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STATISTICAL OPTIMIZATION AND DESIGN
METHOD FOR ANALOG AND DIGITAL
CIRCUITS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 60/623,176, filed Oct. 29, 2004, entitled
“Robust Analog/RF Design with Projection-Based Perfor-
mance Modeling,” the disclosure of which is incorporated
herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to integrated circuit
modeling and optimization techniques. More specifically, the
present invention relates to the design of analog/RF and digi-
tal circuits based on device level simulation models incorpo-
rating process and environmental variations. Merely by way
of'example, the invention has been applied to statistical analy-
sis and optimization of analog/RF and digital circuits. The
methods and techniques can be applied to other applications
as well such as MEMS design, radiation hardened circuit
design, statistical process control, and the like.

As IC technologies are scaled to finer feature sizes (e.g.
deep sub-micron feature sizes) and circuit applications move
to higher frequency bands (e.g. radio frequency (RF) appli-
cations), analog/RF circuit design faces a variety of chal-
lenges. For example, non-ideal effects such as parasitic cou-
pling and process variations may adversely impact circuit
performance. As a result, in some cases, to account for these
non-ideal effects, the analog/RF circuit design becomes more
complicated, increasing the difficulty of understanding the
design as well as increasing the difficulty of the design pro-
cess. Accordingly, manual design of present analog/RF cir-
cuits is generally a time-consuming process that requires a
significant measure of design experience.

An approach to optimizing analog/RF circuit designs is to
apply stochastic search algorithms (e.g. simulated annealing
and genetic programming) to circuit sizing. These stochastic
search algorithms are generally extremely slow and result in
expensive computation costs.

Another approach to optimizing analog/RF circuit designs
is to perform circuit sizing based on response surface model-
ing. According to some of these methods, circuit performance
metrics are simulated at a number of sampling points over a
local design space. The sampling points are fit as either linear
or quadratic polynomial response surface models. These
response surface models are used in either a linear or qua-
dratic programming process to determine the optimal design
in the local design space. As will be evident to one of skill in
the art, linear polynomial response surface models may not be
sufficiently accurate and quadratic polynomial response sur-
face models may produce non-optimal solutions when local
minimums are present. In addition, building the conventional
quadratic models generally requires a great number of sam-
pling points and solves a great number of unknown coeffi-
cients, yielding an extremely expensive computation cost.

To obtain globally optimized solutions, another approach
used in some analog circuit optimization processes is the
approximation of the analog circuit specifications by posy-
nomial functions. As such, analog circuit sizing tasks can be
formulated as a geometric programming problem. Given a
fixed circuit topology, the circuit performance metrics are
approximated as posynomial design equations and then opti-
mized by geometric programming. This process provides a
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globally optimal solution for the analog circuit sizing prob-
lem. However, the conventional geometric programming
approaches require the creation of the posynomial design
equations by hand. A drawback of such manually derived
equations is that this manual process applies various simpli-
fications and may ignore many second-order effects. In order
to improve the posynomial modeling accuracy, several algo-
rithms have been proposed to build quadratic posynomial
models using numerical simulation data. However, these con-
ventional methods are computationally expensive.

Building conventional quadratic response surface models,
both polynomial and posynomial models, requires simulation
at a large number of sampling points, resulting in expensive
computation costs. Moreover, building these conventional
quadratic response surface models entails the solution of a
large number of unknown coefficients, also resulting in
expensive computation costs. As a result of these drawbacks,
conventional response surface modeling approaches are gen-
erally only applicable to small and medium size circuit
designs.

In some circuit optimization models, process and environ-
mental variations are included in the simulation. Process and
environmental variations may be modeled as either corners or
random variables. The inclusion of these process variations
generally results in an additional increase in the computation
cost necessary to determine an optimal solution.

FIG. 1 is a simplified flowchart of a conventional circuit
design process. As illustrated in FIG. 1, a design specification
is received (110), generally from a circuit designer. The
design specification will include a number of parameters,
including gain, bandwidth, distortion, power, area, and the
like. An initial global search is performed (112) to provide an
initial circuit design. Generally, the initial global search uti-
lizes an equation-based optimization process in which
selected design variables are assigned optimized values. As
will be evident to one of skill in the art, design variables
include length and width of metal-oxide semiconductor field
effect transistors (MOSFETs), length and width of resistors,
lengths and widths of capacitors, and the like. Often, the
equation-based optimization processes use simplified equa-
tions that can introduce error into the search results.

Local tuning (114) is performed to determine an optimal
circuit design based on the results of the initial global search.
As discussed above, this step is typically a simulation-based
optimization that is either oversimplified to produce a trac-
table problem or prohibitively expensive in computational
terms. Generally, for optimization processes that simulate
complex circuit designs, in order to produce results at a rea-
sonable computational cost, non-ideal effects (e.g. parasitic
coupling) and process/environmental variations are either not
included or included at only a basic level. A final design is
produced (116) that may not be globally optimized (e.g. mod-
els fit using quadratic polynomials that result in non-convex
optimization and local minimums) and/or may not incorpo-
rate expected process/environmental variations. Therefore,
there is a need in the art for improved methods and apparatus
for optimizing the values of design variables for integrated
circuit elements in view of process and environmental varia-
tions.

SUMMARY OF THE INVENTION

According to the present invention techniques related to
integrated circuit modeling and optimization are provided.
More specifically, the present invention relates to the design
of'analog/RF and digital circuits based on device level simu-
lation models incorporating process and environmental varia-
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tions. Merely by way of example, the invention has been
applied to statistical analysis and optimization of analog/RF
and digital circuits. The methods and techniques can be
applied to other applications as well such as MEMS design,
radiation hardened circuit design, statistical process control,
and the like.

According to an embodiment of the present invention, a
computer implemented method of performing projection
based polynomial fitting is provided. The method includes
generating a plurality of sampling points as a function of
variables and forming a polynomial model template repre-
sentative of the plurality of sampling points. In a specific
embodiment, the polynomial model template comprises at
least one polynomial coefficient. The method also includes
forming a low-rank matrix to approximate the polynomial
coefficient. In some embodiments, forming the low-rank
matrix includes using the steps of: (a) determining an initial
estimate of a product of a singular value and a singular vector
associated with the low-rank matrix, (b) using the determined
initial estimate of the product of the singular value and the
singular vector to determine a second estimate of the product
of'the singular value and the singular vector, and (c) repeating
steps (a) and (b) until a difference between a first error
between the polynomial model template and the plurality of
sampling points and a second error between the polynomial
model template and the plurality of sampling points is
reduced to a predetermined value.

According to another embodiment of the present invention,
a computer implemented method of performing projection
based posynomial fitting is provided. The method includes
generating a plurality of sampling points as a function of
design variables and fitting a posynomial equation to the
plurality of sampling points. The posynomial equation
includes a posynomial coefficient in a specific embodiment.
The method also includes forming a low-rank matrix to
approximate the posynomial coefficient. In a particular
embodiment, approximating the posynomial coefficient
includes using the steps of: (a) determining an initial estimate
of'a product of a singular value and a singular vector associ-
ated with the low-rank matrix, (b) using the determined initial
estimate of the product of the singular value and the singular
vector to determine a second estimate of the product of the
singular value and the singular vector, and (c) repeating steps
(a) and (b) until a difference between a first error between the
polynomial model template and the plurality of sampling
points and a second error between the polynomial model
template and the plurality of sampling points is reduced to a
predetermined value.

According to an alternative embodiment of the present
invention, a computer implemented method of measuring a
plurality of worst-case circuit performance values is pro-
vided. The method includes determining a response surface
model associated with a circuit performance specification.
The response surface model is a function of at least design
variables. The method also includes generating a plurality of
non-normal probability distributions based on the response
surface model using a close-form model. In an embodiment,
each of the plurality of non-normal probability distributions
includes a worst-case circuit performance value. Moreover, in
a specific embodiment, the close-form model includes an
asymptotic probability extraction algorithm.

According to another alternative embodiment of the
present invention, a computer implemented method of opti-
mizing a plurality of design variables associated with ele-
ments of a circuit design is provided. The method includes
determining a first response surface model associated with a
circuit performance specification, wherein the first response
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surface model is a function of at least design variables. The
method also includes generating a plurality of non-normal
probability distributions based on the first response surface
model using a close-form model, wherein each of the plural-
ity of non-normal probability distributions comprises a
worst-case performance value. The method further includes
generating a plurality of sampling points associated with the
worst-case performance values, determining a second
response surface model as a function of the plurality of design
variables by fitting the plurality of sampling points, and opti-
mizing the plurality of design variables using the second
response surface model.

According to a particular embodiment of the present inven-
tion, a computer program product stored on a computer-
readable storage medium for performing projection based
polynomial fitting is provided. The computer program prod-
uct includes code for generating a plurality of sampling points
as a function of variables, code for forming a polynomial
model template representative of the plurality of sampling
points, wherein the polynomial model template comprises at
least one polynomial coefficient, and code for forming a
low-rank matrix to approximate the polynomial coefficient.

According to another particular embodiment of the present
invention, a computer program product stored on a computer-
readable storage medium for performing projection based
posynomial fitting is provided. The computer program prod-
uct includes code for generating a plurality of sampling points
as a function of design variables, code for fitting a posynomial
equation to the plurality of sampling points, wherein the
posynomial equation comprises a posynomial coefficient,
and code for forming a low-rank matrix to approximate the
posynomial coefficient.

According to yet another particular embodiment of the
present invention, a computer program product stored on a
computer-readable storage medium for optimizing a plurality
of design variables associated with elements of a circuit
design is provided. The computer program product includes
code for determining a first response surface model associ-
ated with a circuit performance specification. The first
response surface model is a function of at least design vari-
ables. The computer program product also includes code for
generating a plurality of non-normal probability distributions
based on the first response surface model using a close-form
model. Each of the plurality of non-normal probability dis-
tributions comprises a worst-case performance value. The
computer program product further includes code for generat-
ing a plurality of sampling points associated with the worst-
case performance values, code for determining a second
response surface model as a function of the plurality of design
variables by fitting the plurality of sampling points, and code
for optimizing the plurality of design variables using the
second response surface model.

Many benefits are achieved by way of the present invention
over conventional techniques. For example, embodiments of
the present invention provide high accuracy response surface
(e.g. polynomial and posynomial) models at low computa-
tional costs. Additionally, some embodiments of the present
invention provide methods of performing statistical analysis
using close-form models without the use of Monte Carlo
techniques. As will be evident to one of skill in the art, the use
of close-form models is generally more computationally effi-
cient than the Monte Carlo techniques. Moreover, convex
optimization processes using fitted performance models are
provided by embodiments of the present invention, resulting
in an increased probability of producing optimized circuit
designs at the global minimum. Depending upon the embodi-
ment, one or more of these benetfits, as well as other benefits,
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may be achieved. These and other benefits will be described
in more detail throughout the present specification and more
particularly below in conjunction with the following draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified flowchart of a conventional circuit
design process;

FIG. 2 A illustrates a simplified flowchart of a circuit design
process according to an embodiment of the present invention;

FIG. 2B is a simplified iteration process provided accord-
ing to embodiments of the present invention;

FIG. 3 is simplified flowchart illustrating a method of per-
forming projection based polynomial fitting according to an
embodiment of the present invention;

FIG. 4 is simplified flowchart illustrating a method of per-
forming implicit power iteration according to an embodiment
of the present invention;

FIG. 5 is a simplified flowchart illustrating a method of
performing worst-case analysis according to an embodiment
of the present invention;

FIG. 6 is a simplified flowchart illustrating the method of
performing projection-based posynomial fitting according to
an embodiment of the present invention;

FIG. 7is a simplified circuit schematic illustrating a current
mirror;

FIGS. 8A and 8B are simplified plots illustrating a prob-
ability density function and the cumulative distribution func-
tion, respectively, as a function of output current according to
an embodiment of the present invention; and

FIG. 9 is a simplified plot illustrating a local design space.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

According to the present invention techniques related to
integrated circuit modeling and optimization are provided.
More specifically, the present invention relates to the design
of'analog/RF and digital circuits based on device level simu-
lation models incorporating process and environmental varia-
tions. Merely by way of example, the invention has been
applied to statistical analysis and optimization of analog/RF
and digital circuits. The methods and techniques can be
applied to other applications as well such as MEMS design,
radiation hardened circuit design, statistical process control,
and the like.

Embodiments of the present invention provide analog/RF
design tools that incorporate the impact of process and envi-
ronmental variations. As device dimensions decrease, for
example with sub-100 nm technologies, consideration of the
process and environmental variations becomes a critical
design concern. Using conventional design techniques lack-
ing the inclusion of process and environmental variations,
substantial device sizing may be required to accommodate
large-scale variations and provide a sizing for the circuit
which will result in an acceptable product yield. Some
approaches to including such variations rely on simple opti-
mization schemes (e.g. gradient-based search) and can
become stuck at a locally optimal point.

According to embodiments of the present invention, a
novel RObust Analog/Digital (ROAD) design tool is provided
to post-tune analog/RF circuit designs. In some embodi-
ments, the ROAD tool is referred to as a ROAD optimization
method. The ROAD tool incorporates accurate response sur-
face models fitted from transistor-level simulations along
with an analysis of large-scale process and environmental
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variations. The term “robust” conveys the incorporation of
process and environmental variations in some embodiments
of the present invention. In some embodiments, local tuning
of a circuit design is accomplished using the ROAD tool.

FIG. 2A is asimplified flowchart of a circuit design process
according to an embodiment of the present invention. First, a
design specification is received (210). Generally, the design
specification is received from a circuit designer or other
source. An initial global search is performed (212) to create a
nominal design. This nominal design is created by using
either a manual analysis process or by an automatic synthesis
process using analog optimization algorithms. In some
embodiments, simplified device/coupling models are utilized
in step 212 to reduce the complexity of the manual design
process and/or reduce the time necessary to perform an auto-
matic synthesis. As described more fully below, this initial
optimization provides a rapid but coarse search over the entire
design space. Then, the ROAD tool is applied (214) including
incorporation of detailed device/coupling/variation models to
provide a search at increased resolution. Additionally, opti-
mization is performed according to embodiments of the
present invention to optimize the tradeoff between device
yield and performance. A final design is produced (216) using
embodiments of the present invention.

FIG. 2B illustrates a simplified iteration process provided
according to embodiments of the present invention. An initial
design is illustrated by initial design point 250 within global
design space 240. The dashed circle 252 surrounding the
initial design point 250 represents a local design space asso-
ciated with the initial design space. According to embodi-
ments of the present invention, the design variable values are
varied by a predetermined percentage over a range within the
local design space. As described below, an optimization pro-
cess including calculation of the coefficients of a response
surface model using a low-rank approximation, worst case
analysis including process and environmental variations,
posynomial fitting using a low-rank approximation, and geo-
metric programming, is performed to optimize the design in
the local design space 252.

As illustrated in FIG. 2B, the optimized design within local
design space 252 is represented by reference number 260,
which, in turn, has an associated local design space 262.
According to embodiments of the present invention, the
ROAD tool is utilized to iteratively transition the initial
design 250 through a series of progressively optimized
designs (e.g., 260, 264, etc.) to an optimized final design 270.
Referring to FIG. 2B, the size of the local design spaces
decreases as the ROAD method is used to move towards the
final optimized design. Using embodiments of the present
invention, all desired design constraints, as well as process
and environmental variations are incorporated in ROAD
using response surface modeling. The accuracy of the
response surface model is adaptively controlled by adjusting
the local design space size and convergent solutions are deter-
mined that provide accurate designs with high product yield.

The above sequence of steps provides a method for opti-
mizing an integrated circuit according to an embodiment of
the present invention. As shown, the method uses a combina-
tion of steps including a way of using the ROAD tool to
iteratively transition an initial design to a final design accord-
ing to an embodiment of the present invention. Other
sequences of steps may also be performed according to alter-
native embodiments. For example, alternative embodiments
of'the present invention may perform the steps outlined above
in a different order. Moreover, the individual steps illustrated
by this figure may include multiple sub-steps that may be
performed in various sequences as appropriate to the indi-
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vidual step. Furthermore, other alternatives can also be pro-
vided where steps are added, one or more steps are removed,
or one or more steps are provided in a different sequence
without departing from the scope of the claims herein. One of
ordinary skill in the art would recognize many variations,
modifications, and alternatives.

FIG. 3 is simplified flowchart illustrating a method of per-
forming projection based polynomial fitting according to an
embodiment of the present invention. As illustrated in FIG. 3,
apre-defined condition is determined (310). For example, the
accuracy of the polynomial model or the complexity of the
fitting routine are pre-defined conditions. As described below,
the particular response surface model template used in
embodiments of the present invention will be selected to
match the pre-defined condition.

As additionally illustrated in FIG. 3, a polynomial response
surface model template is provided (312). According to
embodiments of the present invention, the polynomial
response surface model template is matched to the pre-de-
fined condition determined in step 310. Merely by way of
example, for reduced accuracy results, a linear response sur-
face model may be appropriate. As the accuracy goals are
increased, quadratic or higher order models may be utilized.
One of ordinary skill in the art would recognize many varia-
tions, modifications, and alternatives.

A plurality of sampling points are generated as a function
of variables (314) in accordance with the provided model
template. In some embodiments, the plurality of sampling
points are associated with a response surface model (RSM)
template and are calculated as a function of design variables,
process parameters, environmental parameters, combinations
of these, and the like. Design variables, including, but not
limited to transistor width and length, resistor width and
length, capacitor width and length, bias current, and the like
are included in embodiments of the present invention. Merely
by way of example, process parameters comprise process
variation and/or environmental parameters comprise environ-
mental variation in some embodiments. Generally, the inde-
pendent variable of the sampling points is a performance
measure, including, but not limited to gain, power consump-
tion, bandwidth, area, distortion, or the like.

According to embodiments of the present invention, the
number of sampling points is greater than or equal to the
number of unknown model coefficients. Merely by way of
example, in the example discussed with relation to FIG. 7, 32
sampling points are utilized. In this example, for each sam-
pling point, a performance value is evaluated for selected
values of the input variables. In some embodiments, the input
variable values are selected in a random manner. In other
embodiments, the input variable values are selected deter-
ministically by using conventional algorithms. Additional
details of this process will be demonstrated in relation to the
example illustrated with relation to FIG. 7.

In some embodiments, quadratic polynomial models are
utilized, although higher-order response surface models,
which provide improved modeling accuracy, are included
according to embodiments of the present invention.

In general, a quadratic polynomial can be represented by
the standard form shown in equation 1:

SX=XT4X+BTX+C, 1)
where frepresents a circuit performance measure (e.g. power,
gain, and the like), X=[x,,X,, .. . x,]* contains n variables, and
AER"™, B&R”and C €R are the model coefficients, which
are unknown.

As will be evident to one of skill in the art, modern circuit
designs may include 50 or more variables, resulting in matrix
A being on the order of more than 50x50. Conventional
algorithms for response surface modeling generate a number
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of sampling points that represent performance measures as a
function of design variables, process parameters, and envi-
ronmental parameters. These conventional response surface
modeling algorithms use the sampling points to solve the set
of over-determined linear equations:

F=XTAXABIXAC (i=1,2,...) 2)
where X, and f, are the value of X and the exact value of the
function f for the i-th simulated sample, respectively. As
before, AE R, B & R” and C € R” are the unknown model
coefficients. As will be evident to one of skill in the art, the
number of unknown coefficients in equation 2 is of the order
of O(n?). Therefore, the computational complexity for solv-
ing all these coefficients is of the order of O(n®). This high
computation cost limits conventional approaches to small or
medium size applications. In contrast, embodiments of the
present invention provide methods and systems that reduce
the computational cost significantly.

An embodiment of the present invention utilizes a low-rank
approximation, the matrix A, , to approximate matrix A and
thereby reduce computational cost. A low-rank approxima-
tion problem can be stated as follows: given a matrix A, find
another matrix A, , with rank p<rank(A) such that their dif-
ference ||A; z—Al|zis minimized. Here, ||*|~denotes the Frobe-
nius norm, which is the square root of the sum of the squares
of all matrix elements.

From matrix theory, for any matrix A € R, the optimal
rank-p approximation with the least Frobenius-norm error is
given by equation 3:

P 3
AR = Z/\iUiV;T,
i1

where A, is the i-th dominant singular value, U, ER” is the i-th
dominant left singular vector and V, € R” is the i-th dominant
right singular vector. As will be evident to one of skill in the
art, in the special case where the matrix A is symmetric, the
low-rank approximation in equation 1 can also be represented
by the dominant eigenvalues and eigenvectors, i.e. A, is the
i-th dominant eigenvalue and U,=V, are the i-th dominant
eigenvectors.

An advantage of the rank-p projection is that, for approxi-
mating the matrix A € R in equation 1, only A, ER” and U,
V,ER"(i=1,2, ..., p) need to be determined, thus reducing
the number of unknown coefficients to the order of O(pn). In
many modern circuit applications, p is significantly less than
n and the number of unknown coefficients that are solved
using embodiments of the present invention is almost a linear
function of n. Compared with the problem size O(n*) in
conventional approaches, embodiments of the present inven-
tion provide increased efficiency and are applicable to large-
size problems.

In order to fit the quadratic model, conventional response
surface modeling algorithms compute all elements of matrix
A, the quadratic coefficient matrix, in equation 1. For many
modern circuit designs, matrix A is often sparse and rank-
deficient. Accordingly, embodiments of the present invention
approximate the matrix A by a rank-one matrix A;, which is
given by:

A=MUVE (©)]
where A, is the first dominant, singular value, U, is the first
dominant left singular vector and V; is the first dominant right
singular vector. As illustrated in FIG. 3, embodiments of the
present invention apply an implicit power iteration process
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(316) to approximate coefficients of the provided model tem-
plate, thereby approximating the dominant singular vectors of
matrix A.

The above sequence of steps provides a method for
approximating coefficients of a model template using a low-
rank approximation according to an embodiment of the
present invention. Other sequences of steps may also be per-
formed according to alternative embodiments. For example,
alternative embodiments of the present invention may per-
form the steps outlined above in a different order. Moreover,
the individual steps illustrated by this figure may include
multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
other alternatives can also be provided where steps are added,
one or more steps are removed, or one or more steps are
provided in a different sequence without departing from the
scope of the claims herein. One of ordinary skill in the art
would recognize many variations, modifications, and alterna-
tives.

FIG. 4 is simplified flowchart illustrating a method of per-
forming implicit power iteration according to an embodiment
of the present invention. As illustrated in FIG. 4, a first num-
ber (m) of sampling points are received (410) as discussed in
relation to FIG. 3.

An initial column vector is determined (412) with a size
equal to the number of variables (nx1). In some embodi-
ments, the initial vector is a vector with random components.
In other embodiments, a vector with all components equal to
one is utilized. One of ordinary skill in the art would recog-
nize many variations, modifications, and alternatives. The
vector is normalized in the optional step (414). In some
embodiments, the initial vector is determined so that the
vector norm is unity. In this case, no normalization is per-
formed. However, in general, for initial vectors with non-
unity norm, normalization is performed. In a specific embodi-
ment, the initial vector is represented by Q, and the iteration
process starts with a value of i=1.

A set of linear equations are provided (416), each of the
linear equations associated with at least one of the sampling
points. Equation 5 illustrates a linear equation provided to the
quadratic polynomial model template,

F=X (010 NXAB XA Cy, ®
where f, is the exact value of the function f at the i-th simu-
lated sample, i=1,2, . . . , m, and k is an iteration counter. As
will be evident to one of skill in the art, embodiments of the
present invention are not limited to a quadratic model tem-
plate, but also include higher order polynomial or posynomial
models. Embodiments of the present invention are not limited
to generating sets of equations with m equations although this
number of equations is illustrated in FIG. 4.

For each set of sampling points, an equation is constructed
using the variable values (X,) and the performance value (f)).
The linear equations also include the unknown coefficients of
Q. B, and C,. Ifthe number oflinear equations is greater than
the number of unknown coefficients, the set of linear equa-
tions becomes susceptible to solution. Thus, in the embodi-
ment illustrated by equation 5, the exact equation illustrated
in equation 2 is approximated in equation 5 by replacing the
quadratic coefficient matrix A with the matrix Q,Q,_,~.

The set of linear equations are solved (418) to determine
the unknown coefficients. Upon determining Q,, the counter
k is incremented, thereby replacing the initial vector with the
updated vector that results from solving the set of linear
equations (420). The differential approximation error is
determined (422) by evaluating the difference between the
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exact performance value (f) and the approximate perfor-
mance value (f) at successive iterations. Thus, the difference
between f;, and f, at the k-th iteration is compared to the
difference between f;, ; and T, ; at the k+1-thiteration, result-
ing in a differential approximation error. The differential
approximation error is compared to a predetermined value
(424). In other words, a test is conducted to determine if the
iteration has converged.

If the differential approximation error is not less than the
predetermined value, the method continues to step 414 at
which the updated vector is normalized (414), a set of equa-
tions are provided (416), the set of linear equations are solved
(418) to determine the next updated vector, etc. Referring to
equation 5, the new set of equations incorporates the most
recent value of Q, determined in step 418. If the differential
approximation error is less than the predetermined value, the
process is terminated (426).

In an embodiment of the present invention, implicit power
iteration is used to provide an optimal rank-one approxima-
tion A, =\, U, V,7=Q,Q,_,” for the unknown quadratic coef-
ficient matrix A. Using embodiments of the present invention,
the power iteration is performed “implicitly” since the value
of matrix A is not known, but approximated by the dominant
singular value and singular vectors computed using the itera-
tive method illustrated in FIG. 4.

Returning to FIG. 4, after the iteration converges, the
response surface model is represented by

FO=XTAX+BTX+C, 6
where A:Qka_ I, B=B,,and é:Ck. As described above, k is
the final value of the counter used in the implicit power
iteration algorithm. The response surface model in equation 6
will be used in FIG. 5 for worst-case analysis.

The above sequence of steps provides a method for per-
forming implicit power iteration according to an embodiment
of'the present invention. Other sequences of steps may also be
performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated by this figure may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
other alternatives can also be provided where steps are added,
one or more steps are removed, or one or more steps are
provided in a different sequence without departing from the
scope of the claims herein. One of ordinary skill in the art
would recognize many variations, modifications, and alterna-
tives.

FIG. 5 is a simplified flowchart illustrating a method of
performing worst-case analysis according to an embodiment
of'the present invention. As illustrated in FIG. 5, M sets of N
design variable values are generated using N design variables
(510). Merely by way of example, design variables such as the
length and width of various transistors, the length and width
of various resistors, and the like are utilized according to
embodiments of the present invention. Each set of design
variable values includes specific deterministic values for each
of the N design variables. Conventional algorithms exist to
select the design variable values. In some embodiments, the
selection is random although this is not required by the
present invention. According to embodiments of the present
invention, these sets are used to provide particular design
variable values used during an iterative process as described
below.

Additionally, a plurality of distributions representing
variations in process and environmental parameters are pro-
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vided. Generally, the distributions representing the process
and environmental parameters are provided by the foundry
and are Normal distributions. Some distributions, such as
those associated with resistors and temperature are not nec-
essarily Normal, as will be evident to one of skill in the art. A
set of N design variable values are received from the M sets of
design variable values (512). Using a set of N particular
values of the design variable and the distributions represent-
ing the process and environmental variations, the response
surface model determined in equation 6 is used to generate an
approximated distribution representing the performance
variation as a function of the set of particular values of the
design variable and the distributions of the process and envi-
ronmental variations (514). The resulting performance distri-
bution, sometimes referred to as a performance probability
density function, is generally a non-Normal distribution.

In some embodiments, a method of estimating the non-
Normal probability distribution referred to as APEX is uti-
lized. APEX stands for Asymptotic Probability Extraction for
non-Normal distributions. APEX generates a close-form
function to approximate the performance probability density
function using the moment-matching technique. Additional
details regarding APEX are found in “Asymptotic probability
extraction for non-Normal distributions of circuit perfor-
mance,” X. Li, I. Le, P. Gopalakrishnan and L. Pileggi, IEEE/
ACM International Conference of Computer Aided Design,
pp- 2-9, 2004, the disclosure of which is incorporated by
reference herein for all purposes. The use of APEX provides
an alternative methodology to the conventional Monte Carlo
simulations typically used to generate the non-Normal distri-
bution. The use of an close-form solution such as APEX
results in increase speed for a given accuracy of the result.

In step 516, a worst-case performance value or sampling
point is determined. In embodiments of the present invention,
instead of handling the complete performance probability
density function, we define three important metrics for each
circuit performance distribution: the mean value f, ,, the lower
bound f, ;- and the upper bound f, , as shown in FIG. 8A.
Thelowerbound {; ,;;-and theupper bound f,, in FIG. 8A are
defined as two specific points (e.g. the 1% point and the 99%
point respectively) on the cumulative distribution function.
However, these particular points are not required by the
present invention. In alternative embodiments, other specific
points are used to define the lower and upper bounds. In a
specific embodiment, the worst case performance value is
defined by the value associated with the upper bound f, . In
alternative embodiments, the worst case performance value is
determined based on the lower bound f; ;. In yet other
alternative embodiments, the difference between the lower
bound f; ;- and the upper bound f, - is used to define the
worst case performance value.

A determination is made (518) of whether additional sets
of the design variable values remain unused in the M sets of
design variable values. If additional unused sets remain, the
process of receiving a set of design variable values (512),
generating a distribution representing the performance varia-
tion as a function of the set of particular values of the design
variable and the distributions of the process and environmen-
tal variations (514), and determining a worst case perfor-
mance value (516) are repeated until all sets of the design
variable values have been used. One of skill in the art will
appreciate that tracking of sets as they are used may be imple-
mented among other methods. After all M sets of design
variable values have been used, the process is terminated
(520). As will be evident to one of skill in the art, a set of
worst-case performance sampling points are thus generated
as a function of the values of the design variables. Addition-
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ally, as will be evident to one of skill in the art, the worst case
performance values have the process and environmental
variations included.

The above sequence of steps provides a method of per-
forming worst-case analysis according to an embodiment of
the present invention. Other sequences of steps may also be
performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated by this figure may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
other alternatives can also be provided where steps are added,
one or more steps are removed, or one or more steps are
provided in a different sequence without departing from the
scope of the claims herein. One of ordinary skill in the art
would recognize many variations, modifications, and alterna-
tives.

After the plurality of worst case performance values have
been determined as described with reference to FIG. 5, it is
desirable to generate a response surface model, and particu-
larly a posynomial response surface model. As will be evident
to one of skill in the art, posynomial response surface models
are log convex and therefore provide optimization solutions
that are globally optimal. One conventional approach to this
modeling problem is direct fitting of the posynomial model.
Direct fitting approximates a posynomial function by the
quadratic form:

ON=RTAX+BTR+C, @
where X=[x,"1x,7%, .. . xy Lxy . . ., Xu]7 includes N
independent design variables and A €R 2" B&R,*and
C € R, are unknown posynomial coefficients which can be
determined by the optimization:

minimize (A, B, &)= > (X[ A%+ B %+ C- g

i

®

subject to Ae RENXZN, Be REN, CeRr,,

where X, and g, are the value of X and the exact value of the
function g for the i-th simulated sample, respectively. Note
that, unlike the quadratic polynomial fitting, the coefficient
matrices A, B and C in equation 8 must be non-negative so
that the approximated function in equation 7 is a posynomial.
As will be evident to one of skill in the art, the cost function
1 in equation 8 is a positive semi-definite quadratic function
restricted to a convex constraint set. Therefore, the optimiza-
tion problem in equation 8 is convex, providing a globally
optimal solution.

Using this conventional approach, as discussed in relation
to the fitting of polynomial response surface models, the
number of unknown coefficients in equation 7 is of the order
of O(N?). Therefore, the computational complexity for solv-
ing all these coefficients is of the order of O(N®). Embodi-
ments of the present invention provide methods and systems
that reduce the computational cost significantly.

FIG. 6 is a simplified flowchart illustrating the method of
performing projection-based posynomial fitting according to
an embodiment of the present invention. According to
embodiments of the present invention, projection based posy-
nomial fitting is performed to provide a posynomial model
suitable for optimization using geometric programming.
Generally, a predefined condition, for example, an accuracy
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requirement or a complexity requirement is determined
(610). As will be evident to one of skill in the art, tradeoffs
exist in determining this predefined condition. A plurality of
worst-case sampling points associated with a worst-case
analysis are received (612) according to embodiments of the
present invention. Then, a posynomial response surface
model template that matches a predefined condition is pro-
vided (614). In an embodiment, the posynomial response
surface model is a quadratic model, although this is not
required by the present invention. In alternative embodi-
ments, linear or higher order models are utilized. One of
ordinary skill in the art would recognize many variations,
modifications, and alternatives.

In step 612, a plurality of sampling points are generated as
afunction of variables in accordance with the provided model
template. According to embodiments of the present invention,
the variables are design variables as discussed previously.
The plurality of sampling points are generated in some
embodiments during the worst case analysis discussed in
relation to FIG. 5. In an exemplary embodiment, a modified
implicit power iteration method is applied (616) to approxi-
mate coefficients of the posynomial response surface model.

Aninitial vectoris determined, wherein the elements of the
initial vector are all positive (e.g., Q, ER,*™). A counter is set
to an initial value (e.g., k=1). In an optional step, the initial
vector is normalized by using the following normalization
calculation: Q,_;=Q;_,/|IQ;_i|l>- As discussed in relation to
the implicit power iteration method previously, the initial
vector can be determined with unity norm, in which case a
normalization step is not used. The convex quadratic pro-
gramming is solved:

L 5T s S 2 (9
minimize (@ Be. CO = Y (R] QO Ki+ B[R+ Co-gi)

i

subject to @y € RV, By e R?Y, C; e R.,

where  is the error measure, Q,._, is the vector determined in
the previous implicit power iteration step, Q,, B, and C, are
unknown coefficients, and g is the worst-case performance
value. The counter k is used during the iteration and i repre-
sents the index of the sampling points.

After the solution is obtained, an updated convex quadratic
programming is generated using the current solution. Accord-
ingly, the normalization and the convex quadratic program-
ming are performed iteratively, incrementing k until

™" (Qso Bro Cid=Wies ™" (Ot Biet, Crot)I<E, 10
where € is the pre-defined error tolerance. The iteration pro-
cess is continued until the difference between the error mea-
sured in two successive iterations is reduced below the pre-
defined error tolerance . Upon completion of the iteration,
the following approximate posynomial model is provided:

an

The above sequence of steps provides a method of per-
forming projection-based posynomial fitting according to an
embodiment of the present invention. Other sequences of
steps may also be performed according to alternative embodi-
ments. For example, alternative embodiments of the present
invention may perform the steps outlined above in a different
order. Moreover, the individual steps illustrated by this figure
may include multiple sub-steps that may be performed in
various sequences as appropriate to the individual step. Fur-
thermore, other alternatives can also be provided where steps

S0=X"0,0,_,"X+B,X+C,.
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are added, one or more steps are removed, or one or more
steps are provided in a different sequence without departing
from the scope of the claims herein. One of ordinary skill in
the art would recognize many variations, modifications, and
alternatives.

Posynomial fitting is performed for each performance
specification. Generally, the performance specifications are
provided by the circuit designers, although this is not required
by the present invention. Accordingly, the processes starting
with polynomial fitting, worst case analysis, and posynomial
fitting are repeated for each of the selected performance
specifications.

Using the posynomial models associated with each of the
performance specifications, the optimization is formulated
using conventional techniques. As will be evident to one of
skill in the art, the cost function can be a weighted sum of all
performance specifications:

minimizeZw;gi(X). (12)

where o, and g, (X) are the weight and the approximated
posynomial model for the i-th worst-case performance mea-
sure, respectively. Additionally, a single performance speci-
fication can be optimized subject to boundaries for other
performance specifications:

minimize §4(X)

subject to g,(X)=p, (i=1,2,...) (13)
where g,(X) is the approximated posynomial model for the
worst-case performance measure that should be minimized,
and g,(X) is the approximated posynomial model for the i-th
worst-case performance measure that should be smaller than
the pre-defined value f3,. 3, is generally received from a circuit
designer or other source. One of ordinary skill in the art would
recognize many variations, modifications, and alternatives.

Finally, based on these extracted posynomial performance
models, geometric programming is applied to optimize the
design variables X=[x,,X,, . . ., x5]. As will be evident to one
of'skill in the art, many conventional optimization algorithms
(e.g. the interior-point method) can be applied to solve the
geometric programming.

As discussed in relation to FIG. 2B, the aforementioned
optimization process including calculation of the coefficients
of'a response surface model using a low-rank approximation,
worst case analysis including process and environmental
variations, posynomial fitting using a low-rank approxima-
tion, and geometric programming that is performed itera-
tively until convergence is reached. In some embodiments,
the cost function value after geometric programming is com-
pared with a pre-defined tolerance. If the cost function value
is smaller than the tolerance, convergence is detected and the
iteration is stopped. In other embodiments, the difference
between the cost function value in the previous iteration and
the cost function value in the present iteration is compared
with a pre-defined tolerance. If the difference is smaller than
the tolerance, convergence is detected and the iteration is
stopped. One of ordinary skill in the art would recognize
many variations, modifications, and alternatives.

As discussed in relation to FIG. 2B, the size of the local
design space is decreased as successive iterations of the
ROAD method are performed. As the local design space
decreases in size, the accuracy of the polynomial and posy-
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nomial fitting becomes more accurate. As a result, the optimal
design for each design space increases in accuracy as ROAD TABLE 1
iterations are performed. —
FIG. 7 is a simplified circuit schematic illustrating a current Type Name  Description
mirror. Utilizing this current mirror, an exemplary embodi- 5 Design W Transistor width (M1 and M2 have
ment of the present invention is illustrated. As will be evident Variable identical width)
to one of skill in the art, this simplified example is provided L Transistor length (M1 and M2 have
. . . . .. identical length)
merely for purposes of 1.11ustra.t10n and is not 1ntepded to hmlt Process AV,, 'V, mismatch of M1
the scope of the present invention. The current mirror consists Variation AV,, V, mismatch of M2
of three basic components: an ideal current source 710 (100 10 Circuit Iout  Output current
pA) and two MOS transistors M1 and M2. The output current Performance Aot Variation of output current (defined by
ITout is illustrated in FIG. 7. Inthe current mirror illustrated in Desi I 1% and 99% points on CDF)
A | A A esign Objective Minimize Alout
FIG. 7, the transistor width and length are design variables
that are to be optimized. For purposes of clarity, it is assumed ) ) ) o
that M1 and M2 have the same transistor width (W) and 15  Typically, the designer specifies the initial values of all
length (L). design Vanables.. This 1I}1t1a1 setup is called an initial design.
For purposes of clarity and simplicity, global inter-die For purposes of illustration, the 1n1.t1a1 values of both W and L.
variations are ignored in optimizing the current mirror illus- are set equal to 0.2 um, as shown in Table 2.
trated in FIG. 7. The only process variation that is considered
is the mismatch of the threshold voltage (V,;,). As will be 20 TABLE 2
evident to one of skill in the art, the values of V,,, for M1 and Name Value
M2 are not exactly identical due to manufacturing variations.
To model such aV,, mismatch, the V,,, of M1 is represented as w 0.2 pm
VvomtAV . and the V, of M2 is represented as V., + L 0.2 pm
AV,,,, where V.. .. stands for the nominal V,, value thatis 25
identical for both M1 and M2, and AV, and AV, , are ran- Starting from the initial design, a local design space is
dom variables used to model the mismatch. The additional designed that covers £10% perturbation of the design vari-
assumption that AV, ; and AV, , are statistically independent ables (i.e., W € [0.18 um, 0.22 um] and L € [0.18 pm, 0.22
and normal distributions with a mean value of zero and a pm]). One of ordinary skill in the art will appreciate that the
standard deviation of 0.0333. 30 size of the initial design space can be set to other values (e.g.,
The output current Iout is the performance measure of +20%, £5%, etc.), depending on the requirement of different
interest for purposes of this example. FIGS. 8A and 8B are design applications.
simplified plots illustrating a probability density function and For purposes of this example, 32 sampling points for the
the cumulative distribution function, respectively, as a func- design variables W and L are randomly selected over the
tion of output current according to an embodiment of the 33 range of design space values illustrated in FIG. 9. Addition-
present invention. When the random mismatch on'V,,, is con- ally, 32 sampling points for the process parameters AV, ; and
sidered, lout is not a deterministic value, but is modeled as a AV, are randomly selected according to their probably dis-
random variable as illustrated in FIG. 8A. In this example, we tributions. Table 3 lists the selected sampling points for W, L,
are especially interested in the variation of lout, which is AV,,,, and AV,,,. A circuit simulation is run to compute the
denoted as ATout. We define Alout as the distance between the 40 Tout value for all 32 sampling points.
99% point and the 1% point of the cumulative distribution Table 3 lists the results of this simulation in the last column.
function (CDF), as shown in FIG. 8B. Minimizing Alout is the One of skill in the art will appreciate that the selection of 32
objective of this design example. Table 1 summarizes the sampling points is merely an example and it not intended to
design variables, process variations, circuit 15 performance limit the present invention. Alternative embodiments of the
measures and design objectives related to the current mirror 45 present invention utilize a greater or lesser number of sam-
illustrated in FIG. 7. pling points depending on the particular applications.
TABLE 3
Index W (m) L (m) AV (V) AV 0 (V) Tout (A)
1 1.9451E-07 1.8395E-07  3.2814E-02 -5.8554E-02  5.8976E-05
2 21025E-07 1.9777E-07 -2.0588E-02  L.1048E-02  1.3425E-04
3 2.0600E-07 1.9011E-07 -9.7402E-02  7.9722E-02  2.5295E-04
4 2.1404E-07 2.0958E-07  3.0297E-02 -8.5825E-02  5.3566E-05
5 1.9931E-07 1.9590E-07  5.5465E-02 -1.1209E-02  7.3398E-05
6  1.8671E-07 2.0315E-07  8.0224E-02  1.4093E-02  7.4037E-05
7 21811E-07 1.9704E-07  6.2034E-02  9.4061E-02  13214E-04
8  2.1511E-07 1.8006E-07  4.9671E-02 -1.5760E-02  7.2141E-05
9  1.8285E-07 19171E-07  9.2648E-02 -4.5250E-02  3.9545E-05
10 2.1174E-07 2.1857E-07  2.0014E-02  8.9170E-02  1.5299E-04
11 20470E-07 2.1748E-07  7.0896E-02 -2.4796E-02  6.3050E-05
12 19650E-07 2.0733E-07  9.6002E-02  -9.8497E-02  2.5434E-05
13 20325E-07 1.8605E-07  1.1916E-02 -3.8343E-02  8.1961E-05
14 19111E-07 2.0859E-07 -3.4501E-02  24511E-02  1.4976E-04
15 2.0973E-07 2.0000E-07 -7.5436E-02  8.6220E-02  2.3120E-04
16  19145E-07 1.8936E-07  4.0866E-02 -6.7622E-02  5.1886E-05
17 19838E-07 2.0548E-07  6.5166E-02  5.7777E-02  1.0646E-04
18 1.88l10E-07 1.8170E-07 -8.1574E-02  5.2637E-03  1.8100E-04
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TABLE 3-continued

Index W (m) L (m) AV (V) AV, (V) Tout (A)

19 1.8503E-07 1.9438E-07 -6.2499E-03  -1.2770E-03 1.1575E-04
20 1.8904E-07 2.1338E-07 -5.5562E-02  -5.0784E-02 1.1621E-04
21 2.0154E-07 2.1059E-07 -1.8736E-02 7.4661E-02 1.7196E-04
22 1.9514E-07 1.8700E-07 -6.7940E-02  -7.5451E-02 1.1030E-04
23 1.8456E-07 1.8340E-07 1.8724E-02 3.1731E-02 1.2106E-04
24 2.1260E-07 2.1399E-07 -4.7461E-02  -8.8626E-02 9.1010E-05
25 1.8006E-07 1.8866E-07 -3.8519E-02  -2.7448E-02 1.2101E-04
26 1.8239E-07 2.0434E-07 -6.1956E-02 6.3626E-02 1.9756E-04
27 2.0042E-07 2.1976E-07 —-8.9743E-02 5.2796E-02 2.0495E-04
28 2.0831E-07 1.9889E-07 -9.8713E-03 4.7171E-02 1.5074E-04
29 2.1998E-07 2.0242E-07 -7.3045E-02  -3.1872E-02 1.4216E-04
30 2.1742E-07 2.1193E-07 2.9324E-03  -7.3482E-02 7.2150E-05
31 2.0629E-07 1.9345E-07 -2.6902E-02 2.5048E-02 1.4911E-04
32 1.9269E-07 2.1512E-07 8.3893E-02 3.8265E-02 8.5753E-05

Given the sampling points illustrated in Table 3, implicit
power iteration, as described above, is used to fit an approxi- 20 -continued
mated, rank-one quadratic polynomial function for lout, i.e.:

Tout = f(W, L, AV AVyp) = 14 +3.64% 102
—1.42x10%2 4
T B, = ,Cr =2.27x107
W W W 25 T Liox103 [ ?
L L ,
-0l - +Bl. +C, +1.16x 107
AV AV AV
AV AV AVip

In this example, the total number of design variables and 30
process parameters is equal to four. Therefore, an initial vec-
tor Q, € R*! is selected as the initial vector for the implicit
power iteration process. For purposes of illustration, we

After the third implicit power iteration, the calculated val-
ues for the coefficients are:

select:
1 (15 35
1 -4.74% 107! +1.03%x10% (18)
Q=1 +8.80x 107! +437x10%
Q2 = L 9= 5 |
1 +3.99% 10 +1.86%x 10"
~-1.64%1077 -3.02x10%?
S . . 40
After the first implicit power iteration, the calculated val-
ues for the coefficients are: )
+4.67x 10"
-135x10"? »
+5.00%107! 1+8.85% 1072 (16) Bi=| o xios |G =203x10
45 .
+5.00x 107" +1.55% 107 +1.02x 107
Qo = .01 = , '
*Tasoox107t [T | 2353% 107
+5.00%x107! -1.76x1073
141 x 10 50 For thi.s exgmple, the implicit power it.eration converges
. after 12 iteration steps. In the last iteration the calculated
+ .
B = +3.56x10 €, =8.13%10°5 values for the coefficients are:
-878x107* | ’
+343x 107
55 +5.83x 107" -1.06x10*° 19
+8.11x107" +2.77x10*°
After the second implicit power iteration, the calculated Qu=l L soxios [ 927 +779x107 |
values for the coefficients are: . )
—-1.09x 107 -5.98%x 10"
60
+4.94%107! -2.11x10%° 17 +1.23%x10%2
+8.69%107! +3.92x10%° -L12x10% »
o1 = o Q2= 5 | B, = | Cra=218x%10
—-1.97x10 +1.78x 10™ -1.19%10
-9.83x1077 -7.33%10%2 65 +1.14x1073
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Therefore, the approximated quadratic polynomial func-
tion is:

Tour = J(W, L, AV, AVyo) = 20
w " w w w "
(012011 - +B],- +Ci2=
AV AV h1 hl
AVyn AVyn AVyn AVin
—6.02x10" —8.62x10" —1.06x10"> +1.16x10"3
+1.61x10™° +2.24x107° +2.79x10%3 —3.04x10%3
+4.54x10"% +6.32x107% +7.84x107* —8.55x107*
—3.49x10"? —4.86x10"2 —6.02x107* +6.57x107*
" +1.23x1077] g
L —1.12x10%3
. +2.18x10™*
AV —1.19x107% | | AV
AVia ]| 410451078 | LAVie

Within the local design space (shown in FIG. 9), 30 sam-
pling points are randomly selected for W and L. Given the
quadratic polynomial function in equation 20, APEX is uti-
lized to compute Alout at each of these 30 sampling points. In
this example, Alout is defined as the distance between the 1%
point and the 99% point of the cumulative distribution func-
tion as illustrated in FIG. 8B. Table 4 lists the 30 sampling
points utilized in this posynomial fitting process. Again, one
of skill in the art will appreciate that the selection of 30
sampling points is merely an example and is not intended to
limit the present invention. Alternative embodiments of the
present invention utilize a greater or lesser number of sam-

5

10

—

5

25

30

35

pling points depending on the particular applications.

TABLE 4
40
Index W (m) L (m) Alout (A)
1 2.1947E-07 1.8421E-07 1.5056E-04
2 2.0027E-07 2.1896E-07 1.2204E-04
3 2.0507E-07 2.1478E-07 1.2582E-04
4 2.0964E-07 2.1155E-07 1.2887E-04
5 1.9526E-07 1.8630E-07 1.4550E-04 45
6 2.1649E-07 1.9936E-07 1.3889E-04
7 1.9132E-07 1.9285E-07 1.4007E-04
8 2.0811E-07 2.0806E-07 1.3123E-04
9 2.0571E-07 1.9649E-07 1.3946E-04
10 2.1386E-07 2.0248E-07 1.3620E-04
11 1.9834E-07 1.9864E-07 1.3679E-04 50
12 1.8426E-07 1.8115E-07 1.4772E-04
13 2.1813E-07 1.9446E-07 1.4276E-04
14 2.1585E-07 2.1849E-07 1.2463E-04
15 1.8104E-07 2.1600E-07 1.2144E-04
16 2.1088E-07 2.0598E-07 1.3317E-04
17 2.0361E-07 1.8718E-07 1.4605E-04 55
18 1.9397E-07 2.0715E-07 1.2986E-04
19 2.0137E-07 2.0068E-07 1.3572E-04
20 1.8830E-07 1.9161E-07 1.4055E-04
21 2.0697E-07 2.0463E-07 1.3361E-04
22 1.8948E-07 1.8213E-07 1.4775E-04
23 1.9686E-07 1.9562E-07 1.3882E-04
24 1.8544E-07 2.1226E-07 1.2485E-04 60
25 1.8273E-07 2.1057E-07 1.2570E-04
26 1.8789E-07 1.8863E-07 1.4270E-04
27 1.9912E-07 1.8374E-07 1.4795E-04
28 1.9287E-07 2.1348E-07 1.2502E-04
29 1.8264E-07 1.9058E-07 1.4049E-04
30 2.1325E-07 2.0339E-07 1.3543E-04 65

20

Utilizing the sampling points shown in Table 4, implicit
power iteration is used to fit a quadratic posynomial function
for Alout, i.e.:

wl T w! w! 21
. ! ! !
Alout = g(W, L) = (2 QL)) +B]- +C,
w
L L L

where, for a posynomial function, all elements in Q,Q,_,”
and B, and C, are positive.

In equation 21, Q,Q,_, ¥ € R***. Therefore, a vector Q, €
R*! is selected as the initial vector for implicit power itera-
tion. For purposes of illustration:

1 22)

1
1
1

After the first implicit power iteration, the calculated val-
ues for the coefficients are:

+5.00x107! +1.40%107% (23)
+5.00x107! +0.34x 1072
Qo= Q= s
+5.00x10 +3.59x10
+5.00x107! +2.69%x10710
+1.30x10716
+2.58x1071L
B, = ,Cy = —4.24x107°
+6.33x107!
+7.58x107*

After the second implicit power iteration, the calculated
values for the coefficients are:

+3.89x1071° +2.79%x1077 (24)
+2.59%x1071° +1.79x1073
Q= , Q2 = ,
+1.00x10%° +0.00%x10%°
+6.56x1076 +0.00%x10%°
+3.99x10718
+2.58x107!!
B, = ,Cy = =247x107°
+6.33x10"!
+2.22x107°

After the third implicit power iteration, the calculated val-
ues for the coefficients are:

+1.55x1072 +4.49%x1072 (25)
+9.99x107! +9.34x10726
Oy = , Q3=
+0.00%x10%° +1.79%x1073
+0.00%x10%° +1.29%x10710
+2.25x107'8
+2.58x107!!
Bs = ,C3=-247x107°
+6.33x107!
+1.25%107°



US 7,669,150 B2

21 22
For this example, the implicit power iteration converges The optimization problem in equation 29 is solved by
after seven iteration steps. In the last iteration the calculated geometric programming as described above. Table 5 shows
values for the coefficients are: the optimal design variables and circuit performances that are
calculated using a geometric programming process.
5
+1.00x10%° +2.17x10722 (26) TABLE 5
+3.59x1077 +6.16x1072
Q¢ = , 07 = s Type Name Value
+0.00x10% +4.94x10"
" N Design Variable \ 0.18 pm
+0.00x10*° +2.69x107° 10 L 0.22 pm
Circuit Performance Alout 119 pA
+3.22x1071
5 - +2.59x107! = 404k 107! Comparing Tables 2 and 5, it is observed that the values of
R T T N s WandL have changed from the initial design values. In other
+1.62x1072 words, starting from the initial design in Table 2, the ROAD
tool defines a local design space (shown in FIG. 9) and then
finds the optimal design in the local design space (shown in
Therefore, the approximated quadratic posynomial func- Table 5). In an iterative manner, the ROAD tool is subse-
tion is: quently used to define a new local design space based on the
w-117" w-! w-! 27
! ol Lt | Lt
Alour=g(W, L) = (@00 +B7- +Cr=
w w w
L L L

woL T [2.17x1072 7.82x107%  +0.00x10™° +0.00x1070] 1 y-1
-1 6.16x1072 221x107%  +0.00x10% +0.00x1070 | | ;-1

. . +
w 494x1071 1.77x1075  +0.00x10%0 +0.00x10*° w
L 2.69%x107° 9.71x107'¢ +0.00x10*° +0.00%10%° L
+322x 1078 | oy
+2.59x1070 || g
. —4.94x10*!
+6.46x10! w
+1.62x107 L
Given the approximated function Alout=g(W,L) in equa- values in Table 5, repeat the polynomial fitting, worst-case
tion 27 and the local design space shown in FIG. 9, Alout is analysis, posynomial fitting, and geometric programming
mupnpzed in the pre-.deﬁned local design space. Such an 45 process to find the optimal design in the new local design
optimization problem is formulated as: space. This process is applied in an iterative manner until the
Minimize g(W, L) improvement in subsequent iterations decreases to a value
below a predetermined threshold. Moreover, as illustrated in
Subject To 0.18 um=W=0.22 ym “ FIG. 2B, the local design space is decreased in size during the
0.18 pm=L=0.22 pm 28) course of the iterations, thereby improving the polynomial

o ) ) and posynomial fitting accuracy. Table 6 shows the optimal
It should be noted that the function in equation 27 is not design variables and circuit performances obtained after the

exactly a posynomial, since the constant term C is negative. ROAD tool is applied in this iterative manner.
However, when g(W,1) is minimized, the constant term C has

no impact on the optimization solution. In other words, the 33 TABLE 6
optimization problem in equation 28 is equivalent to:
Minimize g(W, L)-C Tteration  Design Space
’ Number Size W (m) L (m) Alout (A)
Subject To 0.18 pm=W=0.22 ym 6 1 £10% 1.8003E-07 2.1996E-07  1.1926E-04
2 £10% 1.6206E-07 2.4192E-07  1.1155E-04
0.18 pm=L.=0.22 pm 29) 3 £10% 1.6004E-07 2.6603E-07  1.0145E-04
4 £10% 1.6003E-07 2.9252E-07  9.2313E-05
since solving equations 28 and 29 result in the same optimal 5 £10% 1.6003E-07  3.2164E-07  8.3959E-05
values for W and L. Therefore, equation 29 is used to find the 6 10% 1.6004E-07  3.5365E-07  7.6388F-05
. : > &4 . 7 £10% 1.6007E-07 3.8882E-07  6.9534E-05
optlmal values of W and L, where the constant tel.‘m Cis 65 8 +10% 1.6008E—-07 4.2748E-07 6.3284E-05
removed and the cost function g(W,L.)-C only contains qua- 9 £10% 1.6011E-07 4.6995E-07  5.7681E-05

dratic and linear posynomial terms.
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TABLE 6-continued

Iteration  Design Space
Number Size W (m) L (m) Alout (A)
10 £10% 1.6012E-07 5.1663E-07  5.2560E-03
11 £10% 1.6055E-07 5.6724E-07  4.7942E-05
12 £10% 1.6067E-07 6.2275E-07  4.3800E-05
13 £10% 1.6077E-07 6.8361E-07  4.0036E-05
14 £10% 1.6085E-07 7.5038E-07  3.6618E-05
15 £10% 1.6094E-07 8.2362E-07  3.3519E-05
16 £10% 1.6105E-07 9.0398E-07  3.0707E-03
17 £10% 1.6124E-07 9.9224E-07  2.8150E-05
18 £10% 1.6270E-07 9.9608E-07  2.7604E-05
19 £10% 1.6045E-07 9.98835E-07  2.7516E-05
20 £10% 1.6041E-07 9.98835E-07  2.7502E-03
21 5% 1.6309E-07 9.9945E-07  2.7343E-05
22 5% 1.6203E-07 9.9839E-07  2.7328E-05
23 5% 1.6361E-07 9.9942E-07  2.7349E-05
24 5% 1.6390E-07 9.9917E-07  2.7346E-05
25 £2.5% 1.6171E-07 9.9810E-07  2.7204E-05
26 £2.5% 1.6094E-07 9.9825E-07  2.7105E-05
27 £2.5% 1.6083E-07 9.9826E-07  2.7104E-05
28 £2.5% 1.6082E-07 9.9826E-07  2.7104E-05
29 +1.25% 1.6048E-07 9.9859E-07  2.7049E-05
30 £0.625% 1.6042E-07 9.9535E-07  2.7131E-05

While the present invention has been described with
respect to particular embodiments and specific examples
thereof, it should be understood that other embodiments may
fall within the spirit and scope of the invention. The scope of
the invention should, therefore, be determined with reference
to the appended claims along with their full scope of equiva-
lents.

What is claimed is:
1. A computer implemented method of performing projec-
tion based polynomial fitting, the method comprising:

generating a plurality of sampling points as a function of
variables;

forming a polynomial model template representative of the
plurality of sampling points, wherein the polynomial
model template comprises at least one polynomial coef-
ficient;

forming a low-rank matrix using implicit power iteration to
approximate the polynomial coefficient, wherein form-
ing the low-rank matrix comprises using the steps of:

(a) determining an initial estimate of a product of a
singular value and a singular vector associated with
the low-rank matrix, wherein the singular value is a
first dominant singular value and the singular vector is
at least one of a first dominant left singular vector and
a first dominant right singular vector,

(b) using the determined initial estimate of the product
of the singular value and the singular vector to deter-
mine a second estimate of the product of the singular
value and the singular vector, and

(c) repeating steps (a) and (b) until a difference between
a first error between the polynomial model template
and the plurality of sampling points and a second error
between the polynomial model template and the plu-
rality of sampling points is reduced to a predeter-
mined value; and

providing a circuit design based on the low-rank matrix
utilizing a computer-aided design tool.
2. The method of claim 1 further comprising determining
the first error at a step previous to determining the second
error.
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3. The method of claim 2 wherein the first error is deter-
mined at a penultimate step and the second error is deter-
mined at a final step.

4. The method of claim 1 wherein variables comprise at
least one of design variables, process parameters, or environ-
mental parameters.

5. The method of claim 4 wherein the process parameters
comprise process variation.

6. The method of claim 4 wherein the environmental
parameters comprise environmental variation.

7. The method of claim 1 wherein the polynomial model
template comprises a quadratic polynomial equation.

8. The method of claim 1 wherein the polynomial coeffi-
cient is a quadratic coefficient matrix.

9. A computer program product stored on a computer-
readable storage medium configured to store instructions
operational by a processor of a computer system for perform-
ing projection based polynomial fitting, the computer pro-
gram product comprising:

code for generating a plurality of sampling points as a
function of variables;

code for forming a polynomial model template represen-
tative of the plurality of sampling points, wherein the
polynomial model template comprises at least one poly-
nomial coefficient; and

code for forming a low-rank matrix using implicit power
iteration to approximate the polynomial coefficient,
wherein the code for forming a low-rank matrix com-
prises:

(a) code for determining an initial estimate of a product of
a singular value and a singular vector associated with the
low-rank matrix, wherein the singular value is a first
dominant singular value and the singular vector is at
least one of a first dominant left singular vector and a
first dominant right singular vector,

(b) code for using the determined initial estimate of the
product of the singular value and the singular vector to
determine a second estimate of the product of the singu-
lar value and the singular vector, and

(c) code for repeating steps (a) and (b) until a difference
between a first error between the polynomial model
template and the plurality of sampling points and a sec-
ond error between the polynomial model template and
the plurality of sampling points is reduced to a predeter-
mined value.

10. The computer program product of claim 9 further com-
prising code for determining the first error at a step previous
to determining the second error.

11. The computer program product of claim 10 wherein the
first error is determined at a penultimate step and the second
error is determined at a final step.

12. The computer program product of claim 9 wherein
variables comprise at least one of design variables, process
parameters, or environmental parameters.

13. The computer program product of claim 12 wherein the
process parameters comprise process variation.

14. The computer program product of claim 12 wherein the
environmental parameters comprise environmental variation.

15. The computer program product of claim 9 wherein the
polynomial model template comprises a quadratic polyno-
mial equation.

16. The computer program product of claim 9 wherein the
polynomial coefficient is a quadratic coefficient matrix.
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