and compares it with the specified bound, say
B. If the estimated slowdown is less than B, then the con­
troller reduces the bandwidth allocation for the Aol by a small
amount (2% in our experiments). On the other hand, if the es­
timated slowdown is more than B, the controller increases the
bandwidth allocation for the Aol (by 2%).4 The remaining band­
width is used by all other applications in the system in a free­
for-all manner. The above mechanism attempts to ensure that
the Aol gets just enough bandwidth to meet its target slowdown
bound. As a result, the other applications in the system are not
unnecessarily slowed down.

In some cases, it is possible that the target bound cannot be
met even by allocating all the memory bandwidth to the Aol
- Le., prioritizing its requests 100% of the time. This is be­
cause, even the application with the highest priority (Aol) could
be subject to interference, slowing it down by some factor, as
we describe in Section 4.3. Therefore, in scenarios when it is

4We found that 2% increments in memory bandwidth work weil empirically, as
our results indicate. Better techniques that dynamically adapt the increment are
possible and are a part of our future work.

Mix No. Benchmark 1 Benchmark 2 Benchmark 3
1 sphinx3 leslie3d mHe
2 sjeng gee perlbeneh
3 tonto povray wrf
4 perlbeneh gee povray
5 gee povray leslie3d
6 perlbeneh namd Ibm
7 hef bzip2 libquantum
8 hmmer Ibm omnetpp
9 sjeng libquantum eaetusADM
10 namd libquantum mef
11 xalanebmk mef astar
12 mef libquantum leslie3d

Table 4: Workload mixes

not possible to meet the target bound for the Aol, the memory
controller can convey this information to the operating system,
which can then take appropriate action (e.g., deschedule some
other applications from the machine).
8.1.2. MISE-QoS with Multiple Aols. The above described
MISE-QoS mechanism can be easily extended to a system with
multiple Aols. In such a system, the memory controller main­
tains the bandwidth allocation for each Aol. At the end of each
interval, the controller checks if the slowdown estimate for each
Aol meets the corresponding target bound. Based on the result,
the controller either increases or decreases the bandwidth allo­
cation for each Aol (similar to the mechanism in Section 8 .1 .1) .

With multiple Aols, it may not be possible to meet the spec­
ified slowdown bound for any of the Aols. Our mechanism
concludes that the specified slowdown bounds cannot be met if:
1) all the available bandwidth is partitioned only between the
Aols - i.e., no bandwidth is allocated to the other applications,
and 2) any of the Aols does not meet its slowdown bound after
R intervals (where R is empirically determined at design time) .
Similar to the scenario with one Aol, the memory controller
can convey this conclusion to the operating system (along with
the estimated slowdowns), which can then take an appropriate
action. Note that other potential mechanisms for determining
whether slowdown bounds can be met are possible.
8.1.3. Evaluation with Single Aol. To evaluate MISE-QoS
with a single Aol, we run each benchmark as the Aol, along­
side 12 different workload mixes shown in Table 4. We run
each workload with 10 different slowdown bounds for the Aol:
\0 , 120 , ... , ig . These slowdown bounds are chosen so as to have
more data points between the bounds of 1 x and 5 x . 5 In all, we
present results for 3000 data points with different workloads and
slowdown bounds. We compare MISE-QoS with a mechanism
that always prioritizes the Aol [15] .

Table 5 shows the effectiveness of MISE-QoS in meeting
the prescribed slowdown bounds for the 3000 data points. As
shown, for approximately 79% of the workloads, MISE-QoS
meets the specified bound and correctly predicts that the bound
is met. However, for 2 . 1% of the workloads, MISE-QoS does
meet the specified bound but it incorrectly predicts that the
bound is not met. This is because, in some cases, MISE-QoS
slightly overestimates the slowdown of applications. Overall,
MISE-QoS meets the specified slowdown bound for close to
80.9% of the workloads, as compared to AlwaysPrioritize that
meets the bound for 83% of the workloads. Therefore, we con­
clude that MISE-QoS meets the bound for 97.5% of the work­
loads where AlwaysPrioritize meets the bound. Furthermore,
MISE-QoS correctly predicts whether or not the bound was met

SMost applieations are not slowed down by more than 5 x for our system eon­
figuration.

for 95.7% of the workloads, whereas AlwaysPrioritize has no
provision to predict whether or not the bound was met.

Scenario # Workloads % Workloads
Bound Met and Predieted Right 2364 78.8%
Bound Met and Predieted Wrong 65 2.1%
Bound Not Met and Predicted Right 509 16.9%
Bound Not Met and Predicted Wrong 62 2.2%

Table 5: Effectiveness of MISE-QoS

To show the effectiveness of MISE-QoS, we compare the
Aors slowdown due to MISE-QoS and the mechanism that
always prioritizes the Aol (AlwaysPrioritize) [15] . Figure 4
presents representative results for 8 different Aols when they
are run alongside Mix 1 (Table 4). The label MISE-QoS-n corre­
sponds to a slowdown bound of � . (Note that AlwaysPrioritize
does not take into account the slowdown bound) . Note that the
slowdown bound decreases (i .e., becomes tighter) from left to
right for each benchmark in Figure 4 (as weIl as in other fig­
ures). We draw three conclusions from the results.

c: ;:
2.4 0 '0 ;:
2.2 0

üi
c: 0 2

� l .S .11
Ci. 1 .6 c.
«
'iij 1 .4
(J

8 1 .2

eh 1 0 0

AlwaysPrioritize ==
M I S E-QoS-1 =
M I S E-QoS-2 =
M I S E-QoS-3 =
M I S E-QoS-4 _
M I S E-QoS-5 _

� Q � Q 6 . �

M I S E-QoS-6 _
M I S E-QoS-7 =
M I S E-QoS-S =
M I S E-QoS-9 _

M I S E·QoS- 1 0 _

\S>� �'" "0 �"6 <>� U'1.l \S> "v�+ ""�Q VoS' '" �
""Q oS' "101,t

Figure 4: Aol performance: MISE-QoS vs. AlwaysPrioritize

First, for most applications, the slowdown of AlwaysPri­
oritize is considerably more than one. As described in Sec­
tion 8 .1 . 1 , always prioritizing the Aol does not completely pre­
vent other applications from interfering with the Aol.

Second, as the slowdown bound for the Aol is decreased (left
to right), MISE-QoS gradually increases the bandwidth alloca­
tion for the Aol, eventually allocating all the available band­
width to the Aol. At this point, MISE-QoS performs very simi­
larly to the AlwaysPrioritize mechanism.

Third, in almost all cases (in this figure and across all oUf
3000 data points), MISE-QoS meets the specified slowdown
bound if AlwaysPrioritize is able to meet the bound. One ex­
ception to this is benchmark gromacs. For this benchmark,
MISE-QoS meets the slowdown bound for values ranfting from
\0 to 16° .6 For slowdown bound values of 1� and SO , MISE­
QoS does not meet the bound even though allocating all the
bandwidth for gromacs would have achieved these slowdown
bounds (since AlwaysPrioritize can meet the slowdown bound
for these values) . This is because our MISE model underesti­
mates the slowdown for gromacs. Therefore, MISE-QoS incor­
rectly assurnes that the slowdown bound is met for gromacs.

Overall, MISE-QoS accurately estimates the slowdown of the
Aol and allocates just enough bandwidth to the Aol to meet a

6Note that the slowdown bound beeomes tighter from left to right.

a. ::l
al
� Cf)
o

'E o
E '"
I

AlwaysPrioritize _
MI SE-QoS-1 =
MISE-QoS-3 =

MISE-QoS-5 _
MISE-QoS-? =
MISE-QoS-9 _

1 .4 ,--�--�-�--�--�--,
1 .3
1 .2
1 . 1

1
0.9
0.8
0.7
0.6
0.5
0.4 L..l!Ll LA..lliL.I ___ -...ciI....L.I ... '-""--'---___ ""-'-....... L.J

o 2 3 Avg

Number 01 Memory I ntensive Benchmarks in a Workload

AlwaysPrioritize _
MISE-QoS-1 =
MISE-QoS-3 =

MISE-QoS-5 =
MISE-QoS-? _
MISE-QoS-9 _

3.5 ,--�--�-�--�--�--,

3

2.5

2

1 .5

o 2 3 Avg

Number 01 Memory I ntensive Benchmarks in a Workload

Figure 5: Average system performance and fairness across 300 workloads of different memory intensities

slowdown bound. As a result, MISE-QoS is able to significantly
improve the performance of the other applications in the system
(as we show next) .

System Performance and Fairness. Figure 5 compares the
system performance (harmonie speedup) and fairness (maxi­
mum slowdown) of MISE-QoS and AlwaysPrioritize for differ­
ent values of the bound. We omit the Aol from the perfor­
mance and fairness calculations. The results are categorized
into four workload categories (0, 1, 2, 3) indieating the number
of memory-intensive benchmarks in the workload. For clarity,
the figure shows results only for a few slowdown bounds. Three
conclusions are in order.

First, MISE-QoS significantly improves performance com­
pared to AlwaysPrioritize, especially when the slowdown
bound for the Aol is large. On average, when the bound is 13° ,
MISE-QoS improves harmonie speedup by 12% and weighted
speedup by 10% (not shown due to lack of space) over AI­
waysPrioritize, while reducing maximum slowdown by 13%.
Second, as expected, the performance and fairness of MISE-QoS
approach that of AlwaysPrioritize as the slowdown bound is de­
creased (going from left to right for a set of bars) . Finally, the
benefits of MISE-QoS increase with increasing memory inten­
sity because always prioritizing a memory intensive application
will cause significant interference to other applications.

Based on our results, we conclude that MISE-QoS can effec­
tively ensure that the Aol meets the specified slowdown bound
while achieving high system performance and fairness across
the other applications. In Section 8.1 .4, we discuss a case study
of a system with two Aols.

Using STFM's Slowdown Estimates to Provide QoS. We
evaluate the effectiveness of STFM in providing slowdown
guarantees, by using slowdown estimates from STFM's model
to drive our QoS-enforcement mechanism. Table 6 shows the
effectiveness of STFM's slowdown estimation model in meeting
the prescribed slowdown bounds for the 3000 data points. We
draw two major conclusions. First, the slowdown bound is met
and predieted right for only 63.7% of the workloads, whereas
MISE-QoS meets the slowdown bound and prediets it right for
78.8% of the workloads (as shown in Table 5). The reason is
STFM's high slowdown estimation error. Second, the percent­
age of workloads for whieh the slowdown bound is met/not-met
and is predieted wrong is 18.4%, as compared to 4.3% for MISE­
QoS. This is because STFM's slowdown estimation model over­
estimates the slowdown of the Aol and allocates it more band­
width than is required to meet the prescribed slowdown bound.
Therefore, performance of the other applications in a workload
suffers, as demonstrated in Figure 6 which shows the system
performance for different values of the prescribed slowdown
bound, for MISE and STFM. For instance, when the slowdown
bound is 13° , STFM-QoS has 5% lower average system perfor-

mance than MISE-QoS. Therefore, we conclude that the pro­
posed MISE model enables more effective enforcement of QoS
guarantees for the Aol, than the STFM model, while providing
better average system performance.

Scenario # Workloads % Workloads
Bound Met and Predicted Right 1911 63.7%
Bound Met and Predicted Wrang 480 16%
Bound Not Met and Predicted Right 537 17.9%
Bound Not Met and Predicted Wrang 72 2.4%

Table 6: Effectiveness of STFM-QoS

008-1 = 008-5 _ 008-9 _
0.95 008-3 008-7 =

g- 0.9

1 0.85

(fJ
o

'E

� I

0.8

0.75

0.7

0.65

0.6
MI8E 8TFM

Figure 6: Average system performance using MISE and STFM's

slowdown estimation models (across 300 workloads)

8.1.4. Case Study: Two Aols. So far, we have discussed and
analyzed the benefits of MISE-QoS for a system with one Aol.
However, there could be scenarios with multiple Aols each with
its own target slowdown bound. One can think of two naive ap­
proaches to possibly address this problem. In the first approach,
the memory controller can prioritize the requests of all Aols
in the system. This is similar to the AlwaysPrioritize mecha­
nism described in the previous section. In the second approach,
the memory controller can equally partition the memory band­
width across all Aols. We call this approach EqualBandwidth.
However, neither of these mechanisms can guarantee that the
Aols meet their target bounds. On the other hand, using the
mechanism described in Section 8 .1 .2 , MISE-QoS can be used to
achieve the slowdown bounds for multiple Aols.

To show the effectiveness of MISE-QoS with multiple Aols,
we present a case study with two Aols. The two Aols, astar and
mef are run in a 4-core system with leslie and another copy of
mef Figure 7 compares the slowdowns of each of the four ap­
plications with the different mechanisms. The same slowdown
bound is used for both Aols.

Although AlwaysPrioritize prioritizes both Aols, mef (the
more memory-intensive Aol) interferes significantly with as­
tar (slowing it down by more than 7 x) . EqualBandwidth mit­
igates this interference problem by partitioning the bandwidth
between the two applications. However, MISE-QoS intelligently

AlwaysPrioritize = M I SE-QoS-3 _
Equal Bandwidth = M I SE-QoS-4 _

M I S E-QoS-1 _ M I SE-QoS-5 _
M I SE-QoS-2 =

1 0
36 1 4

8

c:

;: 6 0 "0
;:

4 0 üi
2

0
astar mel lesl ie3d mel

Figure 7: Meeting a target bound for two applications

partitions the available memory bandwidth equally between
the two applications to ensure that both of them meet a more
stringent target bound. For example, for a slowdown bound of
12 , MISE-QoS allocates more than 50% of the bandwidth to as­
tar, thereby reducing astar's slowdown below the bound of 2 .5,
while EqualBandwidth can only achieve a slowdown of 3.4 for
astar, by equally partitioning the bandwidth between the two
Aols. Furthermore, as a result of its intelligent bandwidth al­
location, MISE-QoS significantly reduces the slowdowns of the
other applications in the system compared to AlwaysPrioritize
and EqualBandwidth (as seen in Figure 7).

We conclude, based on the evaluations presented above, that
MISE-QoS manages memory bandwidth efficiently to achieve
both high system performance and fairness while meeting per­
formance guarantees for one or more applications of interest.

8.2. MISE-Fair: Minimizing Maximum Slowdown

The second mechanism we build on top of our MISE model is
one that seeks to improve overall system fairness. Specifically,
this mechanism attempts to minimize the maximum slowdown
across all applications in the system. Ensuring that no appli­
cation is unfairly slowed down while maintaining high system
performance is an important goal in multicore systems where
co-executing applications are similarly important.
8.2.1. Mechanism. At a high level, our mechanism works as
follows. The memory controller maintains two pieces of infor­
mation: 1) a target slowdown bound (B) for all applications,
and 2) a bandwidth allocation policy that partitions the avail­
able memory bandwidth across all applications. The memory
controller enforces the bandwidth allocation policy using the
lottery-scheduling technique as described in Section 4 .1 . The
controller attempts to ensure that the slowdown of all appli­
cations is within the bound B. To this end, it modifies the
bandwidth allocation policy so that applications that are slowed
down more get more memory bandwidth. Should the memory
controller find that bound B is not possible to meet, it increases
the bound. On the other hand, if the bound is easily met, it
decreases the bound. We describe the two components of this
mechanism: 1) bandwidth redistribution policy, and 2) modify­
ing target bound (B).

Bandwidth Redistribution Policy. As described in Sec­
tion 4.1, the memory controller divides execution into multiple
in tervals. At the end of each interval, the controller estimates
the slowdown of each application and possibly redistributes the
available memory bandwidth amongst the applications, with
the goal of minimizing the maximum slowdown. Specifically,
the controller divides the set of applications into two clusters.
The first cluster contains those applications whose estimated
slowdown is less than B. The second cluster contains those
applications whose estimated slowdown is more than B. The
memory controller steals a small fixed amount of bandwidth

allocation (2%) from each application in the first cluster and dis­
tributes it equally among the applications in the second cluster.
This ensures that the applications that do not meet the target
bound B get a larger share of the memory bandwidth.

Modifying Target Bound. The target bound B may depend
on the workload and the different phases within each workload.
This is because different workloads, or phases within a work­
load, have varying demands from the memory system. As a
result, a target bound that is easily met for one workload/phase
may not be achievable for another workload/phase. Therefore,
our mechanism dynamically varies the target bound B by pre­
dicting whether or not the current value of B is achievable. For
this purpose, the memory controller keeps track of the num­
ber of applications that met the slowdown bound during the
past N intervals (3 in our evaluations). If all the applications
met the slowdown bound in all of the N intervals, the memory
controller predicts that the bound is easily achievable. In this
case, it sets the new bound to a slightly lower value than the
estimated slowdown of the application that is the most slowed
down (a more competitive target). On the other hand, if more
than half the applications did not meet the slowdown bound
in all of the N intervals, the controller predicts that the target
bound is not achievable. It then increases the target slowdown
bound to a slightly higher value than the estimated slowdown
of the most slowed down application (a more achievable target).
8.2.2. Interaction with the OS. As we will show in Sec­
tion 8.2 .3, our mechanism provides the best fairness com­
pared to three state-of-the-art approaches for memory request
scheduling [19, 20, 28] . In addition to this, there is another ben­
efit to using our approach. Our mechanism, based on the MISE
model, can accurately estimate the slowdown of each applica­
tion. Therefore, the memory controller can potentially com­
municate the estimated slowdown information to the operating
system (OS). The OS can use this information to make more
informed scheduling and mapping decisions so as to further
improve system performance or fairness. Since prior memory
scheduling approaches do not explicitly attempt to minimize
maximum slowdown by accurately estimating the slowdown of
individual applications, such a mechanism to interact with the
OS is not possible with them. Evaluating the benefits of the
interaction between our mechanism and the OS is beyond the
scope of this paper.
8.2.3. Evaluation. Figure 8 compares the system fairness (maxi­
mum slowdown) of different mechanisms with increasing num­
ber of cores. The figure shows results with four previously
proposed memory scheduling policies (FRFCFS [33, 37] , AT­
LAS [19] , TCM [20] , and STFM [28]), and our proposed mech­
anism using the MISE model (MISE-Fair). We draw three con­
clusions from our results.

1 1 '-���===-, �--------�--,
1 0 ATLAS =

9
SW� _

8 M I S E-Fair _

7

6

5

4

3

2

1 '--'--"-"'_'''_'----'-"--'L-
4 8

N u m ber 01 Cores

1 6

Figure 8 : Fairness with different core counts

First, MISE-Fair provides the best fairness compared to all
other previous approaches. The reduction in the maximum

slowdown due to MISE-Fair when compared to STFM (the
best previous mechanism) increases with increasing number of
cores. With 16 cores, MISE-Fair provides 7 .2% better fairness
compared to STFM.

Second, STFM, as a result of prioritizing the most slowed
down application, provides better fairness than all other previ­
ous approaches. While the slowdown estimates of STFM are not
as accurate as those of our mechanism, they are good enough
to identify the most slowed down application. However, as the
number of concurrently-running applications increases, simply
prioritizing the most slowed down application may not lead to
better fairness. MISE-Fair, on the other hand, works towards re­
ducing maximum slowdown by stealing bandwidth from those
applications that are less slowed down compared to others. As
a result, the fairness benefits of MISE-Fair compared to STFM
increase with increasing number of cores.

Tbird, ATLAS and TCM are more unfair compared to FR­
FCFS. As shown in prior work [19, 20] , ATLAS trades off fair­
ness to obtain better performance. TCM, on the other hand, is
designed to provide high system performance and fairness. Fur­
ther analysis showed us that the cause of TCM's unfairness is
the striet ranking employed by TCM. TCM ranks all applica­
tions based on its clustering and shuffiing techniques [20] and
strietly enforces these rankings. We found that such striet rank­
ing destroys the row-buffer locality of low-ranked applications.
Tbis increases the slowdown of such applications, leading to
high maximum slowdown.

Effect of Workload Memory Intensity on Fairness. Fig­
ure 9 shows the maximum slowdown of the 16-core workloads
categorized by workload intensity. While most trends are sim­
ilar to those in Figure 8, we draw the reader's attention to a
specific point: for workloads with non-memory-intensive appli­
cations (25%, 50% and 75% in the figure), STFM is more unfair
than MISE-Fair. As shown in Figure 3, STFM significantly over­
estimates the slowdown of non-memory-bound applications.
Therefore, for these workloads, we find that STFM prioritizes
such non-memory-bound applications whieh are not the most
slowed down. On the other hand, MISE-Fair, with its more ac­
curate slowdown estimates, is able to provide better fairness for
these workload categories.

c:
� 0 "0
� 0 üi
E :J E
'x '"
:::;

FRFC FS =
ATLAS =

22
20
1 8
1 6
1 4
1 2
1 0

8
6
4
2
0

0 25

TCM = MISE· Fair _
STFM _

50 75 1 00 Avg

Percentage 01 Memory I ntensive Benchmarks in a Workload

Figure 9: Fairness for 16-core workloads

System Performance. Figure 10 presents the harmonic
speedup of the four previously proposed mechanisms (FRFCFS,
ATLAS, TCM, STFM) and MISE-Fair, as the number of cores is
varied. The results indieate that STFM provides the best har­
monie speedup for 4-core and 8-core systems. STFM achieves
tbis by prioritizing the most slowed down application. How­
ever, as the number of cores increases, the harmonie speedup
of MISE-Fair matches that of STFM. This is because, with in­
creasing number of cores, simply prioritizing the most slowed

FRFCFS = STFM _
ATLAS = M ISE·Fair _

TCM

0.7

a. 0.6
:J

-0 0.5 Q)
Q)
a.

0.4 Cf)
.2

0.3 c
0

� 0.2

I 0 . 1

4 8 1 6

Number 0 1 Cores

Figure 10: Harmonie speedup with different core counts

down application can be unfair to other applications. In con­
trast, MISE-Fair takes into ac count slowdowns of all applica­
tions to manage memory bandwidth in a manner that enables
good progress for all applications. We conclude that MISE-Fair
achieves the best fairness compared to prior approaches, with­
out significantly degrading system performance.

9. Related Work
To our knowledge, this is the first paper to 1) provide a simple
and accurate model to estimate application slowdowns in the
presence of main memory interference, and 2) use this model to
devise two new memory scheduling techniques that either aim
to satisfy slowdown bounds of applications or improve system
fairness and performance. We already described Stall Time Fair
Memory scheduling [28] , Fairness via Source Throttling [6] and
Du Bois et al.'s mechanism [5] for estimating an application's
alone execution time while it is run alongside other applications
in Section 2, and provided qualitative and quantitative compar­
ison to STFM in Section 6. In tbis section, we present other
related work.

Prior Work on Slowdown Estimation. Eyerman and Eeck­
hout [8] and Cazorla et al. [3] propose mechanisms to determine
an application's slowdown while it is running alongside other
applications on an SMT processor. Luque et al. [23] estimate
application slowdowns in the presence of shared cache interfer­
ence. These studies do not take into account inter-application
interference at the main memory. Therefore, our proposed
MISE model to estimate slowdown due to main memory inter­
ference can be favorably combined with the above approaches
to quantify interference at the SMT processor and shared cache
to build a comprehensive mechanism.

Prior Work on QoS. Several prior works have attempted to
provide QoS guarantees in shared memory CMP systems. Mars
et al. [24] propose a mechanism to estimate an application's sen­
sitivity towards interference and its propensity to cause inter­
ference. They utilize this knowledge to make informed mapping
decisions between applications and cores. However, this mecha­
nism 1) assurnes a priori knowledge of applications, whieh may
not always be possible to have, and 2) is designed for only 2
cores, and it is not clear how it can be extended to more than
2 cores. In contrast, MISE does not assurne any a priori knowl­
edge of applications and works weIl with large core counts, as
we have shown in this paper. That said, MISE can possibly be
used to provide feedback to the mapping mechanism proposed
by [24] to overcome the shortcomings of their mechanism. Iyer
et al. [1 1, 14, 15] proposed mechanisms to provide guarantees
on shared cache space, memory bandwidth or IPC for differ­
ent applications. The slowdown guarantee provided by MISE­
QoS is strieter than these mechanisms as MISE-QoS takes into
account the alone-performance of each application. Nesbit et
al. [30] proposed a mechanism to enforce a bandwidth alloca­
tion policy - partition the available bandwidth across concur-

rently running applications based on some policy. While we
use a scheduling technique similar to lottery-scheduling [32, 36]
to enforce the bandwidth allocation policies of MISE-QoS and
MISE-Fair, the mechanism proposed by Nesbit et al. can also
be used in our proposal to allocate bandwidth instead of our
lottery-scheduling approach.

Prior Work on Memory Interference Mitigation. Much
prior work has focused on the problem of mitigating inter­
application interference at the main memory to improve sys­
tem performance and/or fairness. Most of the previous ap­
proaches address this problem by modifying the memory re­
quest scheduling algorithm [2, 7, 13, 19, 20, 28, 29, 30] . We
quantitatively compare MISE-Fair to STFM [28] , ATLAS [19] ,
and TCM [20] , and show that MISE-Fair provides better fair­
ness than these prior approaches. Prior work has also ex­
amined source throttling [6] , memory channel/bank partition­
ing [16, 27] , and memory interleaving [18] techniques to miti­
gate inter-application interference. These approaches are com­
plementary to our proposed mechanisms and can be combined
to achieve better fairness.

Prior Work on Analytical Performance Modeling. Several
previous works [9, 10, 17, 35] have proposed analytical mod­
els to estimate processor performance, as an alternative to time
consuming simulations. The goal of our MISE model, in con­
trast, is to estimate slowdowns at runtime, in order to enable
mechanisms to provide QoS and high fairness. Its use in simu­
lation is possible, but is left to future work.

10. Conclusion
We introduce a new, simple model, MISE, to estimate applica­
tion slowdowns due to inter-application interference in main
memory. MISE is based on two simple observations: 1) the rate
at which an application's memory requests are served can be
used as a proxy for the application's performance, and 2) the
uninterfered request-service-rate of an application can be accu­
rately estimated by giving the application's requests the high­
est priority in accessing main memory. Compared to the state­
of-the-art approach for estimating main memory slowdowns,
Stall-Time Fair Memory scheduling [28] , MISE is simpler and
more accurate, as our evaluations show.

We develop two new main memory request scheduling
mechanisms that use MISE to achieve two different goals:
1) MISE-QoS aims to provide soft QoS guarantees to one or
more applications of interest while ensuring high system perfor­
mance, 2) MISE-Fair attempts to minimize maximum slowdown
to improve overall system fairness. Our extensive evaluations
show that our proposed mechanisms are more effective than the
state-of-the-art memory scheduling approaches [15 , 19, 20, 28]
in achieving their respective goals.

We conclude that MISE is a promising substrate to build
effective mechanisms that can enable the design of more pre­
dictable and more controllable systems where main memory is
shared between multiple workloads. In future, we aim to de­
vise similar simple models for accurately estimating application
slowdowns in other shared resources.

Acknowledgements
We thank the anonymous reviewers for their valuable feed­
back and suggestions. We acknowledge members of the SAF AR!
group for their feedback and for the stimulating research envi­
ronment they provide. Many thanks to Brian Prasky from IBM
and Arup Chakraborty from Freescale for their helpful com­
ments. We acknowledge the support of our industrial sponsors,
including AMD, HP Labs, IBM, Intel, Oracle, Qualcomm and

Samsung. This research was also partially supported by grants
from NSF (CAREER Award CCF-0953246), SRC and Intel URO
Memory Hierarchy Prograrn.
References

[1] SPEC CPU2006. http://www.spec.org/spec2006.
[2] R. Ausavarungnirun et al. Staged memory scheduling: Achieving high

performance and scalability in heterogeneous systems. In ISCA, 2012.
[3] F. J. Cazorla et al. Predictable performance in SMT processors: Synergy

between the OS and SMTs. IEEE TC, Jul. 2006.
[4] R. Das et al. Application-aware prioritization mechanisms for on-chip

networks. In MICRO, 2009.
[5] K. Du Bois et al. Per-thread cycle accounting in multicore processors. In

HiPEAC, 2013.
[6] E. Ebrahimi et al. Fairness via source throttling: A configurable and high­

performance fairness substrate for multi-core memory systems. In ASP­
LOS, 2010.

[7] E. Ebrahimi et al. Parallel application memory scheduling. In MICRO,
201l.

[8] S. Eyerman and L. Eeckhout. Per-thread cycle accounting in SMT proces­
sors. In ASPLOS, 2009.

[9] S. Eyerman et al. A performance counter architecture for computing ac­
curate CPI components. In ASPLOS, 2006.

[10] S. Eyerman et al. A mechanistic performance model for superscalar out­
of-order processors. ACM TOCS, May 2009.

[11] A. Herdrich et al. Rate-based QoS techniques for cache/memory in CMP
platforms. In ICS, 2009.

[12] Intel. First the tick, now the tock: Next generation Intel microarchitecure
(Nehalem). Intel Technical White Paper, 2008.

[13] E. Ipek et al. SeIf-optimizing memory controllers: A reinforcement learn­
ing approach. In ISCA, 2008.

[14] R. Iyer. CQoS: A framework for enabling QoS in shared caches of CMP
platforms. In ICS, 2004.

[15] R. Iyer et al. QoS policies and architecture for cache/memory in CMP
platforms. In SIGMETRlCS, 2007.

[16] M. K. Jeong et al. Balancing DRAM locality and parallelism in shared
memory CMP systems. In HPCA, 2012.

[17] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor model.
In ISCA, 2004.

[18] D. Kaseridis et al. Minimalist open-page: A DRAM page-mode scheduling
policy for the many-core era. In MICRO, 201l.

[19] Y. Kim et al. ATLAS: A scalable and high-performance scheduling algo­
rithm for multiple memory controllers. In HPCA, 2010.

[20] Y. Kim et al. Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In MICRO, 2010.

[21] C.-K. Luk et al. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[22] K. Luo et al. Balancing thoughput and fairness in SMT processors. In
ISPASS, 200 l .

[23] C. Luque et al. CPU accounting in CMP processors. IEEE CAL, Jan. - Jun.
2009.

[24] J. Mars et al. Bubble-Up: Increasing utilization in modern warehouse scale
computers via sensible co-Iocations. In MICRO, 201l.

[25] Micron. 4Gb DDR3 SDRAM.
[26] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of

memory service in multi-core systems. In USENIX Security, 2007.
[27] S. P. Muralidhara et al. Reducing memory interference in multicore sys­

tems via application-aware memory channel partitioning. In MICRO,
201l.

[28] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for
chip multiprocessors. In MICRO, 2007.

[29] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En­
hancing both performance and fairness of shared DRAM systems. In ISCA,
2008.

[30] K. J. Nesbit et al. Fair queuing memory systems. In MICRO, 2006.
[31] H. Patil et al. Pinpointing representative portions of large Intel ltanium

programs with dynamic instrumentation. In MICRO-37, 2004.
[32] D. Petrou et al. Implementing lottery scheduling: Matching the special­

izations in traditional schedulers. In USENIX ATEC, 1999.
[33] S. Rixner et al. Memory access scheduling. In ISCA, 2000.
[34] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous

multithreaded processor. In ASPLOS, 2000.
[35] K. Van Craeynest et al. Scheduling heterogeneous multi-cores through

performance impact estimation (PIE). In ISCA, 2012.
[36] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible

proportional-share resource management. In OSDI, 1994.
[37] W. K. Zuravleff and T. Robinson. Controller for a synchronous DRAM

that maximizes throughput by allowing memory requests and commands
to be issued out of order. Patent 5630096, 1997.

