
 i

Fast Statistical Analysis of Rare Failure Events for SRAM Circuits in High-
Dimensional Variation Space

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical and Computer Engineering

Shupeng Sun

B.E., Automation, Tsinghua University

Carnegie Mellon University
Pittsburgh, PA

August, 2015

 ii

Abstract

SRAM (static random-access memory) has been widely embedded in a large amount of

semiconductor chips. Therefore, the yield of most semiconductor chips is dominated by the yield of SRAM.

SRAM consists of a considerable number of replicated components (e.g., SRAM bit-cell, SRAM array,

sense amplifier, etc.), and the failure event for each individual component must be rare in order to achieve

sufficiently high yield. Accurately estimating the rare failure rates for these replicated circuit components is

a challenging task, especially when the variation space is high-dimensional. In this thesis, three novel

approaches have been proposed to efficiently estimate the rare failure probability in the SRAM circuits.

First, we propose a subset simulation (SUS) technique to estimate the rare failure rates for circuit

blocks which have continuous performance metrics. The key idea of SUS is to express the rare failure

probability of a given circuit as the product of several large conditional probabilities by introducing a

number of intermediate failure events. These conditional probabilities can be efficiently estimated with a

set of Markov chain Monte Carlo samples generated by a modified Metropolis algorithm. To quantitatively

assess the accuracy of SUS, a statistical methodology is further proposed to accurately estimate the

confidence interval of SUS based on the theory of Markov chain Monte Carlo simulation.

Second, to efficiently estimate the rare failure rates for circuit blocks which have discrete

performance metrics, scaled-sigma sampling (SSS) is proposed. SSS aims to generate random samples

from a distorted probability distribution for which the standard deviation (i.e., sigma) is scaled up. Next, the

failure rate is accurately estimated from these scaled random samples by using an analytical model derived

from the theorem of “soft maximum”.

Finally, to further reduce the simulation cost, we propose a Bayesian scaled-sigma sampling (BSSS)

approach which can be considered as an extension of SSS. The key idea of BSSS is to explore the

“similarity” between different SSS models fitted at different design stages and encode it as our prior

knowledge. Bayesian model fusion is then adopted to fit the SSS model with consideration of the prior

 iii

knowledge.

 iv

Acknowledgement

First and foremost, I want to thank my Ph.D. advisor Prof. Xin Li. He has always been supportive,

encouraging, and inspiring during the past five years. He helped me to grow as an independent researcher.

Without his invaluable guidance, I cannot make through this tough journey. His conscientiousness and

infectious enthusiasm for the work has made a significant influence on me. I am forever grateful for his

support and mentoring.

I would like to give special thanks to my Ph.D. thesis committee members: Prof. Shawn Blanton,

Dr. Hongzhou Liu, Prof. Alexander Smola, and Dr. Ming Zhang. I want to thank you for serving as my

Ph.D. thesis committee members and providing me with your priceless comments and suggestions about

my thesis work. Prof. Shawn Blanton also served as a committee member in my Ph.D. qualification exam. I

would like to thank Prof. Blanton for his continuous help and support during my Ph.D. program. Dr.

Hongzhou Liu collaborated with us on SSS work. During the collaboration, Dr. Liu came up with many

brilliant ideas, which made SSS of practical utility. Dr. Liu evaluated SSS at Cadence, and eventually

integrated SSS into the Cadence commercial tool. I would like to give my sincere thanks to Dr. Liu for all

his efforts to make SSS successful and influential. Prof. Alexander Smola helped and guided me to have a

thorough understanding of particle filter technique. I would like to thank Prof. Smola for making my thesis

more sound and complete. Dr. Zhang was my intern mentor at Samsung Semiconductor. He motivated and

encouraged me to think about my research from an industrial perspective, which is extremely valuable for

my thesis work. Thank you Dr. Zhang.

I would also like to thank our industry collaborators. My special thanks go to Ben Gu and

Kangsheng Luo from Cadence Design Systems. My thesis work cannot be completed without their help

and support.

A special acknowledgement goes to the financial support from the National Science Foundation,

which makes this research possible.

 v

My friends and office mates at Carnegie Mellon University make both my academic and personal

life more interesting and enjoyable. Thank you so much.

Last but not the least, I would like to express my heartfelt appreciation to my parents. Words are not

enough to express how grateful I am to them. Ph.D. life is never easy. Their unconditional love and support

makes me stronger and more resolute. I love you forever and ever.

 vi

Table of Contents

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Thesis Contributions .. 3

1.3 Thesis Organization ... 6

Chapter 2 Background ... 7

2.1 Static Random-Access Memory (SRAM) .. 7

2.2 SRAM Yield Estimation .. 10

2.3 Traditional Approaches .. 16

2.3.1 Brute-Force Monte Carlo... 16

2.3.2 Importance Sampling ... 17

2.3.3 Statistical Blockade ... 26

2.3.4 Integration-Based Approaches .. 29

2.3.5 Limitations of Traditional Approaches .. 29

Chapter 3 Subset Simulation for Continuous Performance Metrics ... 32

3.1 A Simple 2-D Example .. 34

3.2 High-Dimensional Case ... 37

3.3 Subset Selection ... 40

3.4 Confidence Interval Estimation ... 47

3.5 Experimental Results ... 51

3.6 Algorithm Limitations ... 55

Chapter 4 Scaled-Sigma Sampling for Discrete Performance Metrics .. 59

4.1 SSS for Gaussian Random Variables ... 60

4.1.1 Statistical Sampling ... 60

 vii

4.1.2 Failure Rate Estimation ... 62

4.2 SSS for Gaussian-Uniform Random Variables .. 67

4.2.1 Statistical Sampling ... 68

4.2.2 Failure Rate Estimation ... 69

4.3 Implementation Details .. 70

4.3.1 Model Fitting via Maximum-Likelihood Estimation (MLE) ... 70

4.3.2 Confidence Interval Estimation ... 74

4.3.3 Scaling Factor Selection .. 75

4.3.4 Algorithm Summary .. 79

4.4 Experimental Results ... 80

4.4.1 Sense Amplifier ... 81

4.4.2 SRAM Write Path.. 86

4.5 Algorithm Limitations ... 87

Chapter 5 Bayesian Scaled-Sigma Sampling ... 100

5.1 Prior Definition .. 102

5.2 Model Fitting via Bayesian Model Fusion (BMF) ... 106

5.3 Confidence Interval Estimation ... 108

5.4 Algorithm Summary .. 108

5.5 Experimental Results ... 109

Chapter 6 Thesis Summary & Future Work ... 112

6.1 Summary .. 112

6.2 Future Work ... 113

Bibliography .. 115

 viii

List of Figures

Figure 2-1. Simplified SRAM architecture. .. 7

Figure 2-2. 6-transistor SRAM bit-cell schematic. .. 8

Figure 2-3. A simple 1-dimensional example is used to illustrate the key idea of MIS described in

Algorithm 2.2. Yellow points denote samples that do not belong to the failure region Ω, and

green points denote samples that belong to the failure region Ω. (a) Generate random samples

from a uniform distribution U(x), and calculate the gravity center of all failure samples (i.e.,

green points). (b) Construct a shifted Normal distribution g(x), and generate random samples

from g(x). Calculate failure rate with these random samples by using importance sampling

equation (2.20). .. 20

Figure 2-4. A simple 1-dimensional example is used to illustrate the key idea of MNIS described in

Algorithm 2.3. Yellow points denote samples that do not belong to the failure region Ω, and

green points denote samples that belong to the failure region Ω. (a) Find a failure sample xc

that has the minimum L2-norm from the origin x = 0. (b) Construct a shifted Normal

distribution g(x) with xc, and generate random samples from g(x). Calculate failure rate with

these random samples by using importance sampling equation (2.20). 22

Figure 2-5. A simple 1-dimensional example is used to illustrate the key idea of Gibbs described in

Algorithm 2.4. Yellow points denote samples that do not belong to the failure region Ω, and

green points denote samples that belong to the failure region Ω. (a) f(x) follows a standard

Normal distribution. (b) Generate a number of Gibbs samples from the optimal distorted

distribution gOPT(x). (c) Construct a Normal distribution g(x) based on these Gibbs samples.

(d) Generate random samples from g(x), and calculate failure rate with these random samples

by using importance sampling equation (2.20). ... 24

Figure 2-6. A simple 2-dimensional example is used to illustrate the key idea of SB described in Algorithm

 ix

2.6. Yellow points denote samples that do not belong to the failure region Ω, and green points

denote samples that belong to the failure region Ω. Grey points denote random samples that

are drawn from f(x), and their performance values are unknown. (a) Generate a number of

random samples and run transistor-level simulations to evaluate their performance values. (b)

Build a classifier based on random samples created in (a). (c) Generate a large number of

random samples from the natural PDF f(x). (d) For all the grey samples, identify samples that

fall into the failure region Ω or are close to the failure boundary based on the classifier. These

identified grey samples are circled by a dashed blue ellipsoid in this simple 2-dimensional

example. (e) Evaluate these identified grey samples. (f) Learn the tail distribution of our

performance of interest. Here, y is our performance of interest, and f(y) denotes the PDF of y.

Estimate rare failure rates based on the constructed tail distribution. 27

Figure 3-1. A 2-dimensional example is used to illustrate the procedure of probability estimation via

multiple phases by using SUS: (a) generating MC samples and estimating P1 in the 1st phase,

and (b) generating MCMC samples and estimating P2 in the 2nd phase. 34

Figure 3-2. norm_obj in (3.47) is plotted as a function of P1. The optimal value P1
* corresponding to the

minimum norm_obj is around 0.2. ... 45

Figure 3-3. The simplified schematic is shown for an SRAM column consisting of 64 bit-cells designed in a

45nm CMOS process. .. 52

Figure 3-4. The 95% CIs are estimated from 100 repeated runs with 6000 simulations in each run for (a)

MNIS and (b) SUS. The red line represents the “golden” failure rate. 54

Figure 3-5. A 2-dimensional example is used to illustrate the extreme case of scenario 1. 56

Figure 3-6. A 1-dimensional example is used to illustrate scenario 2. (a) x follows a Normal PDF f(x). (b)

Green curve denotes the performance function, and two red color regions denote failure

regions. (c) Draw random samples from f(x) and determine the intermediate failure event F1

as F1 = {y | y(x) ≤ y1}. Yellow points denote samples that do not belong to F1, and green

points denote samples that belong to F1. (d) Draw random samples from f(x | y(x) ≤ y1) by

MM and determine the intermediate failure event F2 as F2 = {y | y(x) ≤ y2}. Green points

denote samples that do not belong to F2, and blue points denote samples that belong to F2. .. 57

 x

Figure 4-1. The proposed SSS method for Gaussian distribution is illustrated by a 2-D example where the

red area Ω denotes the failure region and the circles represent the contour lines of the PDF. (a)

Rare failure events occur at the tail of the original PDF f(x) and the failure region is far away

from the origin x = 0. (b) The scaled PDF g(x) widely spreads over a large region and the

scaled samples are likely to reach the faraway failure region. ... 61

Figure 4-2. log(Pg) is assumed to be a linear function of the scaling factor s at sample allocation stage. 75

Figure 4-3. A synthetic example is used to illustrate the relation between {Nq
search; q = 1, 2, ···, Q} and

Nsearch. ... 79

Figure 4-4. Simplified circuit block diagram is shown for a sense amplifier. ... 81

Figure 4-5. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. ... 82

Figure 4-6. A histogram is generated by 200 re-sampled data points to estimate the confidence interval of

the estimator Pf
SSS. .. 83

Figure 4-7. Histogram of the lower bound of the 95% confidence interval [Pf
L, Pf

U] is estimated from 200

repeated runs. ... 84

Figure 4-8. Histogram of the upper bound of the 95% confidence interval [Pf
L, Pf

U] is estimated from 200

repeated runs. ... 85

Figure 4-9. Simplified circuit block diagram is shown for an SRAM write path. ... 86

Figure 4-10. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. ... 87

Figure 4-11. A 2-dimensional example is used to illustrate the failure region defined in (4.65). 88

Figure 4-12. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. The blue curve denotes the scaled failure rate estimated by SSS, and the red

curve denotes the real scaled failure rate. The failure region is defined in (4.65) where M = 10

and spec = 46.9. ... 89

 xi

Figure 4-13. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. The blue curve denotes the scaled failure rate estimated by SSS, and the red

curve denotes the real scaled failure rate. The failure region is defined in (4.65) where M =

100 and spec = 182.1. .. 90

Figure 4-14. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.65) where M = 200 and spec = 309.8. ... 91

Figure 4-15. A 2-dimensional example is used to illustrate the failure region defined in (4.66). 92

Figure 4-16. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. The blue curve denotes the scaled failure rate estimated by SSS, and the red

curve denotes the real scaled failure rate. The failure region is defined in (4.66) where M = 10.

 ... 92

Figure 4-17. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.66) where M = 100. ... 93

Figure 4-18. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.66) where M = 500. ... 94

Figure 4-19. A 2-dimensional example is used to illustrate the failure region defined in (4.67). 95

Figure 4-20. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these

scaling factors. The blue curve denotes the scaled failure rate estimated by SSS, and the red

curve denotes the real scaled failure rate. The failure region is defined in (4.67) where M = 2,

R1 = 5.3 and R2 = 8.3. ... 96

Figure 4-21. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.67) where M = 10, R1 = 6.8 and R2 = 9.7. ... 97

Figure 4-22. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.67) where M = 100, R1 = 13.5 and R2 = 16.0. ... 98

Figure 5-1. A simplified block diagram is shown for the circuit design and verification flow. 100

 xii

List of Tables

Table 3-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS and SUS (“golden” failure rate =

1.1×106) .. 52

Table 4-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS and SSS (“golden” failure rate =

7.1×106) .. 83

Table 5-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS, SSS and BSSS (“golden” failure rate =

7.1×106) .. 110

 1

Chapter 1 Introduction

Introduction

1.1 Motivation

Static random-access memory (SRAM) has been widely embedded in a large amount of

semiconductor chips. For example, roughly half of the area of an advanced microprocessor chip is occupied

by SRAM. Therefore, the yield of most semiconductor chips is dominated by the yield of SRAM. Here,

yield refers to the ratio between the number of good chips and the total number of chips. For this reason,

designing a robust SRAM system with sufficiently high yield becomes an extremely important task for the

IC design community [1]-[22].

SRAM typically contains a large number of replicated components (e.g., SRAM bit-cell, SRAM

array, sense amplifier, etc.). Though these replicated components are designed with exactly the same

parameters (e.g., transistor length and width), they can behave quite differently due to large-scale process

variations. Since a failure of each individual component can cause a failure of the entire SRAM system,

these replicated components must be designed to be extremely robust under process variations so that the

overall yield of the SRAM system can meet the design specification. For instance, the failure rate of an

SRAM bit-cell must be less than 108~106 so that the SRAM system, containing millions of SRAM bit-

cells, can achieve sufficiently high yield. To facilitate an efficient SRAM design, fast statistical methods

for estimating the rare failure probability of these replicated components are strongly desired.

The simple way to estimate the failure probability is to apply the well-known brute-force Monte

Carlo (MC) technique [72]. MC directly draws random samples from the probability density function

(PDF) that models device-level variations, and performs a transistor-level simulation to evaluate the

performance value for each random sample. Theoretically, 1/Pf random samples are required on average to

 2

obtain a failure sample [72]. Here, Pf denotes the failure rate. When MC is applied to estimate an extremely

small failure rate (e.g., 108~106), a large number of (e.g., 107~109) random samples are needed to

accurately estimate the small failure probability. Since generating each random sample requires a

transistor-level simulation, 107~109 transistor-level simulations are needed to collect 107~109 random

samples, implying that MC can be extremely expensive for our application of rare failure rate estimation.

To improve the sampling efficiency, importance sampling (IS) methods have been proposed in the

literature [24]-[26], [31], [33], [35], [37], [39], [41], [44]-[45]. Instead of sampling the original PDF, IS

samples a distorted PDF to get more samples in the important failure region. The efficiency achieved by IS

highly depends on the choice of the distorted PDF. The traditional IS methods apply several heuristics to

construct a distorted PDF that can capture the most important failure region in the variation space. Such a

goal, though easy to achieve in a low-dimensional space, is extremely difficult to fulfill when a large

number of random variables are used to model process variations.

Another approach to improving the sampling efficiency, called statistical blockade, has recently

been proposed [34]. This approach first builds a classifier with a number of transistor-level simulations, and

then draws random samples from the original PDF. Unlike MC where all the samples are evaluated by

transistor-level simulations, statistical blockade only simulates the samples that are likely to fall into the

failure region or close to the failure boundary based on the classifier. The efficiency achieved by this

approach highly depends on the accuracy of the classifier. If the variation space is high-dimensional, a

large number of transistor-level simulations are needed to build an accurate classifier, which makes this

method quickly intractable.

In addition to the aforementioned statistical methods, several deterministic approaches have also

been proposed to efficiently estimate the rare failure probability [28]-[29], [38], [42]. These methods first

find the failure boundary, and then calculate the failure probability by integrating the PDF over the failure

region in the variation space. Though efficient in the low-dimensional space, it is often computationally

expensive to accurately determine the failure boundary in a high-dimensional space especially if the

boundary has a complicated shape (e.g., non-convex or even discontinuous).

Most of these traditional methods [24]-[45] have been successfully applied to the SRAM cell-level

design to estimate the rare failure rates for SRAM bit-cells where only a small number of (e.g., 6~20)

 3

independent random variables are used to model process variations and, hence, the corresponding variation

space is low-dimensional. However, replicated circuit components, such as SRAM arrays and sense

amplifiers, have hundreds or even thousands of random variables. Take an SRAM array as an example.

Even a small SRAM array contains hundreds of transistors which render a high-dimensional variation

space (i.e., hundreds of random variables to model the process variations). To the best of our knowledge,

no traditional techniques can efficiently and accurately estimate the rare failure probability in a high-

dimensional variation space. It, in turn, poses an immediate need of developing a new CAD tool to

accurately capture the rare failure events in a high-dimensional variation space with low computational

cost.

1.2 Thesis Contributions

To accurately capture the rare failure events in a high-dimensional variation space, a novel subset

simulation (SUS) technique is proposed in this thesis. The key idea of SUS, borrowed from other

communities [53]-[59], is to express the rare failure probability as the product of several large conditional

probabilities by introducing a number of intermediate failure events. The original problem of rare failure

probability estimation is then cast to an equivalent problem of estimating a sequence of conditional

probabilities. Since these conditional probabilities are large, they are relatively easier to estimate than the

original rare failure rate. Our experimental results in Section 3.5 show that the proposed SUS approach can

accurately estimate an extremely small failure rate (e.g., 10−6) even with only a few thousand simulations

when hundreds of random variables are used to model the process variations. However, the traditional IS

based technique fails to work.

When implementing the proposed SUS method, it is difficult, if not impossible, to directly draw

random samples from the conditional PDFs and estimate the conditional probabilities, since these

conditional PDFs are unknown in advance. To address this issue, a modified Metropolis (MM) algorithm is

adopted from the literature [54] to generate random samples by constructing a number of Markov chains.

The conditional probabilities of interest are then estimated from these random samples. Unlike most

traditional techniques [24]-[45] that suffer from the dimensionality issue, SUS can be efficiently applied to

high-dimensional problems, which will be demonstrated by the experimental results in Section 3.5.

 4

It is important to emphasize that though the key idea of SUS was first proposed in other

communities [53]-[59], how to estimate the confidence interval of SUS remains an open question. Due to

this reason, the SUS method has not been successfully applied to many practical applications in the

literature. In this work, we propose a statistical methodology to accurately estimate the confidence interval

of SUS based on the theory of Markov chain Monte Carlo simulation, thereby making our proposed SUS

method of practical utility.

To define the intermediate failure events required by SUS, the circuit performance of interest should

be continuous. However, the performances of interest in the SRAM circuits can be discrete. Take voltage-

mode sense amplifier as an example. When studying the stability of the sense amplifier, the performance of

interest is the binary output of the sense amplifier. A real industry sense amplifier design contains around

one hundred transistors which render a high-dimensional variation space. To estimate the rare failure

probability for discrete performances of interest in a high-dimensional variation space, scaled-sigma

sampling (SSS) is proposed. The key idea of SSS is to generate random samples from the “scaled” PDFs

and estimate the “scaled” failure rates based on these random samples. Here, the “scaled” PDF refers to the

distorted PDF for which the standard deviation of the original PDF is scaled up. By scaling up the standard

deviation, the rare failure event associated with the original PDF becomes not-so-rare in the “scaled” PDFs

and, therefore, the “scaled” failure rates corresponding to the “scaled” PDFs can be efficiently estimated.

To further recover the original rare failure rate from the scaled failure rates, we derive an analytical

model between the scaled failure rate and the scaling factor based on the theorem of “soft maximum” [73],

which is the key contribution of SSS work. To fit the model, we first choose a set of scaling factors, and

estimate their corresponding scaled failure rates from a small number of scaled random samples. The model

is then optimally fitted by applying maximum-likelihood estimation (MLE) [72]. Next, the original rare

failure rate can be efficiently estimated from the fitted model by setting the scaling factor to 1.

Unlike the traditional estimator where a statistical metric is estimated by the average of multiple

random samples and, hence, the confidence interval can be derived as a closed-form expression, our

proposed SSS estimator is calculated by linear regression with nonlinear exponential/logarithmic

transformation, as shown in Chapter 4. Therefore, accurately estimating the confidence interval of SSS is

not a trivial task. To address the aforementioned challenge, we apply bootstrap technique [70]. The key

 5

idea of bootstrap is to re-generate a large number of random samples based on a statistical model without

running additional transistor-level simulations. These random samples are then used to repeatedly calculate

the failure rate by SSS for multiple times. Based on these repeated runs, the statistics (hence, the

confidence interval) of the proposed SSS estimator can be accurately estimated.

Though only a few thousand simulations are required by SUS and SSS for rare failure probability

estimation as demonstrated in Section 3.5 and 4.4, tens of thousands of simulations in total may be needed

when designing a circuit component. To understand the reason, let us assume that we are designing a sense

amplifier, and applying SSS to estimate the failure probability. If the estimated failure probability meets

our design specification, the design process is complete. Otherwise, we need to improve our sense amplifier

design, and re-run SSS. Generally speaking, we need a few iterations before we converge to the final

design. Since SSS spends a few thousand simulations for each design candidate, tens of thousands of

simulations may be required over the entire design process, which can be extremely expensive.

To further reduce the simulation cost, we propose a novel Bayesian scaled-sigma sampling (BSSS)

approach which can be considered as an extension of SSS. SSS is a model-based approach. By studying

SSS, we can observe that a number of coefficients of the SSS model for an early design candidate are

similar to those for a late design candidate. Motivated by this observation, we propose to explore the

“similarity” between different SSS models fitted for different design candidates, and encode such

“similarity” as our prior distribution for the SSS model coefficients. Next, we apply Bayesian model fusion

(BMF) [60]-[69] to fit the SSS model with the prior.

The key difference between BSSS and SSS lies in the fact that BSSS maximizes the product of the

prior distribution and the data likelihood by maximum-a-posteriori (MAP) estimation [72], while SSS only

maximizes the data likelihood by MLE. As long as the prior distribution is properly defined, MAP can

reduce the amount of required simulation data and, hence, the model fitting cost without surrendering any

accuracy, as demonstrated in [60]-[69]. In other words, BSSS can be more efficient than SSS if the prior

distribution is appropriately defined. Similar to SSS, we apply bootstrap technique [70] to accurately

estimate the confidence interval of our BSSS estimator. Our experimental results in Section 5.5

demonstrate that BSSS can achieve superior accuracy over SSS when the prior distribution is appropriately

defined.

 6

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we first introduce background

knowledge relevant to SRAM rare failure probability estimation. Next, several state-of-the-art

methodologies for rare failure rate estimation in the CAD community are reviewed, and their algorithm

limitations are discussed.

 In Chapter 3, our proposed SUS approach is described. We start with a simple 2-dimensional

example to illustrate the key idea of SUS. Next, the SUS idea is extended to the general high-dimensional

scenario. How to select the subsets and estimate the confidence interval for our proposed SUS estimator are

carefully studied. Numerical experimental results of an SRAM column example are used to demonstrate the

efficacy of SUS. Algorithm limitations of SUS are discussed at the end of the chapter.

In Chapter 4, we present our proposed SSS approach. First, we describe SSS for Gaussian random

variables. Next, SSS is extended to handle Gaussian and uniform random variables. Several

implementation issues are then discussed in detail, including (1) model fitting via MLE, (2) confidence

interval estimation via bootstrap, and (3) scaling factor selection. Two circuit examples are used to

demonstrate the efficacy of SSS. Algorithm limitations of SSS are discussed to complete the chapter.

In Chapter 5, we describe our proposed BSSS approach. First, we talk about the motivation of this

work. Next, we present an important observation about SSS and then introduce the key idea of BSSS based

on this observation. Implementation issues including (1) prior definition and (2) model fitting via BMF, are

then discussed in detail. Finally, a voltage-mode sense amplifier example is used to demonstrate the

efficacy of BSSS.

Chapter 6 concludes the thesis. Several potential future research directions relevant to this work are

discussed.

 7

Chapter 2 Background

Background

2.1 Static Random-Access Memory (SRAM)

The simplified SRAM architecture is shown in Figure 2-1. Blue lines denote bit lines, and red lines

denote word lines. SRAM is typically composed of SRAM bit-cells, sense amplifiers (SAs), pre-charge

circuits, cell I/O circuits, address decoder, etc. [74].

A
d

d
ress D

eco
d

er

bit-cell

bit-cell

bit-cell

SA

I/O

pre-charge

bit-cell

bit-cell

bit-cell

SA

I/O

pre-charge

bit-cell

bit-cell

bit-cell

SA

I/O

pre-charge

Figure 2-1. Simplified SRAM architecture.

SRAM bit-cell is the fundamental component of SRAM system, and stores binary value (0 or 1)

when it is powered. There are several different SRAM bit-cell designs (e.g., 6-transistor design, 8-transistor

design, etc.), and each of them has its own advantages and disadvantages regarding various design

specifications (e.g., cell density, speed, stability, etc.). Here, we take the well-known 6-transistor (6T)

 8

SRAM bit-cell design as an example to illustrate the basic SRAM operations (e.g., read and write). The

schematic of the 6T SRAM bit-cell design is shown in Figure 2-2, where WL denotes word line, and BL and

BLB denote two bit lines. 6T SRAM bit-cell design is a symmetric design. Namely, two pull-down

transistors (i.e., M1 and M2), two pass-gate transistors (i.e., M3 and M4), and two pull-up transistors (i.e., M5

and M6) are identical respectively. M1, M2, M5, M6 form two cross-coupled inverters, resulting in two stable

states. More specifically, if VQ (i.e., the voltage of node Q) is 0, VQB (i.e., the voltage of node QB) should be

VDD due to the positive feedback of two cross-coupled inverters. Otherwise, if VQ is VDD, VQB should be 0.

These two stable states are used to represent binary values (0 or 1) in SRAM circuits. Without loss of

generality, we assume that bit-cell stores 0 if VQ is 0 and stores 1 if VQ is VDD. Two pass-gate transistors

(i.e., M3 and M4) are used to control the bit-cell accessibility. Once the WL voltage is high, M3 and M4 are

activated, and bit-cell can be read and written. Once the WL voltage is low, M3 and M4 are turned off, and

bit-cell preserves its state and stays in the standby mode.

M1

VDD

M2

M4

M3

M5 M6

BL BLB

WL

Q QB

Figure 2-2. 6-transistor SRAM bit-cell schematic.

SRAM has three modes: (1) reading, (2) writing, and (3) standby. Without losing generality, we

assume that the SRAM bit-cell shown in Figure 2-2 stores 0. Namely, VQ is 0, and VQB is VDD. The three

modes can be simply described as follows:

 Reading: two bit lines (i.e., BL and BLB in Figure 2-2) are first pre-charged to the supply voltage

VDD by pre-charge circuits. Next, word line (i.e., WL in Figure 2-2) is activated, and two pass-gate

transistors are turned on. Since VQ is 0, there is current flowing from BL to Q, which decreases the

BL voltage. On the other hand, both BLB and QB have high voltages and, hence, the BLB voltage is

 9

almost unchanged. In a word, BL and BLB have different discharging rates, resulting in a significant

voltage difference after activating WL for certain time. By sensing the voltage difference between

BL and BLB, we can tell the value stored in the SRAM bit-cell. If BL voltage is smaller than BLB

voltage, bit-cell stores 0. Otherwise, if BL voltage is larger than BLB voltage, bit-cell stores 1.

 Writing: assume that we want to write 1 into the cell. Since the cell currently stores 0, we aim to

change VQ from 0 to VDD, and VQB from VDD to 0. Towards this end, we activate WL to turn on two

pass-gate transistors. The BL and BLB voltages are driven to VDD and 0 respectively by the writing

circuits. If the driving power of M4 is stronger than that of M6, VQB decreases. Once VQB drops below

the threshold voltage of M1, M1 is turned off and VQ starts to increase. Once VQ rises above the

threshold voltage of M2, M2 is turned on, making QB discharged more quickly. VQB keeps decreasing

and VQ keeps increasing. Eventually, M5 is turned on and M6 is turned off. VQB becomes 0, and VQ

becomes VDD.

 Standby: during the standby mode, WL is not activated, which isolates bit-cell from all other

circuits. Bit-cell preserves its value.

To function correctly, three types of transistors (i.e., pull-down, pull-up and pass-gate) must be

carefully sized. Generally speaking, pull-down transistor should be stronger than pass-gate transistor to

guarantee read stability, and pass-gate transistor should be stronger than pull-up transistor to insure

successful writes [74].

Although SRAM system is carefully designed and guaranteed to function correctly at the nominal

process corner, failures can occur due to imperfect manufacturing process. Briefly speaking, there are two

kinds of failures caused by manufacturing process variations:

 Catastrophic failure: failures caused by circuit shorts and opens. E.g., if Q is short to ground in

Figure 2-2, the bit-cell can only store 0. If we want to write 1 into such cell, we get write failures.

 Parametric failure: parametric variations [1]-[23] change the driving capability of each device, and

can cause several different kinds of failures:

1) Read access failure: during read operation, the voltage difference between two bit lines

increases. If the voltage difference is not large enough after pre-defined reading time, the value

stored in bit-cell may not be correctly detected by sense amplifier (SA), resulting in read access

 10

failure. Take the bit-cell shown in Figure 2-2 as an example. VQ is 0, and VQB is VDD. If M1

becomes weak (e.g., transistor width decreases) after manufacturing, the current flowing from

BL to Q becomes smaller than that at the nominal condition. If the current is too small, the

voltage difference between BL and BLB may be negligible, leading to a read access failure.

2) Read stability failure: there is current flowing from BL to Q during read operation for the bit-

cell shown in Figure 2-2. If pull-down transistor M1 becomes weak (e.g., the transistor width

decreases) and pass-gate transistor M3 becomes strong (e.g., the transistor width increases) after

manufacturing, VQ can be significantly larger than 0 due to the resistive voltage division

between M1 and M3. If VQ is larger than the threshold voltage of M2, the bit-cell may flip,

leading to a read stability failure.

3) Write failure: ideally, pass-gate transistor should be stronger than pull-up transistor in order to

achieve successful writes. After manufacturing, however, pull-up transistors could be stronger

than pass-gate transistors. If this occurs, it is very likely that the desired value cannot be written

into the bit-cell, resulting in a write failure.

Catastrophic failure and parametric failure can be estimated independently. In this thesis, we only

focus on parametric failure rate estimation. Mathematical formulation for parametric failure rate estimation

is described in the following sub-section.

2.2 SRAM Yield Estimation

Since the yield of most semiconductor chips is dominated by the yield of SRAM, it is extremely

important to estimate SRAM production yield before manufacturing. In this sub-section, we describe the

mathematical formulation for SRAM parametric yield (or failure rate) estimation.

Parametric failures are caused by parametric variations, which refer to the deviations between

manufactured device-level parameter values and designed device-level parameter values [23]. These

device-level parameters include transistor length (L), transistor width (W), threshold voltage (Vth), oxide

thickness (TOX), mobility (μ), etc. Due to parametric variations, even identically designed devices can

behave quite differently. Parametric variations can be categorized into local mismatches and global

variations. Local mismatches between different devices can be considered as independent. Global

 11

variations, however, are strongly correlated between different devices on the chip. To model these two

different variations, process design kit (PDK) uses two different kinds of variables: (1) local mismatch

random variable and (2) global random variable.

Since local mismatches between different devices are independent, PDK uses different sets of local

mismatch random variables to model local mismatches for different devices. Without losing generality, we

assume that ML independent local mismatch random variables are used to model local mismatches for each

device:

 ,1 ,2 , LLocal Local Local Local Mx x x x . (2.1)

If we have D devices, ML×D independent random variables are used to model local mismatches:

 1 1 1

,1 , ,1 ,L L

D D D

Local Local Local Local M Local Local Mx x x x

x x . (2.2)

 We further assume that MG independent global random variables are used to model global variations for all

the devices:

 ,1 ,2 , GGlobal Global Global Global Mx x x x . (2.3)

Given (2.1) and (2.3), the deviations of transistor device-level parameters can be written as functions of

these ML local mismatch random variables and MG global random variables:

,

,

,

Local Global

Local Global

th Local Global

L function

W function

V function

x x

x x

x x
 (2.4)

If a circuit has D transistors, the deviation of our interested performance metric (say, y) can be

written as:

 1 1 1 2 2 2

1st transistor 2nd transistor th transistor

, , , , , , , , , , , ,
D D D

th th th

D

y function L W V L W V L W V

. (2.5)

Given (2.4), Eq. (2.5) can be re-written as:

 1 2

, , , ,
D

Local Local Local Globaly function

x x x x . (2.6)

Note that all the transistors share the same set of global random variables and, therefore, there is only a

single set of global random variables in the parameter list of (2.6).

 12

A straightforward way to estimate SRAM yield is to generate a number of (say, N) samples {x(n); n =

1, 2, ···, N} according to the statistical models defined for xLocal and xGlobal in PDK. If SRAM system has D

transistors in total, each sample x is composed of ML×D+MG random variables:

 1 2

 variables variables variables variables

, , , ,

L L L G

D

Local Local Local Global

M M M M

x x x x x . (2.7)

For each sample x(n) where n {1, 2, ···, N}, we run a transistor-level simulation to evaluate its

corresponding performance metric y(n). Based on {y(n); n = 1, 2, ···, N}, we can estimate SRAM yield by

using brute-force Monte Carlo approach which will be described in Section 2.3.1. This approach, though

easy to implement, has two limitations:

1) SRAM system has millions or even billions of nodes. Running a transistor-level simulation for the

entire SRAM system is extremely challenging, if not impossible.

2) If the estimated SRAM yield does not meet our specification, we need to tune our design.

Unfortunately, we do not know how to tune the circuit with only an estimated yield value. In other

words, we do not know which part or circuit component causes the failure based on a single yield

value.

Due to these limitations, this approach is not applied in practice.

SRAM system contains a large number of identically designed circuit components (e.g., SRAM

column, sense amplifier, etc.). We can take advantage of such property and have a more efficient and

practical approach to estimate SRAM system yield. Before describing this practical approach, let us use a

simple example to illustrate the key idea of this approach. Here, we assume that

1) There is no error-correcting code or redundancy circuits [74].

2) Only SRAM columns have failures and all other circuit components (e.g., address decoder) function

correctly under large-scale process variations.

3) There are R SRAM columns and all of them are identically designed.

Since an SRAM column has only a few hundred nodes, running a transistor-level simulation for an

SRAM column is affordable. Therefore, we can afford a reasonable number of (e.g., a few thousand)

transistor-level simulations for SRAM column failure rate estimation. However, estimating the failure rate

for a single SRAM column is still nontrivial. An SRAM column is composed of a number of (e.g., 64)

 13

SRAM bit-cells, and the failure for any SRAM bit-cell leads to an SRAM column failure. Due to this

reason, to check whether an SRAM column fails, we need to check all the SRAM bit-cells inside the

column, which requires intensive transistor-level simulations. How to efficiently estimate the SRAM

column failure rate is still an open question. In this thesis, we derive a conservative upper bound for the

SRAM column failure rate based on the SRAM bit-cell failure rate, as shown in Section 3.5. Unlike most

traditional approaches that only consider the bit-cell itself when estimating the SRAM bit-cell failure rate,

we consider the entire SRAM column. By considering the entire SRAM column, we can estimate the

SRAM bit-cell failure rate more accurately, which will be explained later. Here, we use Pf to denote the

failure rate of a single SRAM column, and Pf can be written as

,
column

f Local GlobalP function

x x (2.8)

where xLocal
(column) includes all the local mismatch random variables for a single SRAM column, and xGlobal

includes all the global random variables. Since all SRAM columns are identically designed, their failure

rates are the same. Note that our goal is to estimate SRAM system yield. The question we need to answer

here is that how to calculate SRAM system yield based on failure rates of these SRAM columns.

If Pf is estimated by varying both xLocal
(column) and xGlobal, failures between different SRAM columns

are correlated due to the fact that they share the same set of global random variables xGlobal. If failures are

correlated, it is extremely difficult to calculate the overall failure rate of all SRAM columns. To remove the

correlation, we can set xGlobal to fixed values, and estimate Pf by only varying xLocal
(column). As failures

between different SRAM columns become conditionally independent by setting xGlobal to fixed values, the

overall failure rate of all SRAM columns can be calculated by

 1 1
R

all fP P (2.9)

where Pall denotes the overall failure rate of all SRAM columns.

We can generate a number of (say, C) samples {xGlobal
(c); c = 1, 2, ···, C} according to the statistical

model defined for xGlobal in PDK. For each sample xGlobal
(c) where c {1, 2, ···, C}, we estimate the failure

rate for a single SRAM column given that xGlobal = xGlobal
(c), and calculate the overall failure rate Pall

(c) by

(2.9). Last, we estimate SRAM system yield by:

 14

1

1
1

C
c

all

c

yield P
C

 . (2.10)

From (2.9) and (2.10), we observe that to achieve sufficiently high SRAM production yield, Pf must be

extremely small. To understand this, let us assume that R = 104. If Pf = 10−4, Pall ≈ 0.63 which is too large.

If Pf = 10−5, Pall ≈ 0.10 which is much better than 0.63. From these numbers, we can see that the failure rate

of each SRAM column must be smaller than 10−5 in this simplified SRAM system in order to achieve a

robust SRAM design.

Now let us describe this approach in a more general way. Suppose that we partition SRAM into R

components, including SRAM columns, sense amplifiers, address decoder, cell I/O, etc. There are several

different ways to partition an SRAM system. For instance, we can consider an SRAM column as a single

component. Another way to partition an SRAM column is to consider each SRAM bit-cell inside the

column as a single component and, hence, we have a number of small components in the column. A valid

partition should meet the following requirements:

1) Different circuit components do not share any devices.

2) Failures of different circuit components should be weakly correlated given that global variables are

fixed.

Given a valid partition, Algorithm 2.1 describes the SRAM system yield estimation flow.

Algorithm 2.1 SRAM Yield Estimation Flow

1. Generate C samples {xGlobal
(c); c = 1, 2, ···, C} according to the statistical model defined for xGlobal in

PDK

2. For c = 1, 2, , C

3. Set xGlobal = xGlobal
(c)

4. For r = 1, 2, , R

5. If the h-th circuit component has the same design as the r-th circuit component where h {1,

2, ···, r-1}, set Pf
(r) = Pf

(h). Otherwise, estimate failure rate Pf
(r) for the r-th circuit component

6. End For

7. Calculate the overall failure rate by

 15

1

1 1
R

c r

all f

r

P P

 (2.11)

8. End For

9. Calculate SRAM system yield by (2.10)

There are two important clarifications that we should make for Algorithm 2.1. First, Eq. (2.11) holds

given the assumption that failures of different circuit components are weakly correlated when global

variables are fixed. To achieve an accurate estimation by Algorithm 2.1, we should minimize correlations

between different circuit components when we partition SRAM. Most traditional approaches typically

consider each SRAM bit-cell as a single circuit component. Since simulating each SRAM bit-cell consumes

a very short time, the traditional partition makes SRAM yield estimation pretty efficient. However, such

partition induces non-negligible correlations since different bit-cells inside each SRAM column share the

same bit-line and peripheral circuits, such as sense amplifier. Therefore, the traditional partition could lead

to a significant accuracy loss. To address this issue, we consider each SRAM column as an individual

circuit component in this thesis.

Second, we need to emphasize that it is extremely difficult to obtain a partition where all the circuit

components are weakly correlated. If a valid partition cannot be achieved, we can slightly modify

Algorithm 2.1 and compute a conservative lower bound for the SRAM system yield. To this end, we only

need to replace (2.11) at Step 7 with the following equation:

1

R
c r

all f

r

P P

 . (2.12)

The right hand side of (2.12) is a conservative upper bound for Pall
(c). Therefore, by replacing (2.11) with

(2.12) in Algorithm 2.1, we obtain a conservative lower bound for the SRAM system yield.

From Algorithm 2.1, we observe that estimating failure rates for individual circuit components in

Step 5 is executed many times. Hence, efficient failure rate estimation for these small individual circuit

components is extremely important for SRAM system yield estimation.

Some circuit components appear tens of thousands of times in a typical SRAM system, such as

SRAM column, sense amplifier, etc. To achieve sufficiently high SRAM production yield, failure rates for

these replicated circuit components must be extremely small, as explained earlier in this sub-section. In a

 16

word, efficient rare failure rate estimation approaches for individual circuit components when global

variables are fixed are highly desired. In this thesis, we will focus on analyzing rare circuit failure events in

the presence of local mismatches only.

Without loss of generality, suppose that there are D transistors in our interested circuit block and the

M-dimensional vector x includes all the independent local mismatch random variables for these D

transistors

 1 1 2 1 1

1st transistor 2nd transistor th transistor

L L L LL

T

M M M D MD M

D

x x x x x x

x . (2.13)

Here, M = D×ML. Our interested circuit block could have a few hundred transistors, such as SRAM

columns. Hence, M could easily reach a few hundred or even a few thousand, rendering a high-dimensional

variation space. The failure rate Pf of a circuit can be mathematically represented as

 fP f d

 x x (2.14)

where f(x) denotes the probability density function (PDF) for x, and Ω denotes the failure region in the

variation space, i.e., the subset of the variation space where the performance of interest does not meet the

specification. Alternatively, the failure rate in (2.14) can be defined as

 fP I f d

 x x x (2.15)

where I(x) represents the indicator function

1

0
I

x
x

x
. (2.16)

In the following sub-sections, we will introduce several traditional approaches for rare failure rate

estimation used in the CAD community and highlight their limitations before ending this background

section.

2.3 Traditional Approaches

2.3.1 Brute-Force Monte Carlo

 17

The failure rate Pf can be estimated by brute-force Monte Carlo (MC) analysis. The key idea of MC

is to draw N random samples {x(n); n = 1, 2, ···, N} from f(x), and perform transistor-level simulations to

evaluate their performance values. The failure rate Pf is then estimated by [72]

1

1 N
nMC

f

n

P I
N

 x (2.17)

where I(x) is defined in (2.16). The variance of the estimator Pf
MC in (2.17) can be approximated as [72]

 1MC MC

f fMC

f

P P
v

N

 . (2.18)

When MC is applied to estimate Pf that is extremely small (e.g., 108~106), most random samples

drawn from the PDF f(x) do not fall into the failure region Ω. Therefore, a large number of (e.g., 107~109)

samples are needed to accurately estimate Pf. Note that each Monte Carlo sample is created by running an

expensive transistor-level simulation. In other words, 107~109 simulations must be performed in order to

collect 107~109 samples. It, in turn, implies that MC can be extremely expensive for our application of rare

failure rate estimation.

2.3.2 Importance Sampling

To reduce the computational cost, several statistical algorithms based on importance sampling have

been proposed [24]-[26], [31], [33], [35], [37], [39], [41], [44]-[45]. The key idea of importance sampling

is to sample a distorted PDF g(x), instead of the original PDF f(x), so that most random samples fall into

the failure region Ω. Here, g(x) is positive for all x in Ω. In this case, the failure rate can be expressed as

 f

I f
P g d

g

x x
x x

x
. (2.19)

If N random samples {x(n); n = 1, 2, ···, N} are drawn from g(x), the failure rate in (2.19) can be

approximated by

1

1
n n

N
IS

f n
n

f I
P

N g

x x

x
. (2.20)

The variance of the estimator Pf
IS in (2.20) can be approximated as [72]

 18

2

1

1

1

n n
N

IS IS

f fn
n

f I
v P

N N g

x x

x
. (2.21)

When a finite number of samples are available, the results from (2.17) and (2.20) can be

substantially different. If g(x) is properly chosen for importance sampling, Pf
IS in (2.20) can be much more

accurate than Pf
MC in (2.17). Theoretically, the optimal g(x) leading to maximum estimation accuracy is

defined as [72]

 OPT

f

f I
g

P

x x
x . (2.22)

Intuitively, if gOPT(x) is applied, Pf
IS in (2.20) becomes a constant with zero variance. Therefore, the failure

rate can be accurately estimated by Pf
IS with very few samples.

Eq. (2.22) implies that the optimal PDF gOPT(x) is non-zero if and only if the variable x sits in the

failure region. Namely, we should directly sample the failure region to achieve maximum accuracy.

Furthermore, gOPT(x) is proportional to the original PDF f(x). In other words, the entire failure region

should not be sampled uniformly. Instead, we should sample the high-probability failure region that is most

likely to occur.

Applying importance sampling, however, is not trivial in practice. The optimal PDF gOPT(x) in (2.22)

cannot be easily found, since the indicator function I(x) is unknown. Most existing importance sampling

methods attempt to approximate gOPT(x) by applying various heuristics. The key idea is to first search the

high-probability failure region and then a distorted PDF g(x) is constructed to directly draw random

samples from such a high-probability failure region. In the next few sub-sections, we will introduce a

number of state-of-the-art importance sampling based approaches in the CAD community.

2.3.2.1 Mixture Importance Sampling

Mixture importance sampling (MIS) assumes that the vector x in (2.13) follows a multivariate

Normal distribution [26]. Without loss of generality, we further assume that the random variables {xm; m =

1, 2, ···, M} in the vector x are mutually independent and follow standard Normal distributions

 19

2
2

2

1

exp 21
exp

22 2

M
m

M
m

x
f

x
x (2.23)

where ||•||2 denotes the L2-norm of a vector. Any correlated random variables that are jointly Normal can be

transformed to the independent Normal random variables {xm; m = 1, 2, ···, M} by principal component

analysis [72].

Given f(x) in (2.23), MIS applies a two-stage flow to estimate rare failure rates:

Algorithm 2.2 Mixture Importance Sampling

1. Generate N1 random samples from a uniform distribution U(x). Calculate the gravity center of all

failure samples. Denote the gravity center as xc.

2. Construct a distorted distribution g(x)

2

2
exp 2

2

c

c M
g f

x x
x x x (2.24)

where the shifted mean xc is obtained from Stage 1. Generate N2 random samples from g(x) and

estimate failure rate by (2.20).

MIS described in Algorithm 2.2 generates N1 random samples to find the shifted mean for the

distorted Normal distribution g(x), and N2 random samples to perform importance sampling. In total, MIS

runs (N1+N2) transistor-level simulations to estimate failure rates. To clearly understand MIS, let us use a

simple 1-dimensional example to illustrate Algorithm 2.2.

As shown in Figure 2-3 (a), a number of random samples are first drawn from a uniform distribution

U(x). Here, yellow points denote samples that do not belong to the failure region Ω (i.e., the red color

region), and green points denote samples that belong to the failure region Ω. Given all the green points,

MIS calculates their gravity center:

,c i f i

i

w x x (2.25)

where xf,i denotes the i-th green point in Figure 2-3 (a), and wi denotes the weight assigned for xf,i.

Typically, if a green point is closer to the origin 0, it has a relatively larger weight. By defining weights in

this way, it is very likely that the gravity center xc is close to the failure boundary denoted by the red

 20

dashed line in Figure 2-3 and, hence, sits in the high-probability failure region since f(x) follows a standard

Normal distribution.

x

U(x)

xc

0

Ω

x

xc

0

Ω

f(x)
g(x)

(a) (b)

Figure 2-3. A simple 1-dimensional example is used to illustrate the key idea of MIS described in

Algorithm 2.2. Yellow points denote samples that do not belong to the failure region Ω, and green points

denote samples that belong to the failure region Ω. (a) Generate random samples from a uniform

distribution U(x), and calculate the gravity center of all failure samples (i.e., green points). (b) Construct a

shifted Normal distribution g(x), and generate random samples from g(x). Calculate failure rate with these

random samples by using importance sampling equation (2.20).

Having xc, MIS constructs a shifted Normal distribution g(x), as shown in Figure 2-3 (b). Next, MIS

generates a number of random samples from g(x), and estimates failure rate based on these random samples

by using (2.20). If the gravity center xc sits in the high-probability failure region, most samples drawn from

g(x) fall into the high-probability failure region. Therefore, MIS can achieve superior estimation accuracy

compared to MC.

If we have a large number of random variables in the vector x, most samples drawn from the

uniform distribution U(x) in Stage 1 of Algorithm 2.2 are far away from the origin (i.e., x = 0). Due to this

reason, we may not have failure samples that fall into the high-probability failure region given that N1 is

small and, hence, the gravity center could sit in the low-probability failure region in the high-dimensional

variation space. If this occurs, most samples drawn from the shifted Normal distribution g(x) do not fall

into the high-probability failure region and, therefore, MIS could be inefficient. In a word, we may not be

able to efficiently apply MIS in a high-dimensional variation space.

 21

2.3.2.2 Minimum-Norm Importance Sampling

Minimum-norm importance sampling (MNIS) also assumes that the vector x in (2.13) follows a

multivariate Normal distribution defined in (2.23), and applies a two-stage flow to estimate rare failure

rates [37]

Algorithm 2.3 Minimum-Norm Importance Sampling

1. Try to find a failure sample that is closest to the origin (i.e., x = 0) with N1 random samples. Denote

this sample as xc.

2. Construct a distorted distribution g(x) in (2.24) where the shifted mean xc is obtained from Stage 1.

Generate N2 random samples from g(x) and estimate failure rate by (2.20).

To clearly understand MINS described in Algorithm 2.3, let us consider a simple 1-dimensional

example. As shown in Figure 2-4 (a), MNIS tries to find the failure sample that is closest to the origin x = 0

at Stage 1 of Algorithm 2.3. Note that it is extremely difficult, if not impossible, to find the minimum-norm

failure point. MNIS tries to find a failure point that is very close to the minimum-norm failure point by

using a searching algorithm. Denote such approximated minimum-norm failure point as xc. Next, MNIS

constructs a shifted Normal distribution g(x) with xc, and performs importance sampling with g(x) as

shown in Figure 2-4 (b).

Both MNIS described in Algorithm 2.3 and MIS described in Algorithm 2.2 apply a two-stage flow

to estimate rare failure rates. In the first stage, they determine a failure sample xc. Next, they construct a

shifted Normal distribution g(x) with xc in the second stage and perform importance sampling with the

shifted Normal distribution g(x). The key difference between MNIS and MIS is how they determine xc in

the first stage. MIS considers the gravity center of a bunch of failure samples drawn from a uniform

distribution as xc, while MNIS considers an approximated minimum-norm failure sample as xc. There are

two reasons explaining why MNIS chooses the approximated minimum-norm failure sample as the shifted

mean: (1) high-probability failure region is closer to the origin than the low-probability failure region under

the assumption that f(x) is defined in (2.23), and (2) we should sample the high-probability failure region in

order to achieve maximum accuracy when applying importance sampling technique. Therefore, by

 22

selecting the minimum-norm failure sample as the shifted mean, most samples drawn from the shifted

Normal distribution are likely to fall into the high-probability failure region.

f(x)

x

xc

0

Ω

x

xc

0

Ω

f(x)
g(x)

(a) (b)

Figure 2-4. A simple 1-dimensional example is used to illustrate the key idea of MNIS described in

Algorithm 2.3. Yellow points denote samples that do not belong to the failure region Ω, and green points

denote samples that belong to the failure region Ω. (a) Find a failure sample xc that has the minimum L2-

norm from the origin x = 0. (b) Construct a shifted Normal distribution g(x) with xc, and generate random

samples from g(x). Calculate failure rate with these random samples by using importance sampling

equation (2.20).

Finding the minimum-norm failure sample is not trivial, especially if we have a large number of

random variables in the vector x. In other words, we cannot easily find the high-probability failure region in

a high-dimensional variation space given that N1 is small. Such issue is most pronounced, when the failure

region of interest has a complicated (e.g., non-convex or even discontinuous) shape. To the best of our

knowledge, there is no existing algorithm that can be generally applied to efficiently search a high-

dimensional variation space. In a word, MNIS suffers from the dimensionality curse.

2.3.2.3 Gibbs Sampling Based Importance Sampling

Gibbs sampling based importance sampling (Gibbs) approach [45] also considers a Normal

distribution as the distorted distribution. But unlike MIS and MNIS that only the mean of the distorted

Normal distribution is estimated, both the mean and variance of the distorted Normal distribution are

estimated by Gibbs. To this end, Gibbs applies a two-stage flow as follows [45]

 23

Algorithm 2.4 Gibbs Sampling Based Importance Sampling

1. Generate a number of Gibbs samples from gOPT(x) in (2.22) by Gibbs sampling technique [72].

2. Compute the mean μ and variance Σ of these Gibbs samples, and construct a Normal distribution

g(x)

 1

0.5

1
exp

22

T

M
g

x μ x μ
x . (2.26)

Generate N2 random samples from g(x) and estimate failure rate by (2.20).

To clearly understand Gibbs, let us consider a simple 1-dimensional example. Note that Gibbs

assumes that the vector x in (2.13) follows a multivariate Normal distribution defined in (2.23). For this

simple 1-dimensional example, f(x) is plotted in Figure 2-5 (a). According to (2.22), the optimal distorted

distribution gOPT(x) is plotted in Figure 2-5 (b). Since the failure region Ω is unknown in advance, we do

not exactly know gOPT(x). Hence, we cannot directly draw random samples from gOPT(x). Gibbs applies

Gibbs sampling technique [72] to generate a number of Gibbs samples by sampling a sequence of 1-

dimensional conditional PDFs. Theoretically these Gibbs samples eventually follow the desired distribution

gOPT(x). Details about how to generate Gibbs samples are omitted here, but can be found in the literature

[45]. Based on these Gibbs samples, we compute their mean μ and variance Σ. Next, we approximate

gOPT(x) by a Normal distribution g(x) in (2.26) as shown in Figure 2-5 (c), and perform importance

sampling with g(x) as shown in Figure 2-5 (d).

Note that Gibbs varies only one variable between two adjacent Gibbs samples. Hence, a large

number of Gibbs samples are needed in a high-dimensional variation space. To create each Gibbs sample,

Gibbs needs to construct a 1-dimensional conditional PDF by running binary search with a number of (e.g.,

6~7) transistor-level simulations. Alternatively speaking, Gibbs requires 6~7 simulations to generate each

Gibbs sample. Hence, we need to run a large number of transistor-level simulations to create enough Gibbs

samples at Stage 1 of Algorithm 2.4 if we have many random variables in the vector x. From this point of

view, Gibbs cannot be efficiently applied in a high-dimensional variation space.

 24

x
0

Ω

f(x)
g(x)

(d)

f(x)

x
0

Ω

(a)

gOPT(x)

x
0

Ω

(b)

g(x)

x
0

Ω

(c)

Figure 2-5. A simple 1-dimensional example is used to illustrate the key idea of Gibbs described in

Algorithm 2.4. Yellow points denote samples that do not belong to the failure region Ω, and green points

denote samples that belong to the failure region Ω. (a) f(x) follows a standard Normal distribution. (b)

Generate a number of Gibbs samples from the optimal distorted distribution gOPT(x). (c) Construct a

Normal distribution g(x) based on these Gibbs samples. (d) Generate random samples from g(x), and

calculate failure rate with these random samples by using importance sampling equation (2.20).

2.3.2.4 Sequential Monte Carlo

Sequential Monte Carlo (SMC) approach has been widely used in many areas [46]-[52], and was

adopted to estimate rare failure rates in the CAD community by [39]. The key idea of SMC is to explore the

failure region by a set of particles (i.e., samples), and estimate failure rates bases on these particles by using

importance sampling technique. The simplified SMC flow is described as follows [39]

Algorithm 2.5 Sequential Monte Carlo

 25

1. Start with a set of (say, N) particles {x1
(n); n = 1, 2, ···, N}. Set i = 1.

2. Compute the weight w[xi
(n)] for each particle xi

(n) where n 1, 2, ···, N

1,2, ,
n n n

i i iw f I n N

x x x (2.27)

where f(x) denotes the PDF for x and I(x) is defined in (2.16).

3. Resample {xi
(n); n = 1, 2, ···, N} based on {w[xi

(n)]; n = 1, 2, ···, N}. If a particle has a larger weight,

it will have more repetitions after resampling. Denote {zi
(n); n = 1, 2, ···, N} as resampled particles.

4. Generate a new particle xi+1
(n) from zi

(n) by sampling a multivariate Normal distribution

1 , 1,2, ,
n n

i iN n N

x z (2.28)

where the covariance matrix Σ of the Normal distribution is pre-defined by the user.

5. Compute g[xi+1
(n)] by

1 1

1

1
, 1,2, ,

N
n n k

i i i

k

g N n N
N

 x x z . (2.29)

Estimate failure rate by importance sampling equation

1 1

1
1

1
n n

N
i iSMC

i n
n

i

f I
P

N g

x x

x
. (2.30)

If the variation of {Pj
SMC; j = 1, 2, ···, i} is small, the algorithm is complete. Otherwise, set i = i + 1,

and go to Step 2.

SMC has successfully estimated failure rates for circuits which have a small number of random

variables [39]. However, SMC described in Algorithm 2.5 suffers from the dimensionality curse [48]. Once

we have a large number of random variables, the weights between different particles would differ a lot,

resulting in particle collapse after resampling at Step 3. In other words, we end up with a single or very few

particles after resampling and, hence, cannot efficiently explore the variation space.

The fundamental reason causing particle collapse is that particles are sampled from a high-

dimensional distribution as shown in (2.28). To address the particle collapse issue, we can vary only one

random variable when creating a new particle. However, since we do not know which random variable is

more important for failure rate estimation in advance, we need to iterate through all the random variables.

For each random variable, assume that we generate N particles. In total, we need to generate N×M particles

 26

during each iteration. Hence, this idea does not scale well once we have a large number of random

variables.

2.3.3 Statistical Blockade

Statistical blockade (SB) is another approach to estimating rare failure events in the CAD

community [34]. SB is a model-based approach, and its simplified algorithm flow is described as follows:

Algorithm 2.6 Statistical Blockade

1. Generate a number of random samples {xn; n = 1, 2, ···, N1}, and perform transistor-level

simulations to evaluate their performance values. Denote performance values as {y(xn); n = 1, 2, ···,

N1}. Here, y(xn) denotes the performance value for xn.

2. Build a classifier based on the data set {xn, y(xn); n = 1, 2, ···, N1}. The classifier is used to tell

whether a sample is likely to fall into the failure region.

3. Generate a large number of random samples from the natural PDF of x (i.e., f(x)). Evaluate these

samples by the classifier learned at Step 2 of Algorithm 2.6. For samples that are identified as failure

samples or very close to the failure boundary based on the classifier, SB further performs transistor-

level simulations to evaluate these samples. Denote these samples as {xn
MC; n = 1, 2, ···, N2}, and

their performance values evaluated by transistor-level simulations as {y(xn
MC); n = 1, 2, ···, N2}.

4. Construct the tail distribution of our performance of interest with {y(xn
MC); n = 1, 2, ···, N2}.

Estimate the rare failure rate from the constructed tail distribution.

To clearly understand SB described in Algorithm 2.6, let us consider a simple 2-dimensional

example. SB starts with a number of random samples and evaluates their performance values by running

transistor-level simulations, as shown in Figure 2-6 (a). Here, yellow points denote samples that do not

belong to the failure region Ω, and green points denote samples that belong to the failure region Ω.

 27

x10

x2

Ω

(a)

x10

x2

Ω

classifier

(b)

x10

x2

(c)

x10

x2

(d)

(f)

y0

Ω

f(y)

x10

x2

Ω

(e)

Figure 2-6. A simple 2-dimensional example is used to illustrate the key idea of SB described in Algorithm

2.6. Yellow points denote samples that do not belong to the failure region Ω, and green points denote

samples that belong to the failure region Ω. Grey points denote random samples that are drawn from f(x),

and their performance values are unknown. (a) Generate a number of random samples and run transistor-

 28

level simulations to evaluate their performance values. (b) Build a classifier based on random samples

created in (a). (c) Generate a large number of random samples from the natural PDF f(x). (d) For all the

grey samples, identify samples that fall into the failure region Ω or are close to the failure boundary based

on the classifier. These identified grey samples are circled by a dashed blue ellipsoid in this simple 2-

dimensional example. (e) Evaluate these identified grey samples. (f) Learn the tail distribution of our

performance of interest. Here, y is our performance of interest, and f(y) denotes the PDF of y. Estimate rare

failure rates based on the constructed tail distribution.

Based on these random samples, SB builds a classifier. In Figure 2-6 (b), we use the blue line to

denote this classifier. Next, SB draws a large number of random samples from the original natural PDF

f(x). Here, we use grey points to denote these random samples drawn from f(x), as shown in Figure 2-6 (c).

Note that these grey points are not evaluated yet and, hence, their performance values are unknown. For all

these grey points, identify samples that fall into the failure region Ω or are close to the failure boundary

according to the classifier. In Figure 2-6 (d), these identified samples are circled by a dashed blue ellipsoid.

Note that evaluating each grey point by the classifier is much faster than evaluating the same grey point by

a transistor-level simulation. Therefore, evaluating all the grey points by the classifier does not consume a

lot of time, and we can afford it. For all the identified grey points, we further run transistor-level

simulations to evaluate their performance values, as shown in Figure 2-6 (e). If the number of identified

grey points is small, simulation cost for evaluating these identified grey points is not large. Finally, SB

learns the tail distribution of f(y) based on those identified grey points and their simulation results, as

shown in Figure 2-6 (f). Here, y is our performance of interest, and f(y) denotes the distribution of y. Once

the tail distribution of f(y) is learned, SB calculates the rare failure rate by integrating the tail distribution.

SB has been successfully applied to estimate rare failure rates in a low-dimensional space. However,

if we have a large number of random variables, SB can be pretty inefficient. The efficiency achieved by SB

strongly depends on the accuracy of the classifier. As we know, constructing an accurate classifier in a

high-dimensional space is generally challenging, especially when we cannot afford a large number of

training samples (i.e., N1 cannot be too large). If the classifier is not sufficiently accurate (e.g., the classifier

boundary is far away from the real failure boundary), a lot of grey points could be identified at Step 3 of

Algorithm 2.6, making SB extremely inefficient.

 29

2.3.4 Integration-Based Approaches

The key idea of integration-based approaches [28]-[29], [38], [42] is to detect the failure boundary

in the variation space, and then calculate the failure rate by integrating the PDF f(x) over the failure region.

The failure boundary is typically described by a number of random samples. The efficiency of these

deterministic approaches is mainly determined by two things: (1) the shape of the failure boundary, and (2)

the dimensionality of the variation space. If the failure boundary is simple to describe (e.g., linear boundary)

or the dimensionality is low, we can achieve satisfactory accuracy and efficiency by applying these

integration-based approaches. However, if the shape of the failure boundary is complicated and the

dimensionality of the variation space is high, we need a large number of random samples to accurately

describe the failure boundary. Note that each random sample is obtained by applying some search

algorithms (e.g., binary search). Hence, obtaining each sample requires a few transistor-level simulations.

As a result, the total number of simulations required by these integration-based approaches could quickly

become intractable in a high-dimensional space especially if the failure region is complicated.

2.3.5 Limitations of Traditional Approaches

As discussed in Section 2.3.1-2.3.4, traditional approaches have their own application scenarios and

also limitations. Selecting an appropriate estimation approach is nontrivial, and is determined by many

factors:

1) The number of simulations that we can afford: this is determined by the number of simulator

licenses that we have, our computing resources, simulation cost/time per simulation, project

timeline, etc. The number of simulator licenses and computing resources determine how many

simulations that we can perform simultaneously. Simulation time per simulation and project timeline

determine how many simulations that we can run per machine. If the number of simulations required

by the candidate approach is more than the maximum number of simulations that we can afford, we

should not choose this candidate.

2) The number of simulations that are required: this is determined by the real failure rate that we are

 30

interested in, the required estimation accuracy, the selected approach, circuit dimensionality, etc. If

we select brute-force Monte Carlo approach and the real failure rate is Pf, the relative error δ can be

written as

 11 1
MC MCMC

f ff

f f f

P Pv

P P N N P

 (2.31)

where Pf
MC and vf

MC are defined in (2.17) and (2.18) respectively. From (2.31), we can observe that

to achieve the required relative error δ, the required number of simulations N is proportional to 1/Pf.

If we choose statistical blockade, the required number of simulations is mainly determined by the

number of training samples used for building the classifier and the number of identified random

samples used for building the tail distribution, as discussed in Section 2.3.3. Both the number of

training samples and the number of identified random samples are affected by dimensionality.

3) Dimensionality: this is determined by the circuit block that we are interested in and process design

kit. If the circuit has only a few transistors and only a small number of local mismatch random

variables are used to model local mismatches, the dimensionality of the variation space is low.

Otherwise, we need to handle a high-dimensional variation space.

Considering the aforementioned factors, typical application scenarios for traditional approaches are

described as follows:

 Brute-force Monte Carlo: (1) the target failure rate is large, and (2) the target failure rate is small

and we can afford a large number of simulations. The second scenario typically occurs at the design

sign-off stage.

 Importance Sampling: the target failure rate is small, the dimensionality is low and we want to

spend only a small number of (e.g., a few thousand) simulations for failure rate estimation.

 Statistical Blockade: the target failure rate is small, the dimensionality is low and we want to spend

only a small number of (e.g., a few thousand) simulations for failure rate estimation.

 Integration-based Approaches: the target failure rate is small, the dimensionality is low and we

want to spend only a small number of (e.g., a few thousand) simulations for failure rate estimation.

As discussed in Section 2.2, we need efficient approaches to estimate rare failure events in a high-

dimensional variation space. Unfortunately, such application scenario cannot be handled by most of these

 31

traditional approaches [24]-[45]. Therefore, there is a strong need of developing a new CAD tool to

accurately capture the rare failure events in a high-dimensional variation space with low computational

cost. To this end, we propose three novel approaches in this thesis. In the next three chapters, we will

describe our proposed approaches in detail.

 32

Chapter 3 Subset Simulation for Continuous Performance Metrics

Subset Simulation for Continuous Performance

Metrics

To accurately capture the rare failure events in a high-dimensional variation space, a novel subset

simulation (SUS) technique is proposed in this chapter. The key idea of SUS, borrowed from other

communities [53]-[59], is to express the rare failure probability as the product of several large conditional

probabilities by introducing a number of intermediate failure events. The original problem of rare failure

probability estimation is then cast to an equivalent problem of estimating a sequence of conditional

probabilities. Since these conditional probabilities are large, they are relatively easier to estimate than the

original rare failure rate.

When implementing the proposed SUS method, it is difficult, if not impossible, to directly draw

random samples from the conditional PDFs and estimate the conditional probabilities, since these

conditional PDFs are unknown in advance. To address this issue, a modified Metropolis (MM) algorithm is

adopted from the literature [54] to generate random samples by constructing a number of Markov chains.

The conditional probabilities of interest are then estimated from these random samples. Unlike most

traditional techniques [24]-[45] that suffer from the dimensionality issue, SUS can be efficiently applied to

high-dimensional problems, which will be demonstrated by the experimental results in Section 3.5.

It is important to emphasize that though the key idea of SUS was first proposed in other

communities [53]-[59], how to estimate the confidence interval of SUS remains an open question. Due to

this reason, the SUS method has not been successfully applied to many practical applications in the

literature. In this chapter, we propose a statistical methodology to accurately estimate the confidence

interval of SUS based on the theory of Markov chain Monte Carlo simulation, thereby making our

proposed SUS method of practical utility.

 33

Without loss of generality, we assume that the performance function y(x) is continuous and F stands

for the failure region in the performance space (i.e., the subset of the performance space where the

performance of interest y does not meet the specification)

 { }F y x x . (3.1)

Given (3.1), the rare failure rate Pf defined in (2.14) can be re-written as

 PrfP y F x (3.2)

where Pr(•) denotes the probability that an event occurs. Define K intermediate failure events {Fk; k = 1,

2, ···, K} as the subsets of the performance space

 1 2 1K KF F F F F . (3.3)

Based on (3.3), we can express Pf in (3.2) as

 1Pr Pr Pr ,f K K KP y F y F y F y F x x x x . (3.4)

In (3.4), if y(x) belongs to FK, it will undoubtedly belong to FK1 because FK is a subset of FK1 as shown in

(3.3). Eq. (3.4) can be re-written as [71]

 1 1Pr Prf K K KP y F y F y F

 x x x . (3.5)

Here, the conditional probability Pr[y(x) FK | y(x) FK1] represents the probability of y(x) FK given

y(x) FK1. Similarly, we can express Pr[y(x) FK1] as

 1 1 2 2Pr Pr PrK K K Ky F y F y F y F

 x x x x . (3.6)

From (3.3), (3.5) and (3.6), we can easily derive

 1 1

2 1

Pr Pr
K K

f k k k

k k

P y F y F y F P

 x x x (3.7)

where

 1 1PrP y F x (3.8)

 1Pr 2,3, ,k k kP y F y F k K

 x x . (3.9)

If the failure events {Fk; k = 1, 2, ···, K} are properly chosen, all the probabilities {Pk; k = 1, 2, ···, K}

are large and can be efficiently estimated. Once {Pk; k = 1, 2, ···, K} are known, the rare failure probability

Pf can be easily calculated by (3.7). In what follows, we will first use a simple 2-dimensional example to

 34

intuitively illustrate the basic flow of SUS in Section 3.1, and then further generalize SUS to high

dimension in Section 3.2.

3.1 A Simple 2-D Example

Figure 3-1 shows a simple 2-dimensional example with two random variables x = [x1 x2] to model

the device-level process variations. In Figure 3-1, the failure regions Ω1 and Ω2 denote the subsets of the

variation space where the performance of interest y(x) belongs to F1 and F2 respectively, i.e., Ω1 = {x | y(x)

 F1} and Ω2 = {x | y(x) F2}. Note that Ω1 and Ω2 are depicted for illustration purposes in this example.

In practice, we do not need to explicitly know Ω1 and Ω2. Instead, we can run a transistor-level simulation

to determine whether a sample x belongs to Ω1 and/or Ω2.

0 x1

x2

Ω1

(a)

x1

x2
Ω1

0

Ω2

(b)

Figure 3-1. A 2-dimensional example is used to illustrate the procedure of probability estimation via

multiple phases by using SUS: (a) generating MC samples and estimating P1 in the 1st phase, and (b)

generating MCMC samples and estimating P2 in the 2nd phase.

Our objective is to estimate the probabilities {Pk; k = 1, 2, ···, K} via multiple phases. Starting from

the 1st phase, we simply draw L1 independent random samples {x(1, l); l = 1, 2, ···, L1} from the PDF f(x) to

estimate P1. Here, the superscript “1” of the symbol x(1, l) refers to the 1st phase. Among these L1 samples,

we identify a subset of samples {xF
(1, t); t = 1, 2, ···, T1} that fall into Ω1, where T1 denotes the total number

of the samples in this subset. As shown in Figure 3-1 (a), the red points represent the samples that belong to

 35

Ω1 and the green points represent the samples that are out of Ω1. In this case, P1 can be estimated as

1

1

1, 1

1

11 1

1
L

lSUS

F

l

T
P I y

L L

 x (3.10)

where P1
SUS denotes the estimated value of P1, and IF1[y(x)] represents the indicator function

 1

1

1

1

0
F

y F
I y

y F

x
x

x
. (3.11)

If P1 is large, it can be accurately estimated by the aforementioned brute-force Monte Carlo method with a

small number of random samples (e.g., L1 is around 102~103).

Next, in the 2nd phase, we need to estimate the conditional probability P2 = Pr[y(x) F2 | y(x) F1]

which can be re-written as Pr(x Ω2 | x Ω1). Towards this goal, one simple idea is to directly draw

random samples from the conditional PDF f(x | x Ω1) and then compute the mean of the indicator

function IF2[y(x)]

 2

2

2

1

0
F

y F
I y

y F

x
x

x
. (3.12)

This approach, however, is practically infeasible since f(x | x Ω1) is unknown in advance. To

address this challenge, we apply a modified Metropolis (MM) algorithm [54] to generate a set of random

samples that follow the conditional PDF f(x | x Ω1).

MM is a Markov chain Monte Carlo (MCMC) technique [72]. Starting from each of the samples

{xF
(1, t); t = 1, 2, ···, T1} that fall into Ω1 in the 1st phase, MM generates a sequence of samples that form a

Markov chain. In other words, there are T1 independently generated Markov chains in total and xF
(1, t) is the

1st sample of the t-th Markov chain. To clearly explain the MM algorithm, we define the symbol x(2, t, 1) =

xF
(1, t), where t {1, 2, ···, T1}. The superscripts “2” and “1” of x(2, t, 1) refer to the 2nd phase and the 1st

sample of the Markov chain respectively.

For our 2-dimensional example, we start from x(2, 1, 1) = [x1
(2, 1, 1) x2

(2, 1, 1)] to form the 1st Markov

chain. To generate the 2nd sample x(2, 1, 2) from x(2, 1, 1), we first randomly sample a new value x1
NEW from a

1-dimensional transition PDF q1[x1
NEW | x1

(2, 1, 1)] that must satisfy the following condition [54]

 2,1,1 2,1,1

1 1 1 1 1 1

NEW NEWq x x q x x

. (3.13)

There are many possible ways to define q1[x1
NEW | x1

(2, 1, 1)] in (3.13). For example, a 1-dimensional Normal

 36

PDF can be used

2

2,1,1

1 12,1,1

1 1 1 2

11

1
exp

22

NEW

NEW
x x

q x x

 (3.14)

where x1
(2, 1, 1) and σ1 are the mean and standard deviation of the distribution respectively. Here, σ1 is a

parameter that should be empirically chosen by following the heuristics in Section 3.2.

Next, we compute the ratio

1 1

2,1,1

1 1

NEWf x
r

f x

 (3.15)

where f1(x1) is the original PDF of the random variable x1. Since all the random variables defined in (2.13)

are independent, f(x) can be written as

1

M

m m

m

f f x

x (3.16)

where fm(xm) denotes the PDF of xm. A random sample u is then drawn from a 1-dimensional uniform

distribution with the following PDF

1 0 1

0 Otherwise

u
U u

 (3.17)

and the value of x1
(2, 1, 2) is set as

12,1,2

1 2,1,1

1

min 1,

min 1,

NEWx u r
x

x u r

. (3.18)

A similar procedure is applied to generate x2
(2, 1, 2). Once x1

(2, 1, 2) and x2
(2, 1, 2) are determined, we form a

candidate xNEW = [x1
(2, 1, 2) x2

(2, 1, 2)] and use it to create the sample x(2, 1, 2)

12,1,2

2,1,1

1

NEW NEW

NEW

x x
x

x x
. (3.19)

By repeating the aforementioned steps, we can create other samples to complete the Markov chain

{x(2, 1, l); l = 1, 2, ···, L2}, where L2 denotes the length of the Markov chain in the 2nd phase. In addition, all

other Markov chains can be similarly formed. Since there are T1 Markov chains and each Markov chain

contains L2 samples, the total number of the MCMC samples is T1·L2 for the 2nd phase. Figure 3-1 (b)

shows the sampling results for our 2-dimensional example. In Figure 3-1 (b), the red points represent the

 37

initial samples {x(2, t, 1); t = 1, 2, ···, T1} of the Markov chains and they are obtained from the 1st phase. The

yellow points represent the MCMC samples created via the MM algorithm in the 2nd phase.

It has been proved in [54] that if the initial sample x(2, t, 1) follows the distribution f(x | x Ω1), all

the samples {x(2, t, l); l = 1, 2, ···, L2} in the Markov chain follow f(x | x Ω1). In our 2-dimensional

example, since the initial samples {x(2, t, 1); t = 1, 2, ···, T1} are randomly drawn from f(x) and belong to Ω1,

they follow the distribution f(x | x Ω1). Hence, all the MCMC samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···,

L2} in Figure 3-1 (b) follow f(x | x Ω1). In other words, we have successfully generated a number of

random samples that follow our desired distribution for the 2nd phase.

Among all the MCMC samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2}, we further identify a subset

of samples {xF
(2, t); t = 1, 2, ···, T2} that fall into Ω2, where T2 denotes the total number of the samples in

this subset. The conditional probability P2 can be estimated as

1 2

2

2, , 2

2

1 11 2 1 2

1
T L

t lSUS

F

t l

T
P I y

T L T L

 x (3.20)

where P2
SUS denotes the estimated value of P2, and IF2[y(x)] is the indicator function defined in (3.12).

By following the aforementioned idea, we can estimate all the probabilities {Pk; k = 1, 2, ···, K}.

Namely, for the k-th phase where k > 2, we need to estimate the conditional probability Pk = Pr[y(x) Fk |

y(x) Fk1] by generating MCMC samples via the MM algorithm. Once the values of {Pk; k = 1, 2, ···, K}

are estimated, the rare failure rate Pf is calculated by

1

K
SUS SUS

f k

k

P P

 (3.21)

where Pf
SUS represents the estimated value of Pf by using SUS.

3.2 High-Dimensional Case

If we have more than two random variables, estimating the probabilities {Pk; k = 1, 2, ···, K} can be

pursued in a similar way. Algorithm 3.1 summarizes the major steps of the proposed SUS method for high

dimension. It consists of K phases. During the 1st phase, we randomly sample the PDF f(x) to estimate P1.

Next, we apply MM (i.e., Step 7~15 in Algorithm 3.1) to estimate the conditional probability Pk during the

k-th phase, where k {2, 3, ···, K}. When estimating Pk, we construct Tk1 Markov chains. Each Markov

 38

chain contains Lk MCMC samples {x(k, t, l); l = 1, 2, ···, Lk} that are created by the MM algorithm. Hence,

there are Tk1·Lk samples in total, and the probability Pk is estimated by these samples. Finally, the rare

failure rate Pf is estimated from {Pk; k = 1, 2, ···, K} by using (3.21).

Algorithm 3.1 Subset Simulation (SUS)

1. Start from a set of pre-defined failure events {Fk; k = 1, 2, ···, K}.

2. Generate L1 random samples {x(1, l); l = 1, 2, ···, L1} from f(x).

3. From the random samples {x(1, l); l = 1, 2, ···, L1}, identify the samples for which y[x(1, l)] F1. Label

these samples as {xF
(1, t); t = 1, 2, ···, T1}, where T1 represents the total number of samples satisfying

the condition. Calculate P1
SUS by (3.10).

4. Initialize k = 2.

5. Set x(k, t, 1) = xF
(k−1, t), where t = 1, 2, ···, Tk−1.

6. For t = 1, 2, ···, Tk−1

7. For l = 2, 3, ···, Lk

8. For m = 1, 2, ···, M

9. Generate a random value xm
NEW from the 1-D transition PDF qm[xm

NEW | xm
(k, t, l−1)]. For

instance, the 1-D transition PDF can be a Normal distribution

2

, , 1

, , 1

2

1
exp

22

k t lNEW

m mk t lNEW

m m m

mm

x x
q x x

. (3.22)

10. Calculate the ratio

 , , 1

NEW

m m

k t l

m m

f x
r

f x

. (3.23)

11. Draw a random value u from the uniform distribution in (3.17) and set the value of xm
(k, t, l)

as

, ,

, , 1

min 1,

min 1,

NEW

mk t l

m k t l

m

x u r
x

x u r

. (3.24)

12. End For

13. Form a candidate xNEW = [x1
(k, t, l) x2

(k, t, l) ··· xM
(k, t, l)], and run a transistor-level simulation to

 39

evaluate y(xNEW).

14. Set the value of x(k, t, l) as

1, ,

, , 1

1

NEW NEW

kk t l

k t l NEW

k

y F

y F

x x
x

x x
. (3.25)

15. End for

16. End For

17. From the Tk−1·Lk MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l = 1, 2, ···, Lk}, identify the samples for

which y[x(k, t, l)] Fk. Label these samples as {xF
(k, t); t = 1, 2, ···, Tk}, where Tk represents the total

number of samples satisfying the condition.

18. Calculate Pk
SUS by

1

SUS k

k

k k

T
P

T L

. (3.26)

19. If k < K, set k = k + 1 and go to Step 5. Otherwise, go to Step 20.

20. Calculate Pf
SUS by (3.21).

21.

There are several important clarifications that should be made for Algorithm 3.1. First, sampling the

transition PDF qm[xm
NEW | xm

(k, t, l−1)] in (3.22) at Step 9 or the uniform PDF U(u) in (3.17) at Step 11

involves no transistor-level simulation and, hence, its computational cost is almost negligible. The

computational cost of Algorithm 3.1 is dominated by the transistor-level simulation to evaluate y(xNEW) at

Step 13.

Second, MM successively samples a set of 1-D transition PDFs {qm[xm
NEW | xm

(k, t, l−1)]; m = 1, 2, ···,

M}, instead of any high-dimensional joint PDF, to generate a new MCMC sample. For this reason, MM

does not suffer from any dimensionality issue and can efficiently handle high-dimensional problems in

practice. More detailed discussions about the efficiency of MM for high dimension can be found in [54].

Finally, the 1-D transition PDFs {qm[xm
NEW | xm

(k, t, l−1)]; m = 1, 2, ···, M} play an important role in

sampling the failure region Ωk−1 at the k-th phase, where Ωk−1 denotes the subset of the variation space {x |

y(x) Fk−1}. For illustration purposes, we consider the 1-D transition PDF in (3.22) as an example. For this

Normal distribution, if its standard deviation σm is too large, it is likely that the new sample xm
NEW is far

 40

away from the previous sample xm
(k, t, l−1). In other words, we attempt to “jump” over a long distance via the

Markov chain. However, the new sample xNEW may eventually fall out of the failure region Ωk−1 (i.e.,

y(xNEW) Fk−1) and get rejected, as shown in (3.25).

On the other hand, if σm is too small, it is likely that the new sample xm
NEW is extremely close to the

previous sample xm
(k, t, l−1). In this case, it may require many MCMC samples to fully explore the failure

region Ωk−1. The aforementioned discussions imply an important fact that the value of σm must be

appropriately chosen in order to make Algorithm 3.1 efficient. As a heuristic approach [54], we simply set

σm equal to the standard deviation of the original PDF fm(xm) shown in (3.16). Intuitively, if the standard

deviation of fm(xm) is large, the random variable xm can vary over a large range. In this case, we want to set

σm to a relatively large value so that the resulting Markov chain can quickly explore a large region of the

variation space.

In the following sub-sections, we further discuss several important implementation issues for SUS,

including (i) subset selection, and (ii) confidence interval estimation.

3.3 Subset Selection

In Algorithm 3.1, we assume that the failure events {Fk; k = 1, 2, ···, K} are pre-defined. In practice,

however, we have to carefully define {Fk; k = 1, 2, ···, K} so that our proposed SUS method is

computationally efficient. Otherwise, if {Fk; k = 1, 2, ···, K} are not appropriately chosen, {Pk; k = 1, 2, ···,

K} can be extremely small and, hence, cannot be efficiently estimated by a small number of samples.

Without loss of generality, let us assume that we define K subsets {Fk; k = 1, 2, ···, K} before

running SUS, and generate Nk samples when estimating Pk where k {1, 2, ···, K}. Our objective is to

minimize the estimation error given the pre-defined total number of samples N

 41

,
1,2, ,

1

1

min var

. .

0 1,2, ,

1 0 1,2, ,

k k

SUS

f
N P

k K

K

f k

k

K

k

k

k

k

P

P P

N Ns t

N k K

P k K

 (3.27)

where Pk is defined in (3.8) and (3.9), Pf
SUS is defined in (3.21), and var(Pf

SUS) denotes the variance of our

proposed SUS estimator. As will be seen in Section 3.4, deriving the analytical expression for var(Pf
SUS) is

extremely difficult, if not impossible, which makes the optimization problem in (3.27) hard to solve. To

make the optimization problem in (3.27) solvable, we assume that

1) All the MCMC samples used for calculating Pk
SUS in (3.26) are statistically independent where k

{2, 3, ···, K}.

2) {Pk
SUS; k = 1, 2, ···, K} are statistically independent.

Given these two assumptions, the optimization problem in (3.27) will be solvable, as will be seen later.

Note that the solution that we get for the optimization problem in (3.27) is not the real optimal solution due

to these two assumptions that we make. However, such solution can provide us with useful guidance on

how to select subsets. In what follows, we will discuss how to solve the optimization problem in (3.27)

given these two assumptions.

Since Pf
SUS is equal to the multiplication of {Pk

SUS; k = 1, 2, ···, K}, we should carefully study the

statistical property of {Pk
SUS; k = 1, 2, ···, K} in order to derive the variance for Pf

SUS. Given the first

assumption that we make, the statistical distributions for {Pk
SUS; k = 1, 2, ···, K} can be written as [71]

 1
~ , 1,2, ,

k kSUS

k k

k

P P
P N P k K

N

. (3.28)

To further derive the distribution for Pf
SUS in (3.21) based on (3.28), we take logarithm on both sides

of (3.21) because it is much easier to handle summation than multiplication

1

log log
K

SUS SUS

f k

k

P P

 . (3.29)

To derive the distribution for {log(Pk
SUS); k = 1, 2, ···, K}, we approximate the nonlinear function log() by

the first-order Taylor expansion around the mean value Pk of the random variable Pk
SUS

 42

 log log

SUS

SUS k k

k k

k

P P
P P

P

 . (3.30)

According to (3.28) and (3.30), log(Pk
SUS) follows a Normal distribution

1
log ~ log , 1,2, ,SUS k

k k

k k

P
P N P k K

N P

. (3.31)

Given the second assumption that {Pk
SUS; k = 1, 2, ···, K} are statistically independent, {log(Pk

SUS); k

= 1, 2, ···, K} are also statistically independent. Since log(Pf
SUS) is the summation of {log(Pk

SUS); k = 1,

2, ···, K}, var[log(Pf
SUS)] can be expressed as

1 1

1
VAR log VAR log

K K
SUS SUS k

f k

k k k k

P
P P

N P

 . (3.32)

Instead of minimizing var(Pf
SUS), we can minimize var[log(Pf

SUS)]. Hence, the optimization problem in

(3.27) becomes

,
11,2, ,

1

1

1
min

. .

0 1,2, ,

1 0 1,2, ,

k k

K
k

N P
k k kk K

K

f k

k

K

k

k

k

k

P
obj

N P

P P

N Ns t

N k K

P k K

. (3.33)

The constrained optimization problem in (3.33) can be re-written as:

1 1

,
1 1 1 1 1 11,2, , 1

1 1 1 1 1
min 1 1 1

0 1,2, , 1
. .

1 0 1,2, , 1

k k

K

N P
K K K fk K

k

k

P P
obj

N P N P N N N P

N k K
s t

P k K

. (3.34)

Taking the first-order derivative of the objective function obj in (3.34) with respect to P1 yields

2 1

2

1 1 11 1

1 1 K

K f

P Pobj

P N N N PN P

. (3.35)

Set the derivative in (3.35) to 0, and we have

1 1

1

0 K K

obj
N P N P

P

. (3.36)

 43

Similarly, we can get

 1 1 2 2 K KN P N P N P C (3.37)

where C is introduced to simplify the notation. Based on (3.37), we have

1,2, ,k

k

C
N k K

P
 . (3.38)

Given (3.38) and the second constraint in (3.33), C can be expressed as

1

1
K

k

k

N
C

P

.

(3.39)

Substituting (3.38) and (3.39) into (3.34) yields

1 1

,
1 1 1 1 1 11,2, , 1

1 1 1 1 1
min

0 1,2, , 1
. .

1 0 1,2, , 1

k k

K

N P
K f K Kk K

k

k

P PK
obj

N P P P N N N N N

N k K
s t

P k K

. (3.40)

Take the first-order derivative of the objective function obj in (3.40) with respect to P1, yielding

2 1

2

1 1

1 K

f

P Pobj K

P N PP

. (3.41)

Set the derivative in (3.41) to 0, and we have

1

1

0 K

obj
P P

P

. (3.42)

Similarly, we can get

1/

1 2

K

K fP P P P . (3.43)

Based on (3.38) and (3.43), we have

 1 2 K

N
N N N

K
 . (3.44)

Eq. (3.43) and (3.44) imply that we should select subsets in a way that all the conditional probabilities {Pk;

k = 1, 2, ···, K} are the same. In addition, we should assign the same number of samples when estimating

{Pk; k = 1, 2, ···, K}.

However, we are still not clear about how to select subsets since we do not exactly know {Pk; k = 1,

2, ···, K}. To find the best value for {Pk; k = 1, 2, ···, K}, we substitute (3.43) and (3.44) into the objective

 44

function in (3.34), yielding

1

2

1

1

1
min 1

. . 1

P

f

K
obj

N P

s t P P

. (3.45)

According to (3.43), K is equal to

 1

log

log

fP
K

P
 . (3.46)

Substituting (3.46) into (3.45) yields

 11

2

22
1111

11

log 1 11 1
min _ 1min 1

loglog

. . 1. . 1

f

PP

ff

P
norm objobj

PPN PP

s t P Ps t P P

. (3.47)

To find the optimal value for P1, we plot the normalized objective function value norm_obj in (3.47)

as a function of P1, as shown in Figure 3-2. From Figure 3-2, we can observe that the optimal value P1
* is

around 0.2

 1 0.2P . (3.48)

As mentioned earlier in this sub-section, P1
* is not the optimal solution for the optimization problem

in (3.27) due to the assumptions that we make. In reality, {Pk
SUS; k = 1, 2, ···, K} are statistically correlated

which will be discussed in detail in Section 3.4. Considering the correlations between {Pk
SUS; k = 1, 2, ···,

K}, var[log(Pf
SUS)] could be much larger than the objective function obj in (3.33). If the difference diff

between var[log(Pf
SUS)] and obj is large, P1

* could be quite different from the optimal solution for (3.27).

Regarding this, we should consider both norm_obj and diff when we choose P1.

In this thesis, we empirically choose 0.1 as our target P1 for two reasons

1) The norm_obj value at P1 = 0.1 is very close to the optimal norm_obj value at P1 = P1
*.

2) The number of subsets given P1 = 0.1 is smaller than that given P1 = P1
*, implying that the

accumulated correlations between {Pk
SUS; k = 1, 2, ···, K} given P1 = 0.1 is likely to be smaller than

that given P1 = P1
*. Since the norm_obj values at P1 = 0.1 and P1 = P1

* are similar, less correlations

results in a smaller var[log(Pf
SUS)].

To sum up, we aim to select subsets that satisfy the following conditions

 45

 1,2, , 1

0.1

k OBJ

K OBJ

OBJ

P P k K

P P

P

. (3.49)

To this end, we propose to adaptively choose the failure events {Fk; k = 1, 2, ···, K} to satisfy the

following conditions

 1,2, , 1

0.1

SUS

k OBJ

SUS

K OBJ

OBJ

P P k K

P P

P

. (3.50)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

P
1

n
o

rm
_

o
b

j

P1
*

Figure 3-2. norm_obj in (3.47) is plotted as a function of P1. The optimal value P1
* corresponding to the

minimum norm_obj is around 0.2.

To intuitively illustrate our proposed strategy for subset selection, we consider a sense amplifier

example where the PoI y(x) is the delay from the input to its output. If the delay y(x) is greater than or equal

to a pre-defined specification ySPEC, we consider the sense amplifier as “FAIL”. In this example, the failure

events {Fk; k 1, 2, ···, K} can be defined by setting different values for the delay specification. The delay

 46

specification should be tight (i.e., small) for F1 and loose (i.e., large) for FK. Our objective is to adaptively

determine a set of monotonically increasing values {y1 < y2 < ··· < yK1 < yK = ySPEC} and define the failure

event Fk as Fk = {y | y(x) ≥ yk}, where k {1, 2, ···, K}, so that the conditions in (3.50) are satisfied.

Based upon this idea, during the 1st phase of SUS for the sense amplifier example, we need to take

the random samples {y[x(1, l)]; l = 1, 2, ···, L1} created in Step 2 of Algorithm 3.1, and determine the value

of y1 so that the condition y[x(1, l)] ≥ y1 holds for T1 = L1P1
SUS = L1POBJ samples. To this end, we sort {y[x(1,

l)]; l = 1, 2, ···, L1} and then set y1 to the T1-th largest value of y of the sorted samples. Similarly, during the

2nd phase, we need to take the random samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} created in Step

6~16 of Algorithm 3.1, and determine the value of y2 so that the condition y[x(2, t, l)] ≥ y2 holds for T2 =

T1L2P2
SUS = T1L2POBJ samples. We sort {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} and then set y2 to the T2-

th largest value of y of the sorted samples. The aforementioned procedure is repeatedly applied to further

determine the values of {y3, y4, ···} until we reach the K-th phase where setting yK = ySPEC resulting in the

probability PK
SUS that is greater than POBJ.

Two important clarifications should be made for our proposed subset selection flow. First,

combining (3.7), (3.21) and (3.50) implies

1SUS K SUS K

f f OBJ K OBJP P P P P . (3.51)

From (3.51), we observe that the total number of phases (i.e., K) depends on the failure rate Pf and POBJ.

The value of K is approximately equal to the minimum integer that is greater than log(Pf) / log(POBJ). Since

we do not know Pf in advance, we cannot pre-determine K. Instead, the value of K must be adaptively set

when running the SUS algorithm.

Second, but more importantly, POBJ substantially impacts the efficiency of SUS. If POBJ is too small,

the probabilities {Pk; k = 1, 2, ···, K} are small. Hence, estimating these probabilities requires a large

number of samples and, therefore, is not computationally efficient. On the other hand, if POBJ is too large,

estimating {Pk; k = 1, 2, ···, K} becomes trivial. However, based on (3.51), a large number of phases are

needed to estimate the failure rate Pf (i.e., K is large), thereby resulting in high computational cost. For

these reasons, it is crucial to appropriately choose POBJ to make SUS efficient for practical circuit analysis

problems.

In this thesis, we set POBJ to 0.1, as shown in (3.50). In this case, even if the failure rate Pf is

 47

extremely small (e.g., 108~106), SUS only needs a small number of (e.g., K = 6~8) phases to complete.

Furthermore, it only requires a few hundred samples during each phase to accurately estimate the

probability Pk that is close to 0.1, where k {1, 2, ···, K}. It, in turn, results in an efficient implementation

of SUS for rare failure rate estimation, as will be demonstrated by our experimental results in Section 3.5.

Next, let us discuss how to choose {Nk; k = 1, 2, ···, K}. From (3.44), we can see that {Nk; k = 1,

2, ···, K} depend on the number of phases K and the total number of samples N that we would like to afford.

As mentioned earlier, K is not aware in advance. Hence, we cannot determine the optimal {Nk; k = 1, 2, ···,

K} given a fixed N. In this thesis, we simply set {Nk; k = 1, 2, ···, K} to a pre-defined value N0

 1 2 0KN N N N . (3.52)

As a result, the total number of samples N = K × N0 is determined online. Since our target probability POBJ

is equal to 0.1, only a few hundred samples are sufficient to accurately estimate {Pk; k = 1, 2, ···, K} that

are close to 0.1. Therefore, we typically set N0 to 102~103 in this thesis.

3.4 Confidence Interval Estimation

To quantitatively assess the accuracy of the proposed SUS estimator Pf
SUS shown in (3.21), we must

estimate its confidence interval (CI). To this end, we need to know the distribution of Pf
SUS. Since Pf

SUS is

equal to the multiplication of {Pk
SUS; k = 1, 2, ···, K}, we should carefully study the statistical property of

{Pk
SUS; k = 1, 2, ···, K} in order to derive the distribution for Pf

SUS.

As described in Algorithm 3.1, the estimators {Pk
SUS; k = 1, 2, ···, K} are calculated from the

random samples either drawn from f(x) in Step 2 or created by MM in Step 6~16 of Algorithm 3.1. To be

specific, P1
SUS is calculated by using (3.10) with L1 independent and identically distributed (i.i.d.) samples

drawn from f(x) in Step 2 of Algorithm 3.1. According to the central limit theorem (CLT) [71], P1
SUS

approximately follows a Normal distribution

 1 1 1~ ,SUSP N P v (3.53)

where the mean value P1 is defined in (3.8) and the variance value v1 can be approximated as [71]

 1 1 1

1

1
1SUS SUSv P P

L
 . (3.54)

 48

On the other hand, Pk
SUS, where k {2, 3, ···, K}, is calculated by using (3.26) with the MCMC

samples {x(k, t, l); t = 1, 2, ···, Tk−1, l = 1, 2, ···, Lk} created by MM in Step 6~16 of Algorithm 3.1. It has

been proved in [54] that all these MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l = 1, 2, ···, Lk} follow the

conditional PDF f(x | x Ωk−1). Eq. (3.26) can be re-written as

1
, ,

1 11

1 k k

k

T L
k t lSUS

k F

t lk k

P I y
T L

 x (3.55)

where IFk[y(x)] represents the indicator function

1

0k

k

F

k

y F
I y

y F

x
x

x
. (3.56)

From Step 7~15 of Algorithm 3.1, we can observe that {x(k, t, l); l = 1, 2, ···, Lk}, where t {1, 2, ···,

Tk−1}, are strongly correlated. Alternatively speaking, the MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l = 1,

2, ···, Lk} used to calculate Pk
SUS in (3.55) are not independent and, hence, cannot be considered as i.i.d.

samples. For this reason, we cannot directly apply CLT [71] to derive the distribution for the estimator

Pk
SUS in (3.55).

To address this issue, we define a set of new random variables

 , , ,

1

1

1
1,2, ,

k

k

L
k t k t l

F k

lk

s I y t T
L

 x . (3.57)

Studying (3.57) reveals an important observation that s(k, t), where t {1, 2, ···, Tk−1}, only depends on the

t-th Markov chain {x(k, t, l); l = 1, 2, ···, Lk}. Since different Markov chains are created from different initial

samples {x(k, t, 1); t = 1, 2, ···, Tk−1}, the random variables {s(k, t); t = 1, 2, ···, Tk−1} in (3.57) are almost

statistically independent. Furthermore, since all the initial samples {x(k, t, 1); t = 1, 2, ···, Tk−1} follow the

same conditional PDF f(x | x Ωk−1) and all the Markov chains are generated by following the same

procedure (i.e., Step 7~15 of Algorithm 3.1), the random variables {s(k, t); t = 1, 2, ···, Tk−1} should be

identically distributed. For these reasons, we can consider {s(k, t); t = 1, 2, ···, Tk−1} as a set of i.i.d. random

variables.

Based on (3.57), Pk
SUS in (3.55) can be re-written as

1
,

11

1 kT
k tSUS

k

tk

P s
T

 . (3.58)

 49

Since {s(k, t); t = 1, 2, ···, Tk−1} are i.i.d. random variables, Pk
SUS approximately follows a Normal

distribution according to CLT

 ~ mean ,varSUS SUS SUS

k k kP N P P

 (3.59)

where mean(•) and var(•) denote the mean and variance of a random variable respectively. From (3.55) and

(3.56), mean(Pk
SUS) can be easily calculated as

 mean SUS

k kP P (3.60)

where Pk is defined in (3.9). Based on (3.58) where {s(k, t); t = 1, 2, ···, Tk−1} are i.i.d. random variables,

var(Pk
SUS) can be computed as

1
,

,2
1 11

1 1
var VAR

kT
k tSUS

k s k

t kk

P s v
TT

 (3.61)

where vs,k represents the variance of the random variables {s(k, t); t = 1, 2, ···, Tk−1}, and it can be

approximated by the sample variance of {s(k, t); t = 1, 2, ···, Tk−1}

1 2
,

,

11

1

1

kT
k t SUS

s k k

tk

v s P
T

 . (3.62)

Substituting (3.60), (3.61) and (3.62) into (3.59) yields

 ~ , 2,3, ,SUS

k k kP N P v k K (3.63)

where Pk is defined in (3.9) and

1 2
,

11 1

1

1

kT
k t SUS

k k

tk k

v s P
T T

 . (3.64)

To further derive the distribution for Pf
SUS in (3.21) based on (3.53) and (3.63), we take logarithm on both

sides of (3.21) and get (3.29). To derive the distribution of {log(Pk
SUS); k = 1, 2, ···, K}, we approximate the

nonlinear function log() by the first-order Taylor expansion around the mean value Pk of the random

variable Pk
SUS

 log log log

SUS SUS

SUS k k k k

k k k SUS

k k

P P P P
P P P

P P

 . (3.65)

According to the linear approximation in (3.65), log(Pk
SUS) follows a Normal distribution

 log,log ~ log , 1,2, ,SUS

k k kP N P v k K (3.66)

 50

where

2

log,

SUS

k k kv v P . (3.67)

Since log(Pf
SUS) is the summation of several “approximately” Normal random variables {log(Pk

SUS);

k = 1, 2, ···, K}, log(Pf
SUS) also approximately follows a Normal distribution [71]

 log ~ mean log ,var logSUS SUS SUS

f f fP N P P

. (3.68)

Based on (3.7), (3.29), and (3.66), mean[log(Pf
SUS)] can be expressed as

1 1

mean log log log log
KK

SUS

f k k f

k k

P P P P

 (3.69)

and var[log(Pf
SUS)] can be calculated as

1

1

log,

1 1 1

var log var log

2 cov log , log

K
SUS SUS

f k

k

K K K
SUS SUS

k i j

k i j i

P P

v P P

 (3.70)

where cov(•, •) denotes the covariance of two random variables.

When applying MCMC, we often observe that an MCMC sample is strongly correlated to its

adjacent sample. However, the correlation quickly decreases as the distance between two MCMC samples

increases. Therefore, we can assume that the samples used to estimate log(Pi
SUS) are weakly correlated to

the samples used to estimate log(Pj
SUS), if the distance between i and j is greater than 1 (i.e., |i – j| > 1).

Based on this assumption, Eq. (3.70) can be approximated as

1

log, 1

1 1

var log 2 cov log , log
K K

SUS SUS SUS

f k k k

k k

P v P P

 . (3.71)

Accurately estimating the covariance between log(Pk
SUS) and log(Pk+1

SUS) is nontrivial. Here, we

derive an upper bound for cov[log(Pk
SUS), log(Pk+1

SUS)] [71]

 1 log, log, 1cov log ,log 1,2, , 1SUS SUS

k k k kP P v v k K

. (3.72)

Substituting (3.72) into (3.71) yields

1

log, log, log, 1 log,

1 1

var log 2
K K

SUS

f k k k SUS

k k

P v v v v

 . (3.73)

In this thesis, we approximate var[log(Pf
SUS)] by its upper bound vlog,SUS defined in (3.73) to provide a

 51

conservative estimation for the CI. Based on (3.69) and (3.73), Eq. (3.68) can be re-written as

 log,log ~ log ,SUS

f f SUSP N P v

. (3.74)

According to (3.74), we can derive the CI for any given confidence level. For instance, the 95% CI is

expressed as

 log, log,exp log 1.96 ,exp log 1.96SUS SUS

f SUS f SUSP v P v

. (3.75)

The aforementioned CI estimation accurately captures the uncertainty of our proposed estimator Pf
SUS, as

will be demonstrated by numerical examples in the next sub-section.

3.5 Experimental Results

In this sub-section, we demonstrate the efficacy of SUS by an SRAM column example. Figure 3-3

shows the simplified schematic of an SRAM column consisting of 64 bit-cells designed in a 45nm CMOS

process. In this example, our performance of interest is the read current IREAD, which is defined as the

difference between two bit-line currents IBL and IBLB (i.e., IREAD = IBL – IBLB). If IREAD is too small, the

voltage difference between BL and BLB is not large enough after pre-defined reading time and, hence, the

value stored in bit-cell may not be correctly detected, resulting in read access failure. Because of this, if

IREAD is greater than a pre-defined specification, we consider the SRAM circuit as “PASS”. Otherwise, it is

considered as “FAIL”. Mathematically, the failure rate of the SRAM column is defined as

Pr(column fails) Pr(cell<0> fails cell<1> fails cell<63> fails)or or or . (3.76)

Eq. (3.76) is bounded by [71]

63

0

Pr(column fails) Pr(cell< > fails)
i

i

 . (3.77)

Since all the cells have the same design, we can assume that their failure rates under the worst-case

scenario are the same. Based on this assumption, Eq. (3.77) can be re-written as

Pr(column fails) 64 fP (3.78)

where Pf denotes the cell failure rate under the worst-case scenario. The upper bound in (3.78) is a

conservative bound, and can be quite larger than the SRAM column failure rate. How to accurately

calculate the SRAM column failure rate from SRAM cell failure rates is still an open question, and is

 52

beyond the scope of this thesis. In this example, we will focus on estimating the cell failure rate Pf and then

provide the upper bound for the column failure rate by using (3.78).

BLBbit-cell<63>

bit-cell<0>

bit-cell<1>

0 1

BLB

WL<0>

1 0

1 0

VDD

BL

WL<0>

BL

WL<1>

WL<63>

IBLBIBL

Figure 3-3. The simplified schematic is shown for an SRAM column consisting of 64 bit-cells designed in a

45nm CMOS process.

Without loss of generality, we estimate the failure rate of bit-cell<0> under the worst-case scenario.

When reading bit-cell<0>, we first pre-charge both bit-lines to the supply voltage VDD. Next, the word-line

WL<0> is turned on and bit-cell<0> is activated. All other word-lines are turned off so that the

corresponding bit-cells are de-activated. The current through bit-cell<0> then discharges the bit-lines and

creates a voltage difference between BL and BLB. To mimic the worst-case scenario for read operation, we

store “0” in bit-cell<0> and “1” in all other bit-cells. As such, the read current of bit-cell<0> discharges BL,

while the leakage current of all other bit-cells discharges BLB, thereby slowing down the read operation.

To consider process variations in this experiment, we model the local VTH mismatch of each

transistor as an independent Normal random variable. Since the SRAM column consists of 64 bit-cells and

each bit-cell is composed of 6 transistors, there are 384 transistors and, hence, 384 independent Normal

random variables in total. It, in turn, serves as a good example to demonstrate the efficacy of SUS in a

high-dimensional (i.e., M = 384) variation space.

Table 3-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS and SUS (“golden” failure rate =

1.1×106)

 53

of Sims

MNIS SUS

Pf
L Pf Pf

U Pf
L Pf Pf

U

3600 0 9.2×10−11 2.5×10−10 2.1×10−7 1.2×10−6 7.4×10−6

4200 0 6.8×10−11 1.8×10−10 1.2×10−7 7.6×10−7 4.7×10−6

4800 0 5.4×10−11 1.4×10−10 1.9×10−7 9.9×10−7 5.1×10−6

5400 0 2.1×10−10 4.7×10−10 1.7×10−7 8.9×10−7 4.7×10−6

6000 0 1.8×10−10 4.0×10−10 2.3×10−7 1.0×10−6 4.5×10−6

For testing and comparison purposes, three different algorithms are implemented: (i) brute-force MC,

(ii) minimum-norm importance sampling (MNIS) [37], and (iii) SUS. In our experiments, the brute-force

MC is applied to generate the “golden” failure rate which is used to evaluate the accuracy of the other two

approaches. As described in [37], MNIS consists of two stages: (i) 2000 transistor-level simulations are

first used to search the variation space, and (ii) a shifted Normal PDF is then constructed to perform

importance sampling and estimate the rare failure rate.

We first run the brute-force MC approach with 109 samples. The estimated failure rate by MC is

1.1×106, which is considered as the “golden” failure rate in this example. Table 3-1 summarizes the failure

rate and the 95% CI estimated by MNIS and SUS with different numbers of simulations. From Table 3-1,

we have two important observations.

First, the estimated failure rate from MNIS is strongly biased. We believe that the shifted Normal

PDF used by MNIS for importance sampling does not capture the most important failure region and, hence,

the estimated failure rate is substantially less than the “golden” failure rate. More importantly, the 95% CI

estimated by MNIS cannot cover the “golden” failure rate, implying that MNIS also fails to assess the

accuracy of its estimated failure rate. This is an important limitation of MNIS since the user cannot reliably

know the actual “confidence” of the estimator in practice.

 54

Second, for our proposed SUS method, the estimator is almost unbiased. The 95% CI is tight, and

can accurately cover the “golden” failure rate. It, in turn, demonstrates that SUS can achieve substantially

better accuracy than the traditional method (i.e., MNIS) in a high-dimensional variation space.

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

(a) MNIS

lo
g 1

0
(P

f)

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

(b) SUS

lo
g 1

0
(P

f)

Figure 3-4. The 95% CIs are estimated from 100 repeated runs with 6000 simulations in each run for (a)

MNIS and (b) SUS. The red line represents the “golden” failure rate.

Next, we further verify the accuracy of the 95% CI estimated by MNIS and SUS. To this end, we

repeatedly run each method for 100 times with 6000 simulations in each run. Figure 3-4 shows the 100

estimated 95% CIs for each method, where each blue bar represents the CI of a single run, and the red line

represents the “golden” failure rate. To clearly plot these CIs, the y-axis of Figure 3-4 is displayed in

logarithmic scale over the range [10−10, 10−2]. If this range cannot cover a complete CI, we only show a

portion of the CI that is inside the range.

Studying Figure 3-4 reveals several important observations. First, only a single CI estimated from

100 repeated runs by MNIS can cover the “golden” failure rate. It, again, demonstrates the fact that the

 55

confidence level of MNIS cannot be accurately assessed by its estimated CI. Second, there are 95 CIs out

of 100 runs that cover the “golden” failure rate for SUS. It demonstrates that the CIs estimated by SUS

accurately measure the estimation error and can appropriately indicate the conference level of the estimator.

Once we know the cell failure rate Pf, we can calculate the upper bound for the column failure rate

by using (3.78).

3.6 Algorithm Limitations

Similar to most sampling approaches, SUS cannot accurately estimate our interested failure rate if it

does not capture all the important failure regions. There are two typical scenarios where SUS may fail to

work:

 Scenario 1: there are a large number of disjoint failure regions in the variation space and it is very

unlikely that SUS can cover all these failure regions with only a few hundred or thousand samples.

To clearly understand this scenario, let us consider one extreme case where the number of disjoint

failure regions exponentially increases with the dimensionality. The failure region is defined as

follows:

2

1

0.25

1,1 1,2, ,

M

m m

m

m

x c

c m M

x
 (3.79)

 where {cm; m = 1, 2, ···, M} can take either -1 or 1, resulting in 2M combinations of [c1 c2 cM].

Hence, the failure region Ω consists of 2M disjoint M-balls. For illustration purposes, a 2-

dimensional example with the failure region defined in (3.79) is shown in Figure 3-5.

In order to cover all the disjoint failure regions, the required number of samples will exponentially

increase with the dimensionality. In a high-dimensional space, the required number of samples is so

large that we cannot afford it. In reality, SUS only generates a few hundred or thousand samples

and, hence, unavoidably misses many important failure regions in this extreme case.

 56

0 x1

x2

Ω

Ω

Ω

Ω

-1 1

1

-1

Figure 3-5. A 2-dimensional example is used to illustrate the extreme case of scenario 1.

 Scenario 2: the unimportant region at lower phases becomes important at higher phases. To clearly

understand this scenario, let us consider a simple 1-dimensional example, as shown in Figure 3-6.

The blue curve in Figure 3-6 (a) denotes the Normal PDF f(x) for x. In Figure 3-6 (b), the green

curve denotes the performance function y(x). If the performance of interest y is smaller than our pre-

defined specification yspec, the circuit is considered as “FAIL”. In this example, the failure region Ω

consists of two parts (i.e., two red color regions): one part is on the left side and the other part is on

the right side. Since x follows a Normal PDF, the probability mass associated with the left failure

region is larger than that associated with the right failure region. Alternatively speaking, the left

failure region is more important than the right failure region in this example.

For this simple 1-dimensional example, SUS will adaptively determine a set of monotonically

decreasing values {y1 > y2 > ··· > yK1 > yK = ySPEC} and define the failure event Fk as Fk = {y | y(x) ≤

yk}, where k {1, 2, ···, K}. In the first phase, SUS generates a number of samples from f(x), and

determines y1 based on the performance values of these samples, as shown in Figure 3-6 (c). Yellow

points denote samples that do not belong to F1, and green points denote samples that belong to F1. In

this example, only the right part is considered as the important region in the first phase, and SUS

will only explore the right part in the following phases, as shown in Figure 3-6 (d). Restating in

words, because the left part is not considered as an important region at lower phases (i.e., the first

 57

phase), the most important failure region (i.e., the left red color region in Figure 3-6 (b)) sitting on

the left side is not captured by SUS, leading to a significant biased estimation.

0 x

(a)

y(x)

0 x

yspec

-5 5.5

(b)

Ω
Ω

f(x)

y(x)

0 x

y1

(c)

y(x)

0 x

y2

(d)

y1

Figure 3-6. A 1-dimensional example is used to illustrate scenario 2. (a) x follows a Normal PDF f(x). (b)

Green curve denotes the performance function, and two red color regions denote failure regions. (c) Draw

random samples from f(x) and determine the intermediate failure event F1 as F1 = {y | y(x) ≤ y1}. Yellow

points denote samples that do not belong to F1, and green points denote samples that belong to F1. (d) Draw

random samples from f(x | y(x) ≤ y1) by MM and determine the intermediate failure event F2 as F2 = {y | y(x)

≤ y2}. Green points denote samples that do not belong to F2, and blue points denote samples that belong to

F2.

Estimation failures under the aforementioned scenarios are difficult to detect. Though these

scenarios can theoretically occur, we rarely see them in the real test cases. Hence, we can safely apply SUS

for most circuit designs.

To define the intermediate failure events required by SUS, the circuit performance of interest should

be continuous. However, the performances of interest in the SRAM circuits can be discrete. Take voltage-

 58

mode sense amplifier as an example. When studying the stability of the sense amplifier, the performance of

interest is the binary output of the sense amplifier. To estimate rare failure events for discrete performances

of interest in a high-dimensional variation space, we further propose a scaled-sigma sampling (SSS)

approach. In the next section, we will describe our proposed SSS approach in detail.

 59

Chapter 4 Scaled-Sigma Sampling for Discrete Performance Metrics

Scaled-Sigma Sampling for Discrete Performance

Metrics

As mentioned in Chapter 3, SUS can only estimate the rare failure events for circuits that have

continuous performances of interest. To address this limitation and estimate the rare failure probability for

discrete performances of interest in a high-dimensional variation space, scaled-sigma sampling (SSS) is

proposed in this chapter. The key idea of SSS is to generate “scaled” random samples from the “scaled”

PDFs and estimate the “scaled” failure rates based on these “scaled” random samples. Here, the “scaled”

PDF refers to the distorted PDF for which the standard deviation of the original PDF is scaled up. By

scaling up the standard deviation, the rare failure event associated with the original PDF becomes not-so-

rare in the “scaled” PDFs and, therefore, the “scaled” failure rates corresponding to the “scaled” PDFs can

be efficiently estimated.

To further recover the original rare failure rate from the scaled failure rates, we derive an analytical

model between the scaled failure rate and the scaling factor based on the theorem of “soft maximum” [73],

which is the key contribution of SSS work. To fit the model, we first choose a set of scaling factors, and

estimate their corresponding scaled failure rates from a small number of scaled random samples. The model

is then optimally fitted by applying maximum-likelihood estimation (MLE) [72]. Next, the original rare

failure rate can be efficiently estimated from the fitted model.

Unlike the traditional estimator where a statistical metric is estimated by the average of multiple

random samples and, hence, the confidence interval can be derived as a closed-form expression, our

proposed SSS estimator is calculated by linear regression with nonlinear exponential/logarithmic

transformation, as shown in Section 4.3. Therefore, accurately estimating the confidence interval of SSS is

 60

not a trivial task. To address this challenge, we apply bootstrap technique [70]. The key idea of bootstrap is

to re-generate a large number of random samples based on a statistical model without running additional

transistor-level simulations. These random samples are then used to repeatedly calculate the failure rate by

SSS for multiple times. Based on these repeated runs, the statistics (hence, the confidence interval) of the

proposed SSS estimator can be accurately estimated.

In a commercial process design kit, the random variables {xm; m = 1, 2, ···, M} in the vector x

shown in (2.13) are typically modeled as a set of independent random variables following Gaussian and/or

uniform distributions. In Section 4.1, we describe our proposed scaled-sigma sampling (SSS) approach for

Gaussian distribution. Namely, the random variable x follows a multivariate Gaussian distribution. In

Section 4.2, we will further extend SSS to “Gaussian-Uniform” distribution where the random variables

{xm; m = 1, 2, ···, M} in (2.13) are mutually independent, a subset of these random variables follow the

standard Gaussian distributions and the other random variables are uniformly distributed. Such a

multivariate Gaussian-Uniform distribution has been used in many process design kits today.

4.1 SSS for Gaussian Random Variables

Without loss of generality, we assume that the random variables {xm; m = 1, 2, ···, M} in the vector

x are mutually independent and follow standard Gaussian distributions, as shown in (2.23). Unlike the

traditional importance sampling methods that must explicitly identify the high-probability failure region,

SSS takes a completely different strategy to address the following two fundamental questions:

1) How to efficiently draw random samples from the high-probability failure region?

2) How to estimate the failure rate based on these random samples?

In what follows, we will derive the mathematical formulation of SSS for Gaussian distribution and

highlight its novelties.

4.1.1 Statistical Sampling

For the application of rare failure rate estimation, f(x) in (2.23) is often extremely small for a

random sample x inside the failure region. It implies that the failure region is far away from the origin x = 0,

 61

as shown in Figure 4-1 (a). Since the failure rate is extremely small, the brute-force Monte Carlo approach

cannot efficiently draw random samples from the failure region. Namely, many MC samples cannot reach

the tail of f(x).

x1

x2

Ω

High-

probability

Low-

probability

(a)

x1

x2

Ω

Low-

probability
High-

probability

(b)

Figure 4-1. The proposed SSS method for Gaussian distribution is illustrated by a 2-D example where the

red area Ω denotes the failure region and the circles represent the contour lines of the PDF. (a) Rare failure

events occur at the tail of the original PDF f(x) and the failure region is far away from the origin x = 0. (b)

The scaled PDF g(x) widely spreads over a large region and the scaled samples are likely to reach the

faraway failure region.

In this thesis, we apply a simple idea to address the aforementioned sampling issue. Given f(x) in

(2.23) for the M-dimensional random variable x, we scale up the standard deviation of x by a scaling factor

s (s > 1), yielding the following distribution

2 2
2

2

2
1

exp 21
exp

22 2

M
m

M
Mm

sx
g

ss s

x
x . (4.1)

Once the standard deviation of x is increased by a factor of s, we conceptually increase the magnitude of

process variations. Hence, the scaled PDF g(x) widely spreads over a large region and the probability for a

random sample to reach the faraway failure region increases, as shown in Figure 4-1 (b).

From an alternative viewpoint, the original random variables {xm; m = 1, 2, ···, M} follow the

independent standard Gaussian distributions defined in (2.23). If we scale each of them (say, xm) by a factor

 62

of s, the scaled random variables {sxm; m = 1, 2, ···, M} follow g(x) in (4.1). Therefore, when sampling

g(x), we can first draw random samples from f(x) and then scale each random sample by a factor of s. As a

result, the scaled samples will move far away from the origin x = 0 and are likely to reach the failure region,

as shown in Figure 4-1 (b).

On the other hand, it is important to note that the mean of g(x) remains 0, which is identical to the

mean of f(x). Hence, for a given sampling location x, the likelihood defined by g(x) remains inversely

proportional to the length of the vector x (i.e., ||x||2). Namely, it is more (or less) likely to reach the

sampling location x, if the distance between the location x and the origin 0 is smaller (or larger). It, in turn,

implies that the high-probability failure region associated with f(x) remains the high-probability failure

region after the PDF is scaled to g(x), as shown in Figure 4-1 (a) and (b). Scaling the PDF from f(x) to g(x)

does not change the location of the high-probability failure region. Instead, it only makes the failure region

easy to sample.

Once the scaled random samples are drawn from g(x) in (4.1), we need to further estimate Pf defined

in (2.14). Since g(x) and f(x) are different, we cannot simply average the random samples generated by g(x)

to calculate Pf defined by f(x). A major contribution of SSS is to derive an analytical model to accurately

estimate the failure rate Pf from the scaled random samples, as will be discussed in detail in the next sub-

section.

4.1.2 Failure Rate Estimation

Given N random samples {x(n); n = 1, 2, ···, N} drawn from g(x) in (4.1), one straightforward way to

estimate Pf is based upon the theory of importance sampling. Namely, since the random samples are

generated by g(x) that is different from f(x), we can estimate the failure rate Pf by calculating the average of

f(x)I(x)/g(x), as shown by the estimator Pf
IS in (2.20).

Such a simple approach, however, does not result in an accurate failure rate, if the dimensionality of

the variation space (i.e., M) is large. To understand the reason, let us calculate the variance of the

importance sampling estimator Pf
IS in (2.20)

 63

1

1
var var

N
n n nIS

f

n

P f I g
N

 x x x . (4.2)

Since {x(n); n = 1, 2, ···, N} are independently drawn from g(x) in (4.1), Eq. (4.2) can be re-written as

1
var varIS

f

f I
P

N g

x x

x
. (4.3)

In (4.3), var[f(x)I(x)/g(x)] can be expressed as [71]

22

var E E
f I f I f I

g g g

x x x x x x

x x x
 (4.4)

where E(•) denotes the expected value of a random variable. We can re-write (4.4) as

2
2

2

2

22

var
f I f f

I g d I g d
g gg

f
I d f I d

g

x x x x
x x x x x x

x xx

x
x x x x x

x

. (4.5)

Based on (2.15), Eq. (4.5) can be simplified as

2

2var f

f I f
I d P

g g

x x x
x x

x x
. (4.6)

Since I(x) is less than or equal to 1, Eq. (4.6) is bounded by

2

2var f

f I f
d P

g g

x x x
x

x x
. (4.7)

At the right-hand side of (4.7), Pf is the failure rate and, hence, the second term (i.e., Pf
2) is a constant.

Based on (2.23) and (4.1), the first term at the right-hand side of (4.7) can be calculated as

 22

2

2

4 2

2

2 1
exp

22

2 1

M

M

M

sf s
d d

g s

s

s

x

x x x
x

. (4.8)

Based on (4.3), (4.7) and (4.8), we have

 64

4 2
2

2

1
var

2 1

M

IS

f f

s
P P

N s

. (4.9)

Eq. (4.9) shows that the upper bound of the variance of the estimator Pf
IS exponentially increases with the

dimensionality M when s is greater than 1. It, in turn, implies that the variance of Pf
IS can be prohibitively

large in a high-dimensional variation space. It is equivalent to saying that the estimator Pf
IS based on

importance sampling may not be sufficiently accurate when the variation space is high-dimensional. It does

not fit our need of high-dimensional failure rate estimation in this thesis.

Instead of relying on the theory of importance sampling, our proposed SSS method attempts to

estimate the failure rate Pf from a completely different avenue. We first take a look at the “scaled” failure

rate corresponding to the scaled PDF g(x)

 gP I g d

 x x x . (4.10)

Our objective is to study the relation between the scaled failure rate Pg in (4.10) and the original failure rate

Pf in (2.15). Towards this goal, we partition the M-dimensional variation space into a large number of

identical hyper-rectangles with the same volume and the scaled failure rate Pg in (4.10) can be

approximated as

 k k

g

k

P I g
 x x x (4.11)

where x(k) represents the center of the k-th hyper-rectangle, and Δx denotes the volume of a hyper-rectangle.

The approximation in (4.11) is accurate, if each hyper-rectangle is sufficiently small. Given (2.16), Eq.

(4.11) can be re-written as

 k

g

k

P g

 x x (4.12)

where {k; k Ω} represents the set of all hyper-rectangles that fall into the failure region. Substituting (4.1)

into (4.12), we have

2
2

2
exp 2

2

k

g M
M k

P s

s

x

x .
(4.13)

Taking the logarithm on both sides of (4.13) yields

 65

2
2

2
log log log lse 2

2

k

g M k
P M s s

x
x

(4.14)

where

2 2
2 2

2 2
lse 2 log exp 2

k k

k
k

s s

x x (4.15)

stands for the log-sum-exp function. The function lse() in (4.15) is also known as the “soft maximum”

from the mathematics [73]. It can be bounded by

2 2 2
2 2 2

2 2 2
max 2 lse 2 max 2 log

k k k

k k k
s s s T

x x x (4.16)

where T denotes the total number of hyper-rectangles in Ω.

To clearly understand (4.16), let us consider two extreme cases. First, let us assume that all the

hyper-rectangles {x(k); k Ω} have the same distance to the origin 0. In this case, the function lse()

reaches its upper bound in (4.16). Second, we assume that only one hyper-rectangle in the set {x(k); k Ω}

is close to the origin 0, and all other hyper-rectangles are far away from the origin 0. In this case, the

function lse() reaches its lower bound in (4.16). For our application of rare failure event analysis, however,

these two ideal cases rarely occur. Therefore, we cannot simply use the lower or upper bound in (4.16) to

approximate the function lse() in (4.15).

In general, there exist a number of (say, T0) dominant hyper-rectangles that are much closer to the

origin 0 than other hyper-rectangles in the set {x(k); k Ω}. Without loss of generality, we assume that the

first T0 hyper-rectangles {x(k); k = 1, 2, ···, T0} are dominant. Hence, we can approximate the function lse()

in (4.15) as

02 2
2 2

2 2
1

lse 2 log exp 2
T

k k

k
k

s s

x x . (4.17)

We further assume that these dominant hyper-rectangles {x(k); k = 1, 2, ···, T0} have similar distances to the

origin 0. Thus, Eq. (4.17) can be approximated by

2 2
2 2

0
2 2

lse 2 max 2 log
k k

k k
s s T

x x . (4.18)

Substituting (4.18) into (4.14) yields

 66

 2
log loggP s

s

 (4.19)

where

 0log 2 log

M

T

x (4.20)

M (4.21)

2

2

1
min

2

k

k

x . (4.22)

Eq. (4.19) reveals the important relation between the scaled failure rate Pg and the scaling factor s. The

approximation in (4.19) does not rely on any specific assumption of the failure region. It is valid, even if

the failure region is non-convex or discontinuous.

While (4.20)-(4.22) show the theoretical definition of the model coefficients α, and γ, finding their

exact values is not trivial. For instance, the coefficient γ is determined by the hyper-rectangle that falls into

the failure region Ω and is closest to the origin x = 0. In practice, without knowing the failure region Ω, we

cannot directly find out the value of γ. For this reason, we propose to determine the analytical model in

(4.19) by linear regression. Namely, we first estimate the scaled failure rates {Pg,q; q = 1, 2, ···, Q} by

setting the scaling factor s to a number of different values {sq; q = 1, 2, ···, Q}. As long as the scaling

factors {sq; q = 1, 2, ···, Q} are sufficiently large, the scaled failure rates {Pg,q; q = 1, 2, ···, Q} are large

and can be accurately estimated with a small number of random samples. Next, the model coefficients α,

and γ are fitted by linear regression for the model template in (4.19) based on the values of {(sq, Pg,q); q = 1,

2, ···, Q}. Once α, and γ are known, the original failure rate Pf in (2.15) can be predicted by

extrapolation. Namely, we substitute s = 1 into the analytical model in (4.19)

log SSS

fP (4.23)

where Pf
SSS denotes the value of Pf estimated by SSS. Apply the exponential function to both sides of (4.23)

and we have

 expSSS

fP . (4.24)

While the aforementioned discussions reveal the theoretical framework of the proposed SSS method,

a number of implementation issues must be carefully studied to make SSS of practical utility. These

 67

implementation details will be further discussed in Section 4.3.1-4.3.3.

4.2 SSS for Gaussian-Uniform Random Variables

In Section 4.1, we assume that all random variables in x are mutually independent and follow the

standard Gaussian distributions after applying principal component analysis. Such an assumption, however,

may not always hold for today’s nanoscale IC technologies. Namely, {xm; m = 1, 2, ···, M} may be

modeled as other probability distributions (e.g., uniform distribution, etc.) in many practical applications.

In this section, we further extend SSS to Gaussian-Uniform distribution. Without loss of generality,

we re-write x as

G

U

x
x

x
 (4.25)

where the vector xG = [xG,1 xG,2 ··· xG,MG]T includes MG random variables following the standard Gaussian

distributions, and the vector xU = [xU,1 xU,2 ··· xU,MU]T includes MU random variables following the uniform

distributions, and M = MG + MU is the total number of these random variables. Since all random variables in

the vector x are mutually independent, we can express the joint PDF as

 g G u Uf f f x x x (4.26)

2
2

2,

1

exp 21
exp

22 2

G

G

M
G

G m

g G M
m

x
f

x
x (4.27)

 ,

1

1
,

UM

u U U m m m

m m m

f I x l u
u l

x (4.28)

where lm and um denote the lower and upper bounds of the m-th uniform random variable xU,m in the vector

xU respectively, and I(xU,m | lm , um) represents the indicator function

 ,

,

1
, 1,2, ,

0 else

m U m m

U m m m U

l x u
I x l u m M

. (4.29)

From (4.26)-(4.29), we can see that f(x) is non-zero if and only if x belongs to the following set Ψ

 ,

,

, 1,2, ,

, 1,2, ,

G i G

U j j j U

x i M

x l u j M

x . (4.30)

 68

Hence, the random samples drawn from f(x) must belong to Ψ.

Similar to Section 4.1, we need to answer the following two fundamental questions when applying

SSS to Gaussian-Uniform distribution:

1) How to efficiently draw random samples from the high-probability failure region given the PDF f(x)

defined in (4.26)?

2) How to estimate the failure rate based on these random samples?

The answers to these questions will be explained in the following sub-sections.

4.2.1 Statistical Sampling

In this section, we focus on the failure region Ω that sits inside the set Ψ where Ψ is defined by

(4.30). For any location x outside the set Ψ, the probability of reaching x is zero and, hence, it does not

contribute to the failure rate of interest. Due to this reason, we consider the failure region Ω as a subset of

Ψ. For any random sample x = [xG; xU] falling into the failure region Ω, the uniform PDF fu(xU) is constant

while the Gaussian PDF fg(xG) can be extremely small. In other words, the failure event occurs at the tail of

fg(xG). To efficiently draw random samples from the high-probability failure region, we apply the idea of

SSS to the Gaussian random variable xG. Namely, we scale up the standard deviation of fg(xG) by a factor of

s (s > 1), while keeping fu(xU) unchanged. It, in turn, results in the following scaled PDF

 g G u Ug g f x x x (4.31)

 2 2

2

1
exp 2

2
G

G

g G GM
M

g s

s

x x
(4.32)

where fu(xU) is defined in (4.28). By sampling the scaled PDF g(x) in (4.31), we can now reach the failure

region Ω easily and a large number of random samples should sit inside Ω.

Since we assume that all random variables in x are mutually independent, we can draw random

samples from the Gaussian and uniform distributions separately and then combine them together to form

the random samples for the scaled PDF g(x) in (4.31). In what follows, we will further discuss how to

accurately estimate Pf in (2.15) based on these scaled random samples.

 69

4.2.2 Failure Rate Estimation

To derive the analytical model for failure rate estimation of Gaussian-Uniform distribution, we

follow the same idea presented in Section 4.1.2. Namely, we partition the M-dimensional variation space

into a large number of small hyper-rectangles and the scaled failure rate Pg in (4.10) is approximated as

(4.12). Substituting (4.31) into (4.12), we have

 k k k

g g G u U

k k

P g g f

 x x x x x (4.33)

where x(k) = [xG
(k); xU

(k)] denotes the center of the k-th hyper-rectangle. Substituting (4.28) and (4.32) into

(4.33) yields

2
2

,
2

1

1

exp 2 ,

2

U

U
G

G

M
k k

G U m m m

m

g M
M

k M

m m

m

s I x l u

P

s u l

x

x (4.34)

where xU,m
(k) represents the m-th uniform random variable in xU

(k) = [xU,1
(k) xU,2

(k) ··· xU,MU
(k)]T.

Since the failure region Ω is inside the set Ψ, the indicator functions {I(xU,m
(k) | lm , um); m = 1, 2, ···,

MU, k Ω} in (4.34) are all equal to 1. Therefore, Eq. (4.34) can be further simplified as

2

2

2

1

exp 2

2
U

G
G

k

g GM
M

kM

m m

m

P s

s u l

x
x .

(4.35)

By following the mathematical analysis described in Section 4.1.2, we can approximate (4.35) as

 2
log loggP s

s

 (4.36)

where

 0

1

log 2 log
U

G
M

M

m m

m

u l T

x (4.37)

 GM (4.38)

2

2

1
min

2

k

G
k

x . (4.39)

In (4.37), T0 denotes the number of dominant hyper-rectangles in the set {xG
(k); k Ω}.

The analytical model in (4.36) for Gaussian-Uniform distribution is identical to that in (4.19) for

 70

Gaussian distribution. Similar to the Gaussian distribution case, we first estimate the scaled failure rates

{Pg,q; q = 1, 2, ···, Q} by setting the scaling factor s to a number of different values {sq; q = 1, 2, ···, Q}.

Next, the model coefficients α, and γ are fitted by linear regression based on {(sq, Pg,q); q = 1, 2, ···, Q}.

Once α, and γ are known, the failure rate Pf in (2.15) can be predicted by using (4.24).

In summary, if both Gaussian and uniform distributions are used to model process variations, we

only scale up the standard deviation of the Gaussian distribution without changing the uniform distribution.

The failure rate Pf in (2.15) is then estimated by fitting an analytical model. The model fitting scheme is

identical to what is described for Gaussian distribution in Section 4.1.

Finally, it is important to mention that the SSS method presented in this section can only handle a

special class of non-Gaussian distribution where all random variables in x are mutually independent, a

subset of these random variables are Gaussian random variables and the other random variables are

uniformly distributed. How to extend SSS to other non-Gaussian distributions remains an open question

and will be further studied in our future research.

To make the proposed SSS method of practical utility, a number of efficient algorithms are further

studied in Section 4.3, including: (i) model fitting via maximum-likelihood estimation, (ii) confidence

interval estimation via bootstrap [70], and (iii) scaling factor selection. Since the aforementioned

algorithms can be generally applied to both Gaussian and Gaussian-Uniform distributions, we will not

explicitly distinguish these two different cases when discussing these implementation details.

4.3 Implementation Details

4.3.1 Model Fitting via Maximum-Likelihood Estimation (MLE)

While the basic idea of SSS has been illustrated in Section 4.1-4.2, we will develop a statistically

optimal algorithm to implement it in this section. Our goal is to determine the maximum-likelihood

estimation (MLE) for the model coefficients α, and γ in (4.19) and (4.36). The MLE solution can be

solved from an optimization problem and it is considered to be statistically optimal for a given set of

random samples.

Without loss of generality, we assume that Nq scaled random samples {x(n); n = 1, 2, ···, Nq} are

 71

collected for the scaling factor sq. The scaled failure rate Pg,q can be estimated by the brute-force Monte

Carlo approach

,

1

1 qN

nMC

g q

nq

P I
N

 x (4.40)

where I(x) is the indicator function defined in (2.16). The variance of the estimator Pg,q
MC in (4.40) can be

approximated as [71]

 , ,

,

1MC MC

g q g qMC

g q

q

P P
v

N

 . (4.41)

If the number of samples Nq is sufficiently large, the estimator Pg,q
MC in (4.40) follows a Gaussian

distribution according to the central limit theorem [71]

 , , ,~ ,MC MC

g q g q g qP N P v (4.42)

where Pg,q denotes the actual failure rate corresponding to the scaling factor sq.

Note that the model template in (4.19) and (4.36) are both expressed for logPg, instead of Pg. To

further derive the probability distribution for logPg,q
MC, we approximate the nonlinear function log() by the

first-order Taylor expansion around the mean value Pg,q of the random variable Pg,q
MC

, , , ,

, , ,

, ,

log log log

MC MC

g q g q g q g qMC

g q g q g q MC

g q g q

P P P P
P P P

P P

 . (4.43)

Based on the linear approximation in (4.43), logPg,q
MC follows the Normal distribution

,

, , 2

,

log ~ log ,

MC

g qMC

g q g q
MC

g q

v
P N P

P

. (4.44)

Eq. (4.44) is valid for all scaling factors {sq; q = 1, 2, ···, Q}. In addition, since the scaled failure

rates corresponding to different scaling factors are estimated by independent Monte Carlo simulations, the

estimated failure rates {Pg,q
MC; q = 1, 2, ···, Q} are mutually independent. Therefore, the Q-dimensional

random variable

 ,1 ,2 ,log log log log
T

MC MC MC MC

g g g g QP P P P (4.45)

satisfies the following jointly Normal distribution

 72

 log ~ ,MC

g g gNP μ Σ (4.46)

where the mean vector μg and the covariance matrix Σg are equal to

 ,1 ,2 ,log log log
T

g g g g QP P P μ (4.47)

,1

2

,1

,2

2

,2

,

2

,

MC

g

MC

g

MC

g

MC
g g

MC

g Q

MC

g Q

v

P

v

P

v

P

Σ . (4.48)

The diagonal elements of the covariance matrix Σg in (4.48) can be substantially different. In other

words, the accuracy of {logPg,q
MC; q = 1, 2, ···, Q} associated with different scaling factors {sq; q = 1, 2, ···,

Q} can be different, because the scaled failure rates {Pg,q; q = 1, 2, ···, Q} strongly depend on the scaling

factors. In general, we can expect that if the scaling factor sq is small, the scaled failure rate Pg,q is small

and, hence, it is difficult to accurately estimate logPg,q from a small number of random samples. For this

reason, instead of equally “trusting” the estimators {logPg,q
MC; q = 1, 2, ···, Q}, we must carefully model

the “confidence” for each estimator logPg,q
MC, as encoded by the covariance matrix Σg in (4.48). Such

“confidence” information will be fully exploited by the MLE framework to fit a statistically optimal model.

Since the scaled failure rates {Pg,q; q = 1, 2, ···, Q} follow the analytical model in (4.19) and (4.36),

the mean vector μg in (4.47) can be re-written as

2
1 1

2
2 2

2

log

log

log

g

Q Q

s s

s s

s s

μ A θ (4.49)

where

2

1 1

2

2 2

2

1 log

1 log

1 log Q Q

s s

s s

s s

A (4.50)

 73

T
 θ . (4.51)

Eq. (4.49) implies that the mean value of the Q-dimensional random variable logPg
MC depends on the

model coefficients α, and γ. Given {Pg,q
MC; q = 1, 2, ···, Q}, the key idea of MLE is to find the optimal

values of α, and γ so that the likelihood of observing {Pg,q
MC; q = 1, 2, ···, Q} is maximized.

Because the random variable logPg
MC follows the jointly Normal distribution in (4.46), the

likelihood associated with the estimated failure rates {Pg,q
MC; q = 1, 2, ···, Q} is proportional to

 11

~ exp log log
2

T
MC MC

g g g g gL

P μ Σ P μ . (4.52)

Taking the logarithm for (4.52) yields

 1log ~ log log
T

MC MC

g g g g gL P μ Σ P μ . (4.53)

Substitute (4.49) into (4.53), and we have

 1log ~ log log
T

MC MC

g g gL P A θ Σ P A θ . (4.54)

Note that the log-likelihood logL in (4.54) depends on the model coefficients α, and γ, because the vector

θ is composed of these coefficients as shown in (4.51). Therefore, the MLE solution of α, and γ can be

determined by maximizing the log-likelihood function

 1maximize log log

T
MC MC

g g g

θ

P A θ Σ P A θ . (4.55)

Since the covariance matrix Σg is positive definite, the optimization in (4.55) is convex. In addition,

since the log-likelihood logL is simply a quadratic function of θ, the unconstrained optimization in (4.55)

can be directly solved by inspecting the first-order optimality condition [73]:

 1 1log log 2 log

T
MC MC T MC

g g g g g

P A θ Σ P A θ A Σ P A θ 0
θ

. (4.56)

Based on the linear equation in (4.56), the optimal value of θ can be determined by

1

1 1 logT T MC

g g g

 θ A Σ A A Σ P . (4.57)

Studying (4.57) reveals an important fact that the estimators {logPg,q
MC; q = 1, 2, ···, Q} are

weighted by the inverse of the covariance matrix Σg. Namely, if the variance of the estimator logPg,q
MC is

large, logPg,q
MC becomes non-critical when determining the optimal values of α, and γ. In other words, the

 74

MLE framework has optimally weighted the importance of {logPg,q
MC; q = 1, 2, ···, Q} based on the

“confidence” level of these estimators. Once α, and γ are solved by MLE, the original failure rate Pf can

be estimated by (4.24).

4.3.2 Confidence Interval Estimation

While the MLE algorithm presented in the previous sub-section is able to optimally estimate the

model coefficients α, and γ and then predict the failure rate Pf, it remains an open question how we can

quantitatively assess the accuracy of our SSS method. Since SSS is based upon Monte Carlo simulation, a

natural way for accuracy assessment is to calculate the confidence interval of the estimator Pf
SSS. However,

unlike the traditional estimator where a statistical metric is estimated by the average of multiple random

samples and, hence, the confidence interval can be derived as a closed-form expression, our proposed

estimator Pf
SSS is calculated by linear regression with nonlinear exponential/logarithmic transformation, as

shown in Section 4.3.1. Accurately estimating the confidence interval of Pf
SSS is not a trivial task.

In this thesis, we apply bootstrap [70] to address the aforementioned challenge. The key idea of

bootstrap is to re-generate a large number of random samples based on a statistical model without running

additional transistor-level simulations. These random samples are then used to repeatedly calculate the

value of Pf
SSS in (4.24) for multiple times. Based on these repeated runs, the statistics (hence, the confidence

interval) of the estimator Pf
SSS can be accurately estimated.

In particular, we start from the estimated failure rates {Pg,q
MC; q = 1, 2, ···, Q}. Each estimator Pg,q

MC

follows the Normal distribution in (4.42). The actual mean Pg,q in (4.42) is unknown; however, we can

approximate its value by the estimated failure rate Pg,q
MC. Once we know the statistical distribution of

Pg,q
MC, we can re-sample its distribution and generate NRS sampled values {Pg,q

MC(n); n = 1, 2, ···, NRS}. This

re-sampling idea is applied to all scaling factors {sq; q = 1, 2, ···, Q}, thereby resulting in a large data set

{Pg,q
MC(n); q = 1, 2, ···, Q, n = 1, 2, ···, NRS}. Next, we repeatedly run SSS for NRS times and get NRS

different failure rates {Pf
SSS(n); n = 1, 2, ···, NRS}. The confidence interval of Pf

SSS can then be estimated

from the statistics of these failure rate values.

 75

4.3.3 Scaling Factor Selection

In Section 4.3.1-4.3.2, we assume that a set of pre-selected scaling factors {sq; q = 1, 2, ···, Q} are

already given. In practice, appropriately choosing these scaling factors is a critical task due to several

reasons. First, if these scaling factors are too large, the estimator Pf
SSS based on extrapolation in (4.24)

would not be accurate, since the extrapolation point s = 1 is far away from the selected scaling factors.

Second, if the scaling factors are too small, the scaled failure rates {Pg,q; q = 1, 2, ···, Q} are extremely

small and they cannot be accurately estimated from a small number of scaled random samples. Hence,

finding an appropriate set of scaling factors can be extremely challenging.

 In this thesis, we apply a heuristic approach to determine the scaling factors. The heuristic approach

consists of two stages: (1) sample allocation and (2) scaling factor selection. The first stage (i.e., sample

allocation) assumes that

1) log(Pg) is a linear function of the scaling factor s, as shown in Figure 4-2. This linear assumption

makes sample allocation feasible even if we have no information about the circuits, as will be seen

later.

s

logPg

s1 s2 sQ−1 sQ

logPg,Q

logPg,1

1

Figure 4-2. log(Pg) is assumed to be a linear function of the scaling factor s at sample allocation stage.

2) The scaling factors {sq; q = 1, 2, ···, Q} are evenly distributed.

3) The number of failure samples must be equal to or larger than a pre-defined number (e.g., 20) at

each scaling factor. As mentioned in Section 4.3.1, the brute-force Monte Carlo approach is applied

to estimate the scaled failure rate for each scaling factor. From (2.31), we can see that the estimation

accuracy of the brute-force Monte Carlo approach is mainly determined by the number of failure

samples. Therefore, this assumption guarantees the estimation accuracy at each scaling factor.

 76

4) The scaled failure rates must be equal to or smaller than a pre-defined number (e.g., 0.3). Generally

speaking, a larger scaling factor corresponds to a larger scaled failure rate. Hence, this assumption

constrains the distance between the selected scaling factors and s = 1.0.

Given these assumptions, we allocate samples for each scaling factor by the following algorithm:

Algorithm 4.1 Sample Allocation for SSS

1. Start with the total number of samples (say, N), the number of scaling factors (say, Q), the minimum

number of failure samples at each scaling factor (say, Nmin), and the maximum scaled failure rate at

selected scaling factors (say, Pmax). Set Nstep = 100.

2. Initialize Pg,q
* = Pmax and Nq = Nmin / Pg,q

*, where q = 1, 2, ···, Q. Here, Pg,q
* denotes the target scaled

failure rate at the q-th scaling factor sq and Nq denotes the number of samples that we allocate for sq.

Without losing generality, s1 denotes the smallest scaling factor and sQ denotes the largest scaling

factor.

3. If (N1 + N2 + ··· + NQ) < N, go to Step 4. Otherwise, go to Step 7.

4. N1 = N1 + Nstep. Update Pg,1
*

* min

,1

1

g

N
P

N
 . (4.58)

5. Based on the linear assumption illustrated in Figure 4-2, update {Pg,q
*; q = 2, 3, ···, Q−1}

 * * * *

, , ,1 ,1

1
exp log log log 2,3, , 1

1
g q g Q g g

q
P P P P q Q

Q

. (4.59)

6. Update {Nq; q = 2, 3, ···, Q−1}

min

*

,

2,3, , 1q

g q

N
N q Q

P
 . (4.60)

 Go to Step 3.

7. Normalize {Nq; q = 1, 2, ···, Q}

 *

1

floor 1,2, ,
Q

q q q

q

N N N N q Q

 . (4.61)

 where floor(•) maps a real number to the largest previous integer, and {Nq
*; q = 1, 2, ···, Q} denote

the normalized numbers.

22.

 77

There are several important clarifications that we need to make for Algorithm 4.1. First, the scaled

failure rates {Pg,q
*; q = 1, 2, ···, Q} are our target failure rates corresponding to the evenly distributed

scaling factors {sq; q = 1, 2, ···, Q}. {Nq
*; q = 1, 2, ···, Q} are the number of samples that we intend to

generate for {sq; q = 1, 2, ···, Q} in order to estimate {Pg,q
*; q = 1, 2, ···, Q}. Note that we do not know {sq;

q = 1, 2, ···, Q} when running Algorithm 4.1. The reason that we can compute {Pg,q
*; q = 1, 2, ···, Q} and

{Nq
*; q = 1, 2, ···, Q} without explicitly knowing {sq; q = 1, 2, ···, Q} is because of the linear assumption,

as illustrated in Figure 4-2. Second, Algorithm 4.1 aims to select scaling factors that have small scaled

failure rates under the constraints that the minimum number of failure samples at selected scaling factors

must be equal to or larger than a pre-defined number Nmin and the total number of samples must be equal to

or smaller than a pre-defined number N. Alternatively speaking, Algorithm 4.1 intends to select small

scaling factors without violating the constraints, which guarantee the estimation accuracy at selected

scaling factors. Third, Algorithm 4.1 does not utilize any information about the circuits. The information of

the circuits will be used when we determine {sq; q = 1, 2, ···, Q} in the second stage (i.e., scaling factor

selection). Last, Algorithm 4.1 does not perform any transistor-level simulations. Hence, the computational

cost of running Algorithm 4.1 is negligible.

Next, we need to determine {sq; q = 1, 2, ···, Q} given {Pg,q
*; q = 1, 2, ···, Q} and {Nq

*; q = 1, 2, ···,

Q} at the second stage, which consists of two steps:

1) Find s1 and sQ.

2) Determine {sq; q = 2, 3, ···, Q−1} based on the assumption that {sq; q = 1, 2, ···, Q} are evenly

distributed.

We can apply various search algorithms (e.g., binary search, etc.) to find s1 and sQ. For instance, we

can apply binary search to find sQ. The simplified searching procedure is described in Algorithm 4.2.

Algorithm 4.2 Binary Search for sQ

1. Start with a pre-defined number Nbatch, the default scaling factor lower bound slow, the default scaling

factor upper bound sup, the scaling factor resolution sstep (e.g., 0.1), Nmin, and NQ
*. Here, Nmin is

defined in Algorithm 4.1, and NQ
* is determined after running Algorithm 4.1.

2. If sup – slow ≥ 2×sstep, go to Step 3. Otherwise, go to Step 4.

3. Compute sQ as sQ = (slow + sup)/2. Generate NQ
*/Nbatch samples and perform transistor-level

 78

simulations to evaluate their performance values. Denote the number of failure samples as NFail.

Proceed according to the following rules:

min

min min

min

Set if

The algorithm is complete if

Set if

low Q Fail

batch

Fail

batch batch

up Q Fail

batch

N
s s N

N

N N
N

N N

N
s s N

N

 (4.62)

 where ∆ is a pre-defined margin number and used to reduce the binary search cost. Go to Step 2.

4. Binary search fails to find our desired scaling factor sQ.

There are several clarifications that we need to make for Algorithm 4.2. First, Algorithm 4.2

assumes that the scaled failure rate monotonically increases with the scaling factor s. In general, this

assumption holds. However, there are some special scenarios where such assumption fails to work, which

will be discussed in detail in Section 4.5. Once such assumption does not hold, binary search described in

Algorithm 4.2 would fail to find our desired scaling factor sQ. Second, the scaling factor resolution sstep and

the margin number ∆ are used to reduce the number of iterations in binary search. In other words, these two

parameters facilitate efficient search of sQ. Third, if sup – slow is too small, we cannot find an appropriate

scaling factor given the default scaling factor range. To fix this, we need to increase the default scaling

factor upper bound if NFail < Nmin/Nbatch − ∆, or decrease the default scaling factor lower bound if NFail >

Nmin/Nbatch + ∆.

Once s1 and sQ are determined, {sq; q = 2, 3, ···, Q−1} can be computed by

 1 1

1
2,3, , 1

1
q Q

q
s s s s q Q

Q

. (4.63)

Once {sq; q = 1, 2, ···, Q} are available, we need to re-calculate the number of samples that we

intend to generate for {sq; q = 1, 2, ···, Q} because a number of samples are consumed by the search

algorithm at Stage 2. Let us use {Nq
search; q = 1, 2, ···, Q} to denote the number of samples that we generate

for {sq; q = 1, 2, ···, Q} at Stage 2, and Nsearch to denote the total number of samples that we spend at Stage

2. There are two things that we need to notice here. First, Nsearch is equal to or larger than the summation of

{Nq
search; q = 1, 2, ···, Q}. Second, Nq

search could be 0, where q 1, 2, ···, Q. To clearly understand these,

 79

let us consider a synthetic example where Q = 5, as shown in Figure 4-3. In Figure 4-3, we use blue color to

highlight the scaling factors that we test when searching s1 and sQ, and green color to highlight the scaling

factors that we eventually select for SSS. For this synthetic example, s1 is 1.6 and sQ is 2.4. To determine s1

and sQ, the search algorithm tests s = {1.5, 1.6, 1.9, 2.1, 2.4 and 2.6}. In other words, the search algorithm

generates samples at s = {1.5, 1.6, 1.9, 2.1, 2.4 and 2.6}, and Nsearch is the total number of samples that we

generate at s = {1.5, 1.6, 1.9, 2.1, 2.4 and 2.6}. Based on s1 and sQ, we select {1.6, 1.8, 2.0, 2.2 and 2.4} for

SSS. From Figure 4-3, we observe that N2
search, N3

search and N4
search are 0 since s = {1.8, 2.0 and 2.2} are not

searched.

Scaling factor 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

Searched

Selected

Figure 4-3. A synthetic example is used to illustrate the relation between {Nq
search; q = 1, 2, ···, Q} and

Nsearch.

The number of samples that we intend to generate for {sq; q = 1, 2, ···, Q} are re-calculated as

*

1

1,2, ,
Q

q search search

q q

q

N
N N N N q Q

N

 . (4.64)

4.3.4 Algorithm Summary

Algorithm 4.3 Scaled-Sigma Sampling (SSS)

1. Given the total number of simulations N, and the number of scaling factors Q.

2. Select a set of scaling factors {sq; q = 1, 2, ···, Q} and determine the number of samples {Nq; q = 1,

2, ···, Q} that we intend to generate for {sq; q = 1, 2, ···, Q} by using the approach mentioned in

Section 4.3.3.

3. For each scaling factor sq where q {1, 2, ···, Q}, sample the scaled PDF g(x) in (4.1) for Gaussian

distribution or (4.31) for Gaussian-Uniform distribution by setting s = sq, and generate Nq scaled

random samples by running transistor-level simulations.

 80

4. Calculate the scaled failure rates {Pg,q
MC; q = 1, 2, ···, Q} by (4.40) based on the simulation results

collected in Step 3.

5. For each estimator Pg,q
MC where q {1, 2, ···, Q}, calculate its variance vg,q

MC by (4.41).

6. Form the Q-dimensional vector logPg
MC by taking the logarithm for the estimated failure rates

{Pg,q
MC; q = 1, 2, ···, Q}, as shown in (4.45).

7. Form the diagonal matrix Σg in (4.48) and the matrix A in (4.50).

8. Calculate the MLE solution θ based on (4.57), where the vector θ is composed of the model

coefficients α, and γ as shown in (4.51).

9. Approximate the failure rate Pf by the estimator Pf
SSS in (4.24).

10. For each estimator Pg,q
MC where q {1, 2, ···, Q}, re-sample the Gaussian distribution in (4.42) for

which the actual mean Pg,q is approximated by its estimated value Pg,q
MC, and generate NRS re-

sampled values {Pg,q
MC(n); n = 1, 2, ···, NRS}.

11. For each data set {Pg,q
MC(n); q = 1, 2, ···, Q} where n {1, 2, ···, NRS}, repeat Step 5~9 to calculate

the failure rate Pf
SSS(n).

12. Based on the data set {Pf
SSS(n); n = 1, 2, ···, NRS}, estimate the confidence interval of the estimator

Pf
SSS.

There is one thing that we need to emphasize for Algorithm 4.3. While most traditional methods cannot

efficiently estimate the rare failure rate in a high-dimensional variation space, the proposed SSS algorithm

does not suffer from such a dimensionality problem. None of the steps in Algorithm 4.3 is sensitive to the

dimensionality of the variation space. As will be demonstrated in Section 4.4, SSS achieves superior

accuracy over the traditional importance sampling method when the dimensionality of the variation space

exceeds a few hundred.

4.4 Experimental Results

In this section, two circuit examples are used to demonstrate the efficacy of the proposed SSS

method. For testing and comparison purposes, three different approaches are implemented: (i) the brute-

force Monte Carlo approach, (ii) the minimum-norm importance sampling (MNIS), and (iii) the proposed

 81

SSS method. The brute-force Monte Carlo approach is used to generate the “golden” failure rate so that the

accuracy of MNIS and SSS can be quantitatively evaluated. The implementation of MNIS consists of two

stages. In the first stage, 2000 transistor-level simulations are used to search the variation space and find the

failure event that is most likely to occur. Next, importance sampling is applied with a shifted Normal

distribution to estimate the rare failure rate. On the other hand, when implementing the proposed SSS

method, 5 different scaling factors are empirically chosen to estimate the failure rate and 200 re-sampled

data points are generated to estimate the confidence interval (i.e., Q = 5 and NRS = 200) in Algorithm 4.3.

4.4.1 Sense Amplifier

Shown in Figure 4-4 is the simplified circuit block diagram for a sense amplifier (SA) designed in a

45nm CMOS process. SA is composed of three blocks: (i) control signal generation block, (ii) bit line

sensing block, and (iii) output driver block. The bit line sensing block is the core component of SA. Once

the bit line sensing block is enabled, voltages on two bit lines (i.e., BL and BLB) are sensed and the voltage

difference between BL and BLB is amplified. If VBL is larger than VBLB, the bit line sensing block is

supposed to output 1. Otherwise, it outputs 0. In this example, the BL and BLB voltages are initially set to

1.1V and 1.2V respectively. If the output of SA is 0, the SA is considered as “PASS”. Otherwise, it is

considered as “FAIL”.

In this SA example, we have 45 transistors and each transistor consists of a number of multipliers.

To consider process variations, 4 independent Normal random variables are used to model the random

mismatch of each multiplier in the process design kit. In total, there are 552 independent Normal random

variables.

Control signal

generation

block

Bit line (BL)

sensing

block

Output driver

block

BL BLB

Figure 4-4. Simplified circuit block diagram is shown for a sense amplifier.

We first apply the brute-force Monte Carlo approach with 3.5×106 random samples and the

estimated failure rate is 7.1×10−6. It is considered as the “golden” result to evaluate the accuracy for other

 82

two methods in our experiment. Next, we apply the proposed SSS method (i.e., Algorithm 4.3) to estimate

the failure rate. Figure 4-5 shows 5 empirically selected scaling factors {sq; q = 1, 2, ···, 5} and their

corresponding scaled failure rates {Pg,q
MC; q = 1, 2, ···, 5}. In total, 104 transistor-level simulations are used

to search and generate these 5 data points {(sq, Pg,q
MC); q = 1, 2, ···, 5}. The black curve in Figure 4-5

shows the analytical model in (4.19) that is optimally fitted by MLE. The SA failure rate is then predicted

by the estimator Pf
SSS in (4.24) based on the extrapolation at s = 1. Figure 4-6 further shows the histogram

generated by re-sampling, as described in Algorithm 4.3. The histogram is calculated from 200 re-sampled

data points, and is used to estimate the confidence interval of the estimator Pf
SSS. In our experiment, we

notice that the computational cost of SSS is completely dominated by the transistor-level simulations

required to generate the random samples. The computational time of post-processing the sampling data in

Algorithm 4.3 takes less than 0.2 second and, hence, is negligible.

1 1.5 2 2.5 3 3.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Figure 4-5. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

 83

10
-7

10
-6

10
-5

10
-4

0

5

10

15

20

25

30

35

40

P
f
SSS

N
u

m
b

er
 o

f
sa

m
p

le
s

Figure 4-6. A histogram is generated by 200 re-sampled data points to estimate the confidence interval of

the estimator Pf
SSS.

Table 4-1 compares the failure rates and the 95% confidence intervals estimated by MNIS and SSS

based on different numbers of transistor-level simulations. Studying Table 4-1 reveals two important

observations. First, the failure rate estimated by MNIS is substantially different from the golden result (i.e.,

7.1×106). We believe that MNIS fails to identify the critical failure region that is most likely to occur,

since the variation space is high-dimensional (i.e., consisting of 552 independent random variables) in this

example. Therefore, the importance sampling implemented at the second stage of MNIS fails to estimate

the failure rate accurately. On the other hand, the proposed SSS method accurately estimates the failure rate.

Table 4-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS and SSS (“golden” failure rate =

7.1×106)

of Sims MNIS SSS

 84

Pf
L Pf Pf

U Pf
L Pf Pf

U

6000 0 1.5×10−15 3.1×10−15 9.0×10−7 4.4×10−5 2.3×10−4

7000 0 1.2×10−15 2.5×10−15 9.4×10−7 3.8×10−5 2.0×10−4

8000 0 1.1×10−13 3.1×10−13 6.2×10−7 2.0×10−5 1.7×10−4

9000 0 4.1×10−13 1.1×10−12 4.5×10−7 1.1×10−5 8.8×10−5

10000 0 3.6×10−13 9.2×10−13 5.1×10−7 1.0×10−5 7.9×10−5

10
-8

10
-6

10
-5

0

5

10

15

20

25

30

P
f
L

N
u

m
b

er
 o

f
sa

m
p

le
s

Figure 4-7. Histogram of the lower bound of the 95% confidence interval [Pf
L, Pf

U] is estimated from 200

repeated runs.

Second, but more importantly, the 95% confidence interval estimated by MNIS is not accurate

 85

either. As shown in Table 4-1, MNIS does not result in a confidence interval [Pf
L, Pf

U] that overlaps with

the golden failure rate (i.e., 7.1×106). In other words, the confidence interval estimated by MNIS based on

importance sampling is highly biased. On the other hand, the confidence interval estimated by the proposed

SSS method accurately covers the golden failure rate and, hence, is more reliable than the traditional MNIS

approach.

10
-5

10
-4

10
-3

0

10

20

30

40

50

60

70

80

90

P
f
U

N
u

m
b

er
 o

f
sa

m
p

le
s

Figure 4-8. Histogram of the upper bound of the 95% confidence interval [Pf
L, Pf

U] is estimated from 200

repeated runs.

In order to further validate the confidence interval estimated by SSS, we repeatedly run Algorithm

4.3 for 200 times. During each run, the failure rate and the corresponding 95% confidence interval [Pf
L, Pf

U]

are estimated from 104 transistor-level simulations, resulting in 200 different values for both Pf
L and Pf

U.

Figure 4-7 and Figure 4-8 show the histograms of these 200 values for Pf
L and Pf

U, respectively. For only 9

cases out of 200 runs, the 95% confidence interval [Pf
L, Pf

U] does not overlap with the golden failure rate

(i.e., 7.1×106). In other words, the probability for the golden failure rate to fall out of the estimated

 86

confidence interval is 9/200 ≈ 5%. It, in turn, demonstrates that our confidence interval estimation based on

bootstrap re-sampling is accurate and it is practically more attractive than the traditional MNIS method

based on importance sampling.

4.4.2 SRAM Write Path

Shown in Figure 4-9 is the simplified block diagram for an SRAM write path designed in a TSMC

65nm CMOS process. The write path is composed of two components: data generation block and SRAM

column block. The data generation block generates complementary values (i.e., data and datab) to drive BL

and BLB to desired voltages. SRAM column block consists of 16 6-T SRAM bit-cells. In this example, we

set BL and BLB to VDD and 0, respectively, and then activate WL<0>. BL and BLB will drive bit-cell<0>

from 0 to 1. To mimic the worst-case scenario, we initially store 0 in all the bit-cells, as shown in Figure 4-

9. If the bit-cell<0> stores 1 after the write operation, the write path is considered as “PASS”. Otherwise,

the write path is considered as “FAIL”. In our experiment, VDD is set to 0.7V to test the circuit yield at the

low power mode.

Data

generation

block
bit-cell<15>

bit-cell<0>

bit-cell<1>

0 1

BLB

WL<0>

0 1

0 1

BL

WL<1>

WL<15>

SRAM

Column

data

datab

BL BLB

Figure 4-9. Simplified circuit block diagram is shown for an SRAM write path.

In this write path example, we have 179 transistors, and 2 independent Normal random variables are

used to model the random mismatch of each transistor in the process design kit. In total, there are 358

independent Normal random variables.

We apply our proposed SSS method (i.e., Algorithm 4.3) to estimate the failure rate for this SRAM

 87

write path. Figure 4-10 shows 5 empirically selected scaling factors {sq; q = 1, 2, ···, 5} and their

corresponding scaled failure rates {Pg,q
MC; q = 1, 2, ···, 5}. In total, 104 transistor-level simulations are used

to search and generate these 5 data points {(sq, Pg,q
MC); q = 1, 2, ···, 5}. The black curve in Figure 4-10

shows the analytical model in (4.19) that is optimally fitted by MLE. The write path failure rate is then

predicted by the estimator Pf
SSS in (4.24) based on the extrapolation at s = 1. In this example, the estimated

failure rate by SSS is 4.6×1012. The failure rate is so small that we cannot afford the brute-force Monte

Carlo approach for further validation. It, in turn, demonstrates that the proposed SSS approach can

efficiently estimate extremely rare failure rates with a low computational cost in a high-dimensional

variation space.

1 2 3 4 5 6 7
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Figure 4-10. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

4.5 Algorithm Limitations

 88

A successful application of SSS is based on several assumptions:

1. We have enough space between the smallest scaling factor s1 and the largest scaling factor sQ to

allocate Q scaling factors given that the distance between two adjacent scaling factors cannot be

smaller than the user-determined scaling factor resolution value sstep. In other words, the distance

between s1 and sQ (say, dS1→SQ) cannot be smaller than (Q−1)×sstep, i.e., dS1→SQ ≥ (Q−1)×sstep. In this

thesis, we set Q to 5 to avoid over-fitting for the model template in (4.19) and (4.36). sstep is

empirically set to 0.1 so that the selected scaling factors can cover a reasonable range.

In most scenarios, this assumption holds. However, in some cases, the scaled failure rate

dramatically changes with the scaling factor, making dS1→SQ < (Q−1)×sstep. Once this occurs, SSS

fails to estimate our interested failure rate. To clearly understand this scenario, let us consider

synthetic test cases that have the following failure region

2

1

M

m

m

x spec

x (4.65)

 where spec denotes the user-defined performance specification. For illustration purposes, a 2-

dimensional example with the failure region defined in (4.65) is shown in Figure 4-11, where the red

color area Ω denotes the failure region.

x1

x2

Ω

Figure 4-11. A 2-dimensional example is used to illustrate the failure region defined in (4.65).

 To begin with, we set M to 10, and spec to 46.9 in (4.65). The corresponding failure rate Pf is equal

 89

to 106 in this synthetic example. Then, we run SSS to estimate the failure rate. As shown in Figure

4-12, the red curve denotes the real scaled failure rate computed by the analytical calculation, and

the blue curve denotes the scaled failure rate estimated by SSS. Five blue stars represent 5 scaling

factors selected by SSS. The red curve and the blue curve almost overlap around s = 1.0, implying

that SSS accurately estimates our interested failure rate in this synthetic example.

1 1.2 1.4 1.6 1.8 2 2.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Estimated

Sampled

Figure 4-12. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

The blue curve denotes the scaled failure rate estimated by SSS, and the red curve denotes the real scaled

failure rate. The failure region is defined in (4.65) where M = 10 and spec = 46.9.

 Next, we set M to 100, and spec to 182.1 in (4.65). The corresponding failure rate is also 106. The

scaled failure rate estimated by SSS is plotted as a function of the scaling factor, as shown in Figure

4-13. The red curve and the blue curve are very close to each other around s = 1.0 and, hence, SSS

again accurately estimates the failure rate in this synthetic example.

 90

1 1.1 1.2 1.3 1.4 1.5 1.6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Estimated

Sampled

Figure 4-13. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

The blue curve denotes the scaled failure rate estimated by SSS, and the red curve denotes the real scaled

failure rate. The failure region is defined in (4.65) where M = 100 and spec = 182.1.

 Studying Figure 4-12 and Figure 4-13, we observe that the scaled failure rate increases much faster

at M = 100 than that at M = 10, resulting in a much smaller dS1→SQ at M = 100. If we further increase

M, dS1→SQ will further decrease. To verify this, we increase M to 200 and set spec to 309.8 (the

corresponding failure rate is still 106). The largest scaling factor sQ found by Algorithm 4.2 is 1.2

and dS1→SQ = 0.1. dS1→SQ is so small that we do not have enough space to allocate Q (i.e., 5) scaling

factors. Because of this, SSS fails to work in this synthetic example where M = 200. Figure 4-14

shows the real scaled failure rate as a function of the scaling factor. Since SSS fails to work, we do

not show any results from SSS in Figure 4-14. From Figure 4-14, we observe that the scaled failure

rate dramatically increases with the scaling factor, which is the fundamental reason that the

 91

proposed SSS approach fails in this scenario.

 Such failure can be detected. If SSS reports that the largest scaling factor is too close to s = 1.0, we

know that the scaled failure rate dramatically increases with the scaling factor in our test case. We

can apply other approaches (e.g., the brute-force Monte Carlo) to estimate the failure rate.

1 1.1 1.2 1.3 1.4 1.5 1.6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Figure 4-14. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.65) where M = 200 and spec = 309.8.

2. Another assumption that we implicitly make when applying SSS is that the scaled failure rate

monotonically increases with the scaling factor. In general scenarios, this assumption is true.

However, there exist some special cases where this assumption does not hold. Once this occurs, we

may not get any benefit from applying SSS. More specifically, estimating scaled failure rates could

be extremely expensive. In what follows, we will present two scenarios where this assumption may

fail.

Scenario 1: let us consider synthetic test cases with the following failure region:

 92

2

1

2

0.001 4
M

m

m

x x

x (4.66)

 For illustration purposes, a 2-dimensional example with the failure region defined in (4.66) is shown

in Figure 4-15, where the red color area Ω denotes the failure region.

x1

x2

Ω0 4

Figure 4-15. A 2-dimensional example is used to illustrate the failure region defined in (4.66).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Estimated

Sampled

Figure 4-16. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

The blue curve denotes the scaled failure rate estimated by SSS, and the red curve denotes the real scaled

failure rate. The failure region is defined in (4.66) where M = 10.

 93

 We first set M to 10 in (4.66). The failure rate is 3.0×105 in this synthetic example. Then, we run

SSS to estimate the failure rate. As shown in Figure 4-16, the red curve denotes the real scaled

failure rate computed by the analytical calculation, and the blue curve denotes the scaled failure rate

estimated by SSS. Five blue stars represent 5 scaling factors selected by SSS. The red curve and the

blue curve are close to each other around s = 1.0, implying that SSS accurately estimates our

interested failure rate in this synthetic example.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Figure 4-17. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.66) where M = 100.

 Next, we set M to 100 in (4.66). The corresponding failure rate is 2.1×105. Figure 4-17 shows the

real scaled failure rate as a function of the scaling factor. From Algorithm 4.1, we see that the scaled

failure rate Pg,Q corresponding to the largest scaling factor sQ is equal to our pre-determined number

Pmax, which is empirically set to 0.3 in Algorithm 4.1. Algorithm 4.2 aims to find a scaling factor

whose corresponding scaled failure rate is around Pg,Q, and then consider this scaling factor as sQ.

 94

From Figure 4-17, we can see that the scaled failure rate is much smaller than Pg,Q even at s = 6.0.

Hence, Algorithm 4.2 cannot find a scaling factor to serve as sQ in this example. Because of this,

SSS fails to work, and we do not show any results from SSS in Figure 4-17. Though an appropriate

sQ is not found in this example, the scaled failure rates corresponding to a number of scaling factors

are still obtained after running Algorithm 4.2 because the scaled failure rate is easy to estimate when

the scaling factor is large in this example (e.g., the scaled failure rate is 0.06 when s = 3.2). As long

as we have some non-zero estimated scaled failure rates after running Algorithm 4.2, it is possible

that we make SSS work for this example by decreasing the default Pmax value in Algorithm 4.1. In

other words, such failure is detectable, and could be fixed.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Figure 4-18. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.66) where M = 500.

 Last, we further increase M to 500. The corresponding failure rate is 3.4×106. Figure 4-18 shows

the real scaled failure rate as a function of the scaling factor. From Figure 4-18, we can see that the

 95

scaled failure rate does not monotonically increase with the scaling factor, and is not easy to

estimate even if the scaling factor is very large. Similar to M = 100, we cannot find a scaling factor

to serve as sQ in this example. Because of this, SSS fails to work, and we do not show any results

from SSS in Figure 4-18. Unlike M = 100 where we could get several non-zero estimated scaled

failure rates after running Algorithm 4.2, all the scaled failure rates are estimated as zero since we

only afford a few hundred or thousand samples in total for Algorithm 4.2. Once this occurs, we do

not exactly know how to explain the result. One possible scenario is that our interested failure event

is indeed very rare. Even if we increase the process variations by a very large factor, we still barely

observe the failure. If this is true, we could claim that the circuit is robust. Another possible scenario

is illustrated in Figure 4-18. Namely, though the scaled failure rates are not easy to estimate, our

interested failure event is actually not rare. Without extra information, we do not know whether SSS

fails to work or the circuit is indeed robust. In other words, such failure cannot be detected, and is

hard to fix.

x1

x2

Ω

0 R1 R2

Figure 4-19. A 2-dimensional example is used to illustrate the failure region defined in (4.67).

 Scenario 2: let us consider synthetic test cases with the following failure region:

2 2 2

1 2

1

M

m

m

R x R

x (4.67)

 where R1 and R2 are user-defined performance specifications. For illustration purposes, a 2-

dimensional example with the failure region defined in (4.67) is shown in Figure 4-19, where the red

 96

color area Ω denotes the failure region.

1 1.5 2 2.5 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Estimated

Sampled

Figure 4-20. The scaled failure rate Pg is plotted as a function of the scaling factor s where the blue stars

represent 5 selected scaling factors and the estimated failure rates corresponding to these scaling factors.

The blue curve denotes the scaled failure rate estimated by SSS, and the red curve denotes the real scaled

failure rate. The failure region is defined in (4.67) where M = 2, R1 = 5.3 and R2 = 8.3.

 We first set M to 2, R1 to 5.3 and R2 to 8.3 in (4.67). The failure rate is 1.0×106 in this synthetic

example. Then, we run SSS to estimate the failure rate. As shown in Figure 4-20, the red curve

denotes the real scaled failure rate computed by the analytical calculation, and the blue curve

denotes the scaled failure rate estimated by SSS. Five blue stars represent 5 scaling factors selected

by SSS. The red curve and the blue curve are close to each other around s = 1.0, implying that SSS

accurately estimates our interested failure rate in this synthetic example.

 97

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Figure 4-21. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.67) where M = 10, R1 = 6.8 and R2 = 9.7.

 Next, we set M to 10, R1 to 6.8, and R2 to 9.7 in (4.67). The corresponding failure rate is 1.0×106.

Figure 4-21 shows the real scaled failure rate as a function of the scaling factor. From Figure 4-21,

we can see that the scaled failure rate does not monotonically increase with the scaling factor. Since

the binary search algorithm described in Algorithm 4.2 requires monotonicity and the scaled failure

rate is much smaller than Pmax when the scaling factor is large, Algorithm 4.2 cannot find a scaling

factor to serve as sQ in this example. Because of this, SSS fails to work, and we do not show any

results from SSS in Figure 4-21. Though an appropriate sQ is not found in this example, the scaled

failure rates corresponding to a number of scaling factors are still obtained after running Algorithm

4.2 because the scaled failure rate is easy to estimate when the scaling factor is not too close to s =

1.0 in this example (e.g., the scaled failure rate is 0.47 when s = 3). As long as we have some non-

zero estimated scaled failure rates after running Algorithm 4.2, it is possible that we make SSS work

 98

for this example by decreasing the default Pmax value in Algorithm 4.1. In other words, such failure

is detectable, and could be fixed.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-40

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

Scaling factor s

S
ca

le
d

 f
ai

lu
re

 r
at

e
 P

g

Real

Figure 4-22. The real scaled failure rate Pg is plotted as a function of the scaling factor s. The failure region

is defined in (4.67) where M = 100, R1 = 13.5 and R2 = 16.0.

 Last, we further increase M to 100, R1 to 13.5, and R2 to 16.0 in (4.67). The corresponding failure

rate is 1.0×106. Figure 4-22 shows the real scaled failure rate as a function of the scaling factor.

From Figure 4-22, we can see that the scaled failure rate does not monotonically increase with the

scaling factor, and is almost impossible to estimate when the scaling factor is large. Similar to M =

10, we cannot find a scaling factor to serve as sQ in this example. Because of this, SSS fails to work,

and we do not show any results from SSS in Figure 4-22. Unlike M = 10 where we could get several

non-zero estimated scaled failure rates after running Algorithm 4.2, all the scaled failure rates are

estimated as zero since we only afford a few hundred or thousand samples in total for Algorithm 4.2.

Without extra information, we do not know whether SSS fails to work or the circuit is indeed robust.

 99

In other words, such failure cannot be detected, and is hard to fix.

For most test cases, these assumptions hold and we can safely apply the proposed SSS approach.

Once these assumptions do not hold, we can apply other approaches (e.g., the brute-force Monte Carlo

approach) or modify SSS (e.g., change Pmax value in Algorithm 4.1) to fix the issue given that we can detect

it. For some test cases, unfortunately, the assumptions are not satisfied and we are not able to detect it so far.

One important future research direction is to develop efficient approaches to handle these cases.

 100

Chapter 5 Bayesian Scaled-Sigma Sampling

Bayesian Scaled-Sigma Sampling

Generally speaking, a circuit design takes several iterations to complete, as illustrated in Figure 5-1.

To begin with, we start with an initial design (i.e., 1st design). If the 1st design meets all the design

specifications, we are lucky and the design process is complete. Otherwise, we need to tune the 1st design

to improve its performance, and we obtain a 2nd design. Next, we verify the performance of the 2nd

design. If the 2nd design meets all the design specifications, we are done. Otherwise, we need to repeat the

aforementioned steps until we obtain a design that can meet all the design specifications. The design

process may take several iterations before we converge to the final design. In other words, we may have a

number of design candidates (i.e., 1st design, 2nd design, 3rd design, 4th design, 5th design, etc.) during

this process.

Pass?Design

Verification
2nd Design

Pass?Design

Verification
1st Design Done

Yes

No

Done
Yes

No

Figure 5-1. A simplified block diagram is shown for the circuit design and verification flow.

Production yield is an important design requirement and, hence, yield verification is crucial at the

design verification stage. For circuits that have small failure probabilities, rare failure rate estimation

 101

approaches are applied for efficient yield verification. If the circuit has a small number of random

variables, we can apply the traditional yield estimation approaches [24]-[45] to estimate the failure rate (or

yield) for each design candidate. Otherwise, if the dimensionality of the circuit is large, we can apply our

proposed SUS and SSS to estimate the failure rate (or yield) for each design candidate. These approaches

(i.e., traditional approaches [24]-[45] and our proposed SUS and SSS) require a few thousand simulations

to estimate the failure rate for each design candidate, as demonstrated in [24]-[45], Section 3.5 and Section

4.4. Since we have a number of design candidates before we converge to the final design, tens of thousands

of simulations in total may be needed over the entire design process, which can be extremely expensive.

To further reduce the simulation cost, we propose a novel Bayesian scaled-sigma sampling (BSSS)

approach to analyze the rare circuit failure event in the high-dimensional space. BSSS can be considered as

an extension of SSS. The extension is motivated by an important observation of SSS. Studying the

theoretical definition of the three model coefficients shown in (4.20)-(4.22) and (4.37)-(4.39), we observe

that

 O1: The first two model coefficients (i.e., α and β) strongly depend on the dimensionality (i.e., M) of

the variation space, but are weakly dependent of the location of the failure region Ω.

 O2: The third model coefficient (i.e.,) is determined by the hyper-rectangle that is inside the failure

region Ω and is closest to the origin x = 0. Alternatively speaking, strongly depends on the location

of the failure region Ω.

To fully understand the implication of this observation, let us consider two design candidates (i.e.,

an early design and a late design). We assume that the early design does not meet the performance

specification and, hence, the late design is created from the early design by tuning its design variables (e.g.,

transistor sizes) to improve performance. The SSS models for these two design candidates are as follows

 , 2
log log E

E g E EP s
s

 (5.1)

 , 2
log log L

L g L LP s
s

 (5.2)

where [αE βE E] and [αL βL L] denote the model coefficients of the early and late designs respectively. Note

that θE = [αE βE E]T is already fitted for the early design before we start to work on the late design. Our

 102

objective is to efficiently fit θL = [αL βL L]T in order to estimate the rare failure rate for the late design.

In this example, the dimensionalities of the early and late designs are likely to be similar or even

identical. However, their failure regions can be different. Based on the observation (i.e., O1 and O2), we

can expect that

 αE (or βE) and αL (or βL) are likely to be similar, and

 E and L can be substantially different.

Such a similarity between the model coefficients has not been explored by the aforementioned SSS

approach. In this section, we further propose a novel Bayesian scaled-sigma sampling (BSSS) approach to

take advantage of the aforementioned knowledge. In particular, BSSS encodes the “similarity” between θE

and θL as a prior distribution pdf(θL), and applies the Bayesian model fusion (BMF) technique [60]-[69] to

solve θL by maximum-a-posteriori (MAP) estimation [72]

 max

L

L L Lpdf pdf pdf
θ

θ D θ D θ (5.3)

where D denotes the simulation data collected for the late design and pdf(D | θL) denotes the likelihood of

observing the data D.

The key difference between BSSS and SSS lies in the fact that BSSS maximizes the product of the

prior distribution pdf(θL) and the likelihood pdf(D | θL) by MAP, while SSS only maximizes the likelihood

pdf(D | θL) by MLE. As long as the prior distribution pdf(θL) is properly defined, MAP can reduce the

amount of required simulation data and, hence, the model fitting cost without surrendering any accuracy, as

demonstrated in [60]-[69]. In other words, BSSS can be more efficient than SSS if pdf(θL) is appropriately

defined.

Our proposed BSSS method consists of two major steps: (i) constructing a prior distribution pdf(θL)

based on the similarity between θE and θL, and (ii) optimally determining θL by MAP estimation. In what

follows, we will describe these two steps in detail.

5.1 Prior Definition

Based on our knowledge of “similarity”, we define αL and βL as two Normal random variables

 103

2

2

1
exp

22

L E

Lpdf

 (5.4)

2

2

1
exp

22

L E

Lpdf

 (5.5)

where αE and βE are the means of αL and βL respectively, and σα and σβ denote the standard deviations of αL

and βL respectively. In (5.4)-(5.5), the standard deviations σα and σβ can be optimally estimated by MLE, as

will be further discussed at the end of this sub-section. Because a Normal distribution peaks at its mean

value, the model coefficient αL (or βL) for the late design is unlikely to substantially deviate from its mean

value αE (or βE) which is the model coefficient for the early design. Restating in words, the prior

distributions defined in (5.4)-(5.5) attempt to capture the similarity between αE (or βE) and αL (or βL).

On the other hand, since E and L can be substantially different, we have no prior knowledge about

L. Hence, we can only define a non-informative prior [72] for L

1
,

0 else

L

L

l u
u lpdf

 (5.6)

where lγ and uγ denote the lower and upper bounds for L respectively. When defining pdf(L) in (5.6), we

should choose lγ to be sufficiently small and uγ to be sufficiently large. As such, L is uniformly distributed

over a large range, implying that we do not know the value of L in advance.

Next, we need to combine (5.4)-(5.6) to define the joint distribution for θL = [αL βL L]T. Since we do

not know the correlation among αL, βL, and L, we simply assume that they are independent

 L L L Lpdf pdf pdf pdf θ . (5.7)

The correlation information will be learned from the data D, when applying MAP estimation in the next

sub-section.

Last, let us discuss how to determine the values for σα and σβ in (5.4)-(5.5). In this thesis, we apply

MLE to determine the optimal values for σα and σβ

,
max ,pdf

 D (5.8)

where pdf(D | σα, σβ) can be expressed as

 104

 , , , ,

L L

L L L L Lpdf pdf d pdf pdf d
θ θ

D D θ θ D θ θ θ . (5.9)

Substituting (5.7) into (5.9), we have

 ,

L

L L L L Lpdf pdf pdf pdf pdf d
θ

D D θ θ .
(5.10)

If lγ is sufficiently small and uγ is sufficiently large, pdf(L) in (5.6) becomes a constant. Hence, pdf(D | σα,

σβ) in (5.10) is proportional to

 ,

L

L L L Lpdf pdf pdf pdf d
θ

D D θ θ .
(5.11)

Given (5.4)-(5.5), pdf(αL)·pdf(βL) in (5.11) can be expressed as

 1

0 0 01 2

0

1 1
exp

22

T

L L L Lpdf pdf

C θ θ Σ C θ θ

Σ
 (5.12)

where

 0

T

E E θ (5.13)

2

0 2

0

0

Σ (5.14)

1 0 0

0 1 0

C . (5.15)

Without losing generality, we assume that Q scaling factors {sq; q = 1, 2, ···, Q} are selected in Algorithm

4.3, and the estimated scaled failure rates corresponding to these scaling factors are {Pg,q
MC; q = 1, 2, ···,

Q}. Therefore, the dataset D = {(sq, logPg,q
MC); q = 1, 2, ···, Q}. According to (4.44), pdf(D | θL) in (5.11)

can be expressed as

 1

1 22

1 1
exp log log

22

T
MC MC

L g L g g LQ

g

pdf

D θ P A θ Σ P A θ

Σ
 (5.16)

where logPg
MC, Σg, and A are defined in (4.45), (4.48), and (4.50) respectively. Substituting (5.12) and

(5.16) into (5.11), we have

1

1 2

0

1

0 0 0

1
log log

2
, exp

1

2
L

T
MC MC

g L g g L

L
T

L L

pdf d

θ

P A θ Σ P A θ

D Σ θ

C θ θ Σ C θ θ

. (5.17)

 105

Given (5.17), the optimization problem in (5.8) becomes

1

1 2

0
,

1

0 0 0

1
log log

2
max exp

1

2
L

T
MC MC

g L g g L

L
T

L L

obj d

θ

P A θ Σ P A θ

Σ θ

C θ θ Σ C θ θ

 (5.18)

where Σ0 contains σα and σβ. The objective function in (5.18) can be re-written as

1 1

0

1 2 1 1

0 0 0

1 1

0 0 0

1

2

exp log

1
log log

2

L

T T T

L g L

T
MC T

g g L L

T
MC MC T

g g g

obj d

θ

θ A Σ A C Σ C θ

Σ P Σ A θ Σ C θ θ

P Σ P θ Σ θ

. (5.19)

Define

1 1

0

T T

g

 H A Σ A C Σ C (5.20)

 1 1

0 0log
T

MC T

g g

 J P Σ A θ Σ C (5.21)

 1 1

0 0 0log log
T

MC MC T

g g g

 L P Σ P θ Σ θ . (5.22)

Given (5.20)-(5.22), Eq. (5.19) can be simplified as

1 2

0

1
exp 2

2
L

T

L L L Lobj d

θ

Σ θ H θ J θ L θ . (5.23)

We further define

1 T

θ
μ H J (5.24)

1

θ
Σ H . (5.25)

Given (5.24) and (5.25), Eq. (5.23) can be re-written as

1/2
3 1 1

1 23 2 1 1

0

8 21 1
exp

22
L

T T

L L L

LT T
obj d

θ θ θ θ

θ θ θ θ θ θθ θ

Σ θ Σ θ μ Σ θ
θ

Σ μ Σ μ L μ Σ μΣ
. (5.26)

Eq. (5.26) can be further simplified as

 106

1/2
3

1

0

1

1 23 2

1/2
3

1

0

8 1
exp

2

1 1
exp

22

8 1
exp

2

L

T

T

L L L

T

obj

d

θ

θ θ θ

θ θ θ

θ θ

θ

θ θ θ

Σ
L μ Σ μ

Σ

θ μ Σ θ μ θ
Σ

Σ
L μ Σ μ

Σ

. (5.27)

Substituting (5.24) and (5.25) into (5.27), we have

1/2

3
1

0

8 1
exp

2

Tobj

L J H J
H Σ

. (5.28)

Given (5.28), the optimization problem in (5.18) can be re-written as

1/2

3
1

,
0

8 1
max exp

2

Tobj

L J H J

H Σ
. (5.29)

Take logarithm on the objective function obj in (5.29). The optimization problem in (5.29) is cast to an

equivalent optimization problem

1

0
,

min log log Tobj

 Σ H L J H J (5.30)

where Σ0, H, J, and L are defined in (5.14), (5.20), (5.21), and (5.22) respectively. The objective function

obj in (5.30) is not convex. In this thesis, we sweep values for σα and σβ in a large range, and compute obj

in (5.30) for every sweeping point. Based on the obj values at all the sweeping points, we pick up σα and σβ

that correspond to the minimum obj as the optimal σα and σβ. Since computing obj at each sweeping point is

computationally efficient, the computational cost for solving (5.30) is negligible. Once σα and σβ are found,

the prior distribution in (5.7) is fully determined.

5.2 Model Fitting via Bayesian Model Fusion (BMF)

Once the prior distribution in (5.7) is defined, we apply BMF [60]-[69] to solve θL by MAP

estimation, as shown in (5.3). Substituting (5.6)-(5.7) into (5.3) yields

 107

 ,
max

0 elseL

L L L L

L

pdf pdf pdf l u
pdf

θ

D θ
θ D (5.31)

where θL = [αL βL L]T. According to (5.12) and (5.16), we observe that pdf(αL)·pdf(βL)·pdf(D | θL) is always

positive. Hence, the optimal L value for the optimization problem in (5.31) must belong to [lγ uγ], and the

optimization problem in (5.31) is then cast to an equivalent problem

 max

. . ,

L

L L L

L

pdf pdf pdf

s t l u

θ
D θ

. (5.32)

Substituting (5.12) and (5.16) into (5.32), we have

1

0 0 0

1 21 22 1
1

0

1

1 2
max exp

12 log log
2

. . ,

L

T

L L

Q T
MC MC

g
L g g L g

Ls t l u

θ

C θ θ Σ C θ θ

Σ Σ A θ P Σ A θ P
. (5.33)

Eq. (5.33) can be re-written as

 1 1

0 0 0min log log

. . ,

L

TT MC MC

L L L g g L g

Ls t l u

θ
C θ θ Σ C θ θ A θ P Σ A θ P

. (5.34)

In this work, we set lγ to a sufficiently small number and uγ to a sufficiently large number. Because of this,

we assume that the constraint in (5.34) is always met. The constrained optimization problem in (5.34) is

then simplified as an unconstrained optimization problem

 1 1

0 0 0min log log
L

TT MC MC

L L L g g L g

θ

C θ θ Σ C θ θ A θ P Σ A θ P . (5.35)

It is straightforward to prove that the cost function in (5.35) is convex [73]. Hence, its global optimum can

be directly solved by applying the first-order optimality condition [73]

1

1 1 1 1

0 0 0logMAP T T T MC T

L g g g

 θ A Σ A C Σ C A Σ P C Σ θ (5.36)

where logPg
MC, Σg, A, θ0, Σ0, C are defined in (4.45), (4.48), (4.50), (5.13), (5.14), and (5.15) respectively.

Once the MAP solution θL
MAP = [αL

MAP βL
MAP L

MAP]T for the late design is obtained, the rare failure

rate Pf is calculated as

 expBSSS MAP MAP

f L LP . (5.37)

 108

5.3 Confidence Interval Estimation

Similar to SSS, we apply bootstrap [70] to accurately estimate the confidence interval of the

proposed BSSS estimator in (5.37). The key idea of bootstrap is to re-generate a large number of datasets

{D(n); n = 1, 2, ···, NBOOT} based on a statistical model without running additional transistor-level

simulations. These datasets {D(n); n = 1, 2, ···, NBOOT} are then used to repeatedly run BSSS for NBOOT times

and we get NBOOT different failure rates {Pf
BSSS(n); n = 1, 2, ···, NBOOT}. Based on {Pf

BSSS(n); n = 1, 2, ···,

NBOOT}, the statistics (hence, the confidence interval) of the estimator Pf
BSSS can be accurately estimated.

More details about the bootstrap approach can be found in Section 4.3.2.

5.4 Algorithm Summary

Algorithm 5.1 Bayesian Scaled-Sigma Sampling (BSSS)

1. Start from the model coefficients θE for the early design.

2. Given the total number of simulations N, and the number of scaling factors Q.

3. Select a set of scaling factors {sq; q = 1, 2, ···, Q} and determine the number of samples {Nq; q = 1,

2, ···, Q} that we intend to generate for {sq; q = 1, 2, ···, Q} by using the approach mentioned in

Section 4.3.3.

4. For each scaling factor sq where q {1, 2, ···, Q}, sample the scaled PDF g(x) in (4.1) for Gaussian

distribution or (4.31) for Gaussian-Uniform distribution by setting s = sq, and generate Nq scaled

random samples by running transistor-level simulations.

5. Calculate the scaled failure rates {Pg,q
MC; q = 1, 2, ···, Q} by (4.40) based on the simulation results

collected in Step 4.

6. For each estimator Pg,q
MC where q {1, 2, ···, Q}, calculate its variance vg,q

MC by (4.41).

7. Form the Q-dimensional vector logPg
MC by taking the logarithm for the estimated failure rates

{Pg,q
MC; q = 1, 2, ···, Q}, as shown in (4.45).

8. Form the diagonal matrix Σg in (4.48) and the matrix A in (4.50).

 109

9. Determine the optimal σα and σβ by solving the optimization problem in (5.30), where Σ0, H, J, and

L are defined in (5.14), (5.20), (5.21), and (5.22) respectively.

10. Form the prior distribution for θL by using (5.4)-(5.7).

11. Calculate the MAP solution θL based on (5.36), where the vector θL is composed of the model

coefficients α, and γ.

12. Approximate the failure rate Pf by the estimator Pf
BSSS in (5.37).

13. For each estimator Pg,q
MC where q {1, 2, ···, Q}, re-sample the Gaussian distribution in (4.42) for

which the actual mean Pg,q is approximated by its estimated value Pg,q
MC, and generate NRS re-

sampled values {Pg,q
MC(n); n = 1, 2, ···, NRS}.

14. For each data set {Pg,q
MC(n); q = 1, 2, ···, Q} where n {1, 2, ···, NRS}, repeat Step 6~12 to calculate

the failure rate Pf
BSSS(n).

15. Based on the data set {Pf
BSSS(n); n = 1, 2, ···, NRS}, estimate the confidence interval of the estimator

Pf
BSSS.

Algorithm 5.1 summarizes the simplified flow of the proposed BSSS approach. It assumes that the

model coefficients θE for the early design are already given, and our objective is to estimate the rare failure

rate for a late design. If the prior knowledge encoded by θE is accurate, BSSS is expected to offer superior

accuracy over the proposed SSS method, as will be demonstrated by the numerical example in the next

section.

5.5 Experimental Results

In this section, the sense amplifier shown in Figure 4-4 is used to demonstrate the efficacy of the

proposed BSSS method. As mentioned in 4.4.1, the BL and BLB voltages are initially set to 1.1V and 1.2V

respectively. If the output of SA is 0, the SA is considered as “PASS”. Otherwise, it is considered as

“FAIL”. In this SA example, we have 45 transistors and each transistor consists of a number of multipliers.

To consider process variations, 4 independent Normal random variables are used to model the random

mismatch of each multiplier in the process design kit.

For testing and comparison purposes, four different approaches are implemented: (i) the brute-force

 110

Monte Carlo approach, (ii) the minimum-norm importance sampling (MNIS), (iii) the proposed SSS

method, and (iv) the proposed BSSS method. The brute-force Monte Carlo approach is used to generate the

“golden” failure rate so that the accuracy of the other three methods can be quantitatively evaluated. The

implementation of MNIS consists of two stages. In the first stage, 2000 transistor-level simulations are used

to search the variation space and find the failure event that is most likely to occur. Next, importance

sampling is applied with a shifted Normal distribution to estimate the rare failure rate. On the other hand,

when implementing the proposed SSS and BSSS methods, 5 different scaling factors are empirically

chosen to estimate the failure rate and 200 re-sampled data points are generated to estimate the confidence

interval (i.e., Q = 5 and NRS = 200) in Algorithm 4.3 and Algorithm 5.1.

We start from an initial SA design, which has 536 random variables in total. SSS is performed with

104 transistor-level simulations to estimate the failure rate for the 1st SA design. The estimated failure rate

by SSS is 7.3×10−5, which is relatively high and does not meet our specification. To verify the accuracy of

SSS, we run the brute-force Monte Carlo approach with 106 random samples, and the estimated failure rate

is 6×10−5, which is considered as the “golden” failure rate for the 1st SA design. The estimated failure rate

by SSS is very close to the “golden” failure rate estimated by the brute-force Monte Carlo approach, which

again demonstrates the accuracy of the proposed SSS method.

Since the estimated failure rate for the 1st SA design is relatively large, we need to further improve

the SA design to reduce its failure rate. By tuning the transistor sizes (i.e., increasing the number of

multipliers), we obtain a 2nd SA design, which has 552 independent Normal random variables in total.

For the 2nd SA design, we first run MC with 3.5×106 random samples. The estimated failure rate is

7.1×10−6, which is considered as the “golden” failure rate of the 2nd design. Next, we run MNIS, SSS, and

BSSS with different numbers of simulations. The model coefficients for the 1st SA design learned by SSS

are considered as the prior knowledge for BSSS. The estimated failure rates Pf and the 95% confidence

intervals [Pf
L Pf

U] by these three approaches are shown in Table 5-1.

Table 5-1. Failure rate Pf and 95% CI [Pf
L, Pf

U] estimated by MNIS, SSS and BSSS (“golden” failure rate =

7.1×106)

 111

of Sims 6000 7000 8000 9000 10000

MNIS

Pf
L 0 0 0 0 0

Pf 1.5×10−15 1.2×10−15 1.1×10−13 4.1×10−13 3.6×10−13

Pf
U 3.1×10−15 2.5×10−15 3.1×10−13 1.1×10−12 9.2×10−13

SSS

Pf
L 9.0×10−7 9.4×10−7 6.2×10−7 4.5×10−7 5.1×10−7

Pf 4.4×10−5 3.8×10−5 2.0×10−5 1.1×10−5 1.0×10−5

Pf
U 2.3×10−4 2.0×10−4 1.7×10−4 8.8×10−5 7.9×10−5

BSSS

Pf
L 2.4×10−6 1.8×10−6 1.7×10−6 1.5×10−6 1.5×10−6

Pf 1.3×10−5 9.0×10−6 8.0×10−6 7.0×10−6 6.2×10−6

Pf
U 4.8×10−5 4.1×10−5 2.8×10−5 2.4×10−5 2.0×10−5

Studying Table 5-1, we have several observations. First, MNIS does not predict the failure rate or

the 95% confidence interval accurately even with 104 simulations. We believe that MNIS cannot find a

good “distorted” distribution in this high-dimensional example and, hence, misses the most important

failure region. Second, both SSS and BSSS estimate the failure rate and the 95% confidence interval more

accurately than MNIS.

Last, but more importantly, BSSS achieves significantly enhanced accuracy over SSS. From Table

5-1, we can observe that the 95% confidence interval of BSSS with 6000 simulations is substantially

narrower than that of SSS with 104 simulations. Alternatively speaking, our proposed BSSS approach

achieves more than 1.7× runtime speedup over SSS in this example.

 112

Chapter 6 Thesis Summary & Future Work

Thesis Summary & Future Work

6.1 Summary

With aggressive technology scaling, process variation has become a growing concern for today’s

integrated circuits (ICs). Due to large-scale process variations, what we obtain after fabrication can be quite

different from what we design. If the deviation is significant, the functionality of the circuit could differ a

lot from what we expect, and the circuit may fail to work. SRAM has been widely embedded in a large

amount of semiconductor chips and, hence, designing a robust SRAM with sufficiently high production

yield under large-scale process variations is an important task for IC design community.

SRAM typically contains a large number of replicated circuit components (e.g., SRAM bit-cell,

SRAM column, sense amplifier, etc.). To achieve sufficiently high yield, the failure event of each circuit

component must be extremely rare. For instance, the failure rate of an SRAM bit-cell must be less than

108~106 so that the full microprocessor system, containing millions of SRAM bit-cells, can achieve

sufficiently high yield. For this reason, efficient approaches for estimating the rare circuit failure events are

highly desired for SRAM design.

A number of statistical approaches have been developed in the literature [24]-[45]. Most of these

traditional methods focus on failure rate estimation for SRAM bit-cells that consist of few (e.g., 6~10)

transistors. In these cases, only a small number of (e.g., 6~20) independent random variables are used to

model process variations and, hence, the corresponding variation space is low-dimensional. Rare failure

event analysis in a high-dimensional space has become more and more important. Unfortunately, most of

these traditional approaches [24]-[45] cannot be efficiently applied. To address this issue, we propose three

novel approaches to estimate the rare failure events for SRAM circuits in a high-dimensional space in this

thesis.

First, we propose a subset simulation (SUS) approach in Chapter 3 to estimate the rare failure events

 113

for circuits that have continuous performances of interest. The key idea of SUS is to express the rare failure

probability as the product of several large conditional probabilities by introducing a number of intermediate

failure events. A Markov chain Monte Carlo algorithm (i.e., the modified Metropolis algorithm) is used to

accurately estimate the intermediate conditional probabilities and, eventually, the rare failure rate of a given

circuit. In addition, a statistical methodology is further developed to reliably estimate the confidence

interval of SUS. An SRAM column example designed in nanoscale technologies demonstrate that SUS

offers superior estimation accuracy over the traditional importance sampling technique (i.e., MNIS) when

hundreds of random variables are used to model process variations.

Second, we propose a scaled-sigma sampling (SSS) approach in Chapter 4 to estimate the rare

failure events for circuits that have discrete performances of interest. The proposed SSS approach is based

upon an analytical model derived from the theorem of “soft maximum”. It is statistically formulated as a

regression modeling problem and optimally solved by MLE. To quantitatively assess the accuracy of SSS,

the confidence interval is estimated by bootstrap for our proposed SSS estimator. Two circuit examples

demonstrate the efficacy of our proposed SSS approach in a high-dimensional space.

Third, to further reduce the simulation cost, we propose a Bayesian scaled-sigma sampling (BSSS)

approach in Chapter 5, which can be considered as an extension of SSS. BSSS explores the “similarity”

between different SSS models fitted at different design stages, and encodes it as our prior knowledge. Next,

the SSS model is fitted by using MAP estimation with consideration of the prior knowledge. Experimental

results demonstrate that the proposed BSSS approach achieves superior accuracy over MNIS and SSS

when the dimensionality of the variation space is more than a few hundred.

6.2 Future Work

There are a number of research directions that we could further explore in the future.

First, we use an extremely conservative upper bound to approximate the SRAM column failure rate

in Section 3.5. How to find a better approximation of the SRAM column failure rate without running

intensive transistor-level simulations is still an open question. One possible solution relies on inclusion-

exclusion principle [75]. Namely, we first estimate the probability that a single SRAM bit-cell fails, the

probability that two SRAM bit-cells fail simultaneously, the probability that three SRAM bit-cells fail

 114

simultaneously, etc. Based on these probability values, we approximate the SRAM column failure rate by

applying inclusion-exclusion principle.

Second, we apply a heuristic approach to determine the scaling factors and allocate samples for

these scaling factors in Section 4.3.3. This heuristic approach is based on several assumptions and user pre-

defined parameters. These assumptions and empirically chosen parameters cannot guarantee an optimal

solution. Selecting an appropriate set of scaling factors is crucial for SSS. Therefore, if we have a better

way to determine the scaling factors, we can further increase the efficiency of SSS. One interesting future

work is to develop better approaches to determine the scaling factors. Possible solutions may formulate and

solve optimization problems.

Third, we present several scenarios where SSS may fail to work in Section 4.5. We can detect and

fix such failures in several cases. However, there are still some cases where we cannot fix or even detect

the failures. One future research direction is to develop feasible solutions to monitor the SSS failures.

Last, we define αL and βL as two Normal random variables and γL as a uniform random variable in

Section 5.1. Namely, we constrain αL and βL to be close to αE and βE respectively, and we do not utilize any

information from γE. There are other possible ways to define the prior distribution for the three model

coefficients [αL βL γL]. Another interesting research work is to explore other distributions to fully utilize our

prior knowledge about the model coefficients. Generally speaking, if we use more information about the

model coefficients when we define the prior distribution, we can fit the SSS model by the BMF technique

more efficiently.

 115

Bibliography

[1] E. Seevinck, F. J. List and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE

JSSC, vol. 22, no. 5, pp. 748-754, Oct. 1987.

[2] A. J. Bhavnagarwala, X. Tang and J. D. Meindl, “The impact of intrinsic device fluctuations on

CMOS SRAM cell stability,” IEEE JSSC, vol. 36, no. 4, pp. 658-665, Apr. 2001.

[3] R. Heald and P. Wang, “Variability in sub-100nm SRAM designs,” IEEE ICCAD, pp. 347-352,

2004.

[4] R. V. Joshi, S. Mukhopadhyay, D. W. Plass, Y. H. Chan, C. Chuang and A. Devgan, “Variability

analysis for sub-100 nm PD/SOI CMOS SRAM cell,” IEEE ESSCIRC, pp. 211-214, Sep. 2004.

[5] S. Mukhopadhyay, H. Mahmoodi and K. Roy, “Statistical design and optimization of SRAM cell for

yield enhancement,” IEEE ICCAD, pp. 10-13, Nov. 2004.

[6] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric, S.

J. McNab, A. W. Topol, C. D. Adams, K. W. Guarini and W. Haensch, “Stable SRAM cell design

for the 32 nm node and beyond,” Symp. VLSI Technology Dig., pp. 128–129, June 2005.

[7] A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz, R. Mann, Q. Ye and K. Chin,

“Fluctuation limits & scaling opportunities for CMOS SRAM cells,” IEEE IEDM, pp. 659-662,

Dec. 2005.

[8] K. Takeda, H. Ikeda, Y. Hagihara, M. Nomura and H. Kobatake, “Redefinition of write Margin for

next-generation SRAM and write-margin monitoring circuit,” IEEE ISSCC, Feb. 2006.

[9] K. Agarwal and S. Nassif, “Statistical analysis of SRAM cell stability,” IEEE DAC, pp. 57-62, 2006.

[10] B. H. Calhoun and A. P. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in

65-nm CMOS,” IEEE JSSC, vol. 41, no. 7, pp. 1673-1679, July 2006.

[11] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold SRAM design for ultra-

low-voltage operation,” IEEE JSSC, vol. 42, no. 3, pp. 680-688, Mar. 2007.

 116

[12] B. H. Calhoun, Y. Cao, X. Li, K. Mai, L. T. Pileggi, R. A. Rutenbar and K. L. Shepard, “Digital

circuit design challenges and opportunities in the era of nanoscale CMOS,” Proc. IEEE, vol. 96, no.

2, pp. 343-365, Feb. 2008.

[13] M. H. Abu-Rahma, K. Chowdhury, J. Wang, Z. Chen, S. S. Yoon and M. Anis, “A methodology for

statistical estimation of read access yield in SRAMs,” IEEE DAC, pp. 205-210, 2008.

[14] J. Wang, S. Nalam and B. H. Calhoun, “Analyzing static and dynamic write margin for nanometer

SRAMs,” IEEE ISLPED, pp. 129-134, Aug. 2008.

[15] H. S. Yang, et al., “Scaling of 32nm low power SRAM with high-k metal gate,” IEEE IEDM, Dec.

2008.

[16] S. Yaldiz, U. Arslan, X. Li and L. Pileggi, “Efficient statistical analysis of read timing failures in

SRAM circuits,” IEEE ISQED, pp. 617-621, Mar. 2009.

[17] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang, K. Zhang and M.

Bohr, “A 4.0 GHz 291 Mb voltage-scalable SRAM design in a 32 nm high-k + metal-gate CMOS

technology with integrated power management,” IEEE JSSC, vol. 45, no. 1, pp. 103-110, Jan. 2010.

[18] G. Chen, D. Sylvester, D. Blaauw and T. Mudge, “Yield-driven near-threshold SRAM design,”

IEEE TVLSI, vol. 18, no. 11, pp. 1590-1598, Nov. 2010.

[19] H. Sun, J. Zhao, F. Wang, N. Zheng and T. Zhang, “Cost-efficient built-in repair analysis for

embedded memories with on-chip ECC,” IEEE ISAS, pp. 95-100, June 2011.

[20] H. Pilo, I. Arsovsi, K. Batson, G. Braceras, J. Gabric, R. Houle, S. Lamphier, C. Radens and A.

Seferagic, “A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation

enabled by stability, write-ability and read-ability enhancements,” IEEE JSSC, vol. 47, no. 1, pp. 97-

106, Jan. 2012.

[21] B. Rooseleer, S. Cosemans and W. Dehaene, “A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low

leakage power memory using dynamic cell stability and a dual swing data link,” IEEE JSSC, vol.

47, no. 7, pp. 1784-1796, July 2012.

[22] S. Lu, H. Huang, J. Huang and P. Ning, “Synergistic reliability and yield enhancement techniques

for embedded SRAMs,” IEEE TCAD, vol. 32, no. 1, pp. 165-169, Jan. 2013.

[23] W. Zhang, “IC spatial variation modeling: algorithms and applications,” Ph.D. dissertation, Dept.

 117

Elect. Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, 2012.

[24] D. E. Hocevar, M. R. Lightner and T. N. Trick, “A study of variance reduction techniques for

estimating circuit yields,” IEEE TCAD, vol. 2, no. 3, pp. 180-192, July 1983.

[25] T. C. Hesterberg, “Advances in importance sampling,” Ph.D. dissertation, Dept. Statistics, Stanford

Univ., Stanford, CA, 1988.

[26] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling and its application to the analysis of

SRAM designs in the presence of rare failure events,” IEEE DAC, pp. 69-72, 2006.

[27] R. O. Topaloglu, “Early, accurate and fast yield estimation through Monte Carlo-alternative

probabilistic behavioral analog system simulations,” IEEE VLSI Test Symp., pp. 137-142, 2006.

[28] S. Srivastava and J. Roychowdhury, “Rapid estimation of the probability of SRAM failure due to

MOS threshold variations,” IEEE CICC, 2007.

[29] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variability aware non-Monte-Carlo yield

estimation procedure with applications to SRAM cells and ring oscillators,” IEEE ASP-DAC, pp.

754-761, 2008.

[30] V. Veetil, D. Sylvester and D. Blaauw, “Efficient Monte Carlo based incremental statistical timing

analysis,” IEEE DAC, pp. 676-681, 2008.

[31] L. Dolecek, M. Qazi, D. Shah and A. Chandrakasan, “Breaking the simulation barrier: SRAM

evaluation through norm minimization,” IEEE ICCAD, pp. 322-329, 2008.

[32] J. Jaffari and M. Anis, “On efficient Monte Carlo-based statistical static timing analysis of digital

circuits,” IEEE ICCAD, pp. 196-203, Nov. 2008.

[33] J. Wang, S. Yaldiz, X. Li and L. T. Pileggi, “SRAM parametric failure analysis,” IEEE DAC, pp.

496-501, 2009.

[34] A. Singhee and R. A. Rutenbar, “Statistical blockade: very fast statistical simulation and modeling

of rare circuit events, and its application to memory design,” IEEE TCAD, vol. 28, no. 8, pp. 1176-

1189, Aug. 2009.

[35] J. Jaffari and M. Anis, “Adaptive sampling for efficient failure probability analysis of SRAM cells,”

IEEE ICCAD, pp. 623- 630, 2009.

[36] J. Jaffari and M. Anis, “Correlation controlled sampling for efficient variability analysis of analog

 118

circuits,” IEEE DATE, pp. 1305-1308, Mar. 2010.

[37] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A. Chandrakasan, “Loop flattening and spherical

sampling: highly efficient model reduction techniques for SRAM yield analysis,” IEEE DATE, pp.

801-806, 2010.

[38] R. A. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch, A. Virazel and N. Badereddine,

“A statistical simulation method for reliability analysis of SRAM core-cells,” IEEE DAC, pp. 853-

856, 2010.

[39] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi and T. Sato, “Sequential importance sampling for

low-probability and high-dimensional SRAM yield analysis,” IEEE ICCAD, pp. 703-708, 2010.

[40] J. Jaffari and M. Anis, “On efficient LHS-based yield analysis of analog circuits,” IEEE TCAD, vol.

30, no. 1, pp. 159-163, Jan. 2011.

[41] R. Kanj and R. Joshi, “A novel sample reuse methodology for fast statistical simulations with

applications to manufacturing variability,” IEEE ISQED, pp. 672-678, Mar. 2012.

[42] R. Kanj, R. Joshi, Z. Li, J. Hayes and S. Nassif, “Yield estimation via multi-cones,” IEEE DAC, pp.

1107-1112, 2012.

[43] C. Kuo, W. Hu, Y. Chen, J. Kuan and Y. Cheng, “Efficient trimmed-sample Monte Carlo

methodology and yield-aware design flow for analog circuits,” IEEE DAC, pp. 1113-1118, 2012.

[44] F. Gong, “Stochastic modeling and analysis of custom integrated circuits,” Ph.D. dissertation, Dept.

Elect. Eng., Univ. California Los Angeles, CA, 2012.

[45] S. Sun, Y. Feng, C. Dong and X. Li, “Efficient SRAM failure rate prediction via Gibbs sampling,”

IEEE TCAD, vol. 31, no. 12, pp. 1831-1844, Dec. 2012.

[46] F. Wood and T. L. Griffiths, “Particle filtering for nonparametric Bayesian matrix factorization,”

Advances in Neural Information Processing Systems, vol. 19, pp. 1513–1520, 2007.

[47] G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with Rao-

Blackwellized particle filters,” IEEE Trans. Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007.

[48] T. Bengtsson, P. Bickel and B. Li, “Curse-of-dimensionality revisited: collapse of the particle filter

in very large scale systems,” Probability and Statistics: Essays in Honor of David A. Freedman, D.

Nolan and T. Speed, Eds., vol. 2, Institute of Mathematical Statistics, pp. 316–334, 2008.

 119

[49] R. Levy, F. Reali and T. L. Griffiths, “Modeling the effects of memory on human online sentence

processing with particle filters,” Advances in Neural Information Processing Systems, vol. 21, pp.

937–944, 2008.

[50] D. Törnqvist, T. B. Schön, R. Karlsson and F. Gustafsson, “Particle filter SLAM with high

dimensional vehicle model,” J. Intelligent Robotic Systems, vol. 55, no. 4-5, pp. 249–266, Aug.

2009.

[51] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: fifteen years later,”

in Handbook of Nonlinear Filtering. Cambridge: Cambridge University Press, 2009.

[52] J. L. Austerweil and T. L. Griffiths, “A nonparametric Bayesian framework for constructing flexible

feature representations,” Psychological Review, vol. 120, no. 4, pp. 817–851, 2013.

[53] P. Glasserman, P. Heidelberger, P. Shahabuddin and T. Zajic, “Multilevel splitting for estimating

rare event probabilities,” J. Operations Research, vol. 47, no. 4, pp 585-600, Apr. 1999.

[54] S. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by subset

simulation,” Probabilistic Eng. Mech., vol. 16, no. 4, pp. 263-277, Oct. 2001.

[55] S. Au and J. L. Beck, “Subset simulation and its application to seismic risk based on dynamic

analysis,” J. Eng. Mech., vol. 129, no. 8, pp. 901-917, Aug. 2003.

[56] P. S. Koutsourelakis, H. J. Pradlwarter and G. I. Schuëller, “Reliability of structures in high

dimensions, part I: algorithms and applications,” Probabilistic Eng. Mech., vol. 19, no. 4, pp. 409-

417, Oct. 2004.

[57] G. I. Schuëller, H. J. Pradlwarter and P. S. Koutsourelakis, “A critical appraisal of reliability

estimation procedures for high dimensions,” Probabilistic Eng. Mech., vol. 19, no. 4, pp. 463-474,

Oct. 2004.

[58] A. Guyader, N. Hengartner and E. Matzner-Løber, “Simulation and estimation of extreme quantiles

and extreme probabilities,” Appl. Math. Optimization, vol. 64, no. 2, pp. 171-196, Oct. 2011.

[59] F. Cérou, P. D. Moral, T. Furon and A. Guyader, “Sequential Monte Carlo for rare event

estimation,” Stat. Computing, vol. 22, no. 3, pp. 795-808, May 2012.

[60] X. Li, W. Zhang, F. Wang, S. Sun and C. Gu, “Efficient parametric yield estimation of

analog/mixed-signal circuits via Bayesian model fusion,” IEEE ICCAD, pp. 627-634, 2012.

 120

[61] F. Wang, W. Zhang, S. Sun, X. Li and C. Gu, “Bayesian model fusion: large-scale performance

modeling of analog and mixed-signal circuits by reusing early-stage data,” IEEE DAC, 2013.

[62] X. Li, F. Wang, S. Sun and C. Gu, “Bayesian model fusion: a statistical framework for efficient pre-

silicon validation and post-silicon tuning of complex analog and mixed-signal circuits,” IEEE

ICCAD, pp. 795-802, 2013.

[63] C. Fang, F. Yang, X. Zeng and X. Li, “BMF-BD: Bayesian model fusion on Bernoulli distribution

for efficient yield estimation of integrated circuits,” IEEE DAC, 2014.

[64] L. Yu, S. Saxena, C. Hess, A. Elfadel, D. Antoniadis and D. Boning, “Remembrance of transistors

past: compact model parameter extraction using Bayesian inference and incomplete new

measurements,” IEEE DAC, 2014.

[65] S. Zhang, X. Li, R. D. Blanton, J. Machado da Silva, J. M. Carulli and K. M. Butler, “Bayesian

model fusion: enabling test cost reduction of analog/RF circuits via wafer-level spatial variation

modeling,” IEEE ITC, 2014.

[66] S. Sun, F.Wang, S. Yaldiz, X. Li, L. Pileggi, A. Natarajan, M. Ferriss, J. Plouchart, B. Sadhu, B.

Parker, A. Valdes-Garcia, M. Sanduleanu, J. Tierno and D. Friedman, “Indirect performance sensing

for on-chip self-healing of analog and RF circuits,” IEEE TCAS-I, vol. 61, no. 8, pp. 2243-2252,

Aug. 2014.

[67] J. Liaperdos, H. Stratigopoulos, L. Abdallah, Y. Tsiatouhas, A. Arapoyanni and X. Li, “Fast

deployment of alternate analog test using Bayesian model fusion,” IEEE DATE, pp. 1030-1035,

2015.

[68] C. Fang, Q. Huang, F. Yang, X. Zeng, X. Li and C. Gu, “Efficient bit error rate estimation for high-

speed link by Bayesian model fusion,” IEEE DATE, pp. 1024-1029, 2015.

[69] Q. Huang, C. Fang, F. Yang, X. Zeng and X. Li, “Efficient multivariate moment estimation via

Bayesian model fusion for analog and mixed-signal circuits,” IEEE DAC, 2015.

[70] B. Efron and R. Tibshirnani, An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.

[71] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Process. McGraw-Hill,

2001.

[72] C. Bishop, Pattern Recognition and Machine Learning. Prentice Hall, 2007.

 121

[73] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2009.

[74] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective. Addison-Wesley,

2010.

[75] A. Björklund, T. Husfeldt and M. Koivisto. “Set partitioning via inclusion-exclusion,” SIAM J.

Comput, vol. 39, no. 2, pp. 546-563, 2009.

