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Accurately estimating the failure region of rare events for memory-cell and analog circuit blocks under
process variations is a challenging task. In this article, we propose a new statistical method, called EliteScope,
to estimate the circuit failure rates in rare-event regions and to provide conditions of parameters to achieve
targeted performance. The new method is based on the iterative blockade framework to reduce the number of
samples, but consists of two new techniques to improve existing methods. First, the new approach employs an
elite-learning sample-selection scheme, which can consider the effectiveness of samples and well coverage for
the parameter space. As a result, it can reduce additional simulation costs by pruning less effective samples
while keeping the accuracy of failure estimation. Second, the EliteScope identifies the failure regions in
terms of parameter spaces to provide a good design guidance to accomplish the performance target. It applies
variance-based feature selection to find the dominant parameters and then determine the in-spec boundaries
of those parameters. We demonstrate the advantage of our proposed method using several memory and
analog circuits with different numbers of process parameters. Experiments on four circuit examples show
that EliteScope achieves a significant improvement on failure-region estimation in terms of accuracy and
simulation cost over traditional approaches. The 16b 6T-SRAM column example also demonstrates that the
new method is scalable for handling large problems with large numbers of process variables.
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1. INTRODUCTION

As the CMOS technology scaling continues, performance uncertainties related to pro-
cess variation have become a major concern for IC development [Calhoun et al. 2008].
Many IC components such as SRAM bit-cells need to be tremendously robust as they
are duplicated in the millions [Masuda et al. 2005]. Such modules require accurate
statistical-failure analysis in rare-event regions. However, the traditional Monte Carlo
(MC)–based statistical analysis method faces a challenge, as it may require millions of
simulations [Singhee and Rutenbar 2009].

To mitigate this problem, a number of statistical analysis algorithms have been de-
veloped in the literature [Hocevar et al. 1983; Singhee et al. 2008; Wu et al. 2014a,
2014b; Singhee and Rutenbar 2009; Mukhopadhyay et al. 2004; Agarwal and Nassif
2006; Qazi et al. 2010; Nassif et al. 2006; Gong et al. 2012; Shen et al. 2012a, 2012b].
One existing work for yield analysis using a spectral stochastic method has been pro-
posed [Gong et al. 2012; Shen et al. 2012a, 2012b]. The spectral stochastic method
applies stochastic orthogonal polynomials to represent the variational performance
results. The analysis process boils down to determination of the coefficients of those
polynomials, which is more efficient than the MC methods if the number of variables
is not large. It become less efficient, however, for high-dimensional problems (large
number of random variables).

Another approach is by means of importance sampling (IS) [Hocevar et al. 1983],
which consist of two steps. First, it shifts the mean value of the initial performance
distribution and places it in an interested failure region. The standard deviation based
on the shifted mean is recalculated by considering samples placed only in the failure
region. The new probability density function (PDF) is generated based on an updated
mean and standard deviation so that more samples in the failure region can be drawn.
Nassif et al. [2006] applied the mixture of IS for cross-validation of multiple failure
regions due to disjointed process parameters. However, these approaches can estimate
only a single performance metric. Multiple importance samplings are required to esti-
mate more metrics. Also, it is difficult to calculate the failure probability for a generated
distribution by IS.

The statistical blockade (SB) is another effective approach for improving the perfor-
mance of the MC method [Singhee and Rutenbar 2009]. The idea of this approach is
using a threshold bound to separate an interested failure region from the whole distri-
bution so that it can block some unnecessary sampling and simulation for efficiency im-
provement. This method builds a supervised learning model with the threshold bound
and initial simulation data, which is known as a “classifier,” to recognize failure sam-
ples. Later samples that tend to be placed in the failure region can be captured without
simulation. This approach was improved by using the recursive statistical blockade
(RSB) scheme to locate the rare-event failure region in an iterative way [Singhee et al.
2008]. This method can improve the accuracy of the classifier iteratively by increasing
the number of samples in the failure region of interest. However, this method can incur
significant extra cost as it needs more samples for the simulation. Wu et al. [2014b]
applied a nonlinear Support Vector Machine (SVM) classifier to model nonlinear and
multiple disjoint failure regions of circuits. This method applies the generalized Pareto
distribution (GPD) fitting for tail distribution to model failure probability in each it-
eration. However, this method cannot further investigate the failure region without
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rerunning the whole algorithm. The reason is that the pruned parameters, depending
on the initial samples, cannot remain as important in the failure region, which keeps
changing. Also, the previous approaches cannot provide the design guideline in terms
of the design parameters to explicitly avoid performance failure, which is important
for improving the yield of the circuit.

Recently, Sun et al. [2013] proposed scaled-sigma sampling (SSS) and the subset
simulation technique (SUS) [Sun and Li 2014] as better solutions to estimate rare
failure rates with high-dimensional variation space. Unlike traditional IS, SSS applied
a soft maximum theorem to construct an analytical model, which is insensitive to
dimensionality, for rare failure rate estimation. SUS, on the other hand, tends to
express rare failure probability as a product of conditional probability of intermediate
failure events, which is similar to the recursive statistical blockade concept. These
intermediate terms are then accurately estimated using the Markov Chain Monte
Carlo (MCMC) algorithm.

In this article, we propose a new statistical failure region diagnosis method. The new
method, called EliteScope, is based on a recursive statistical blockade method to reduce
the sample counts while still maintaining estimation accuracy, but consists of two new
techniques to improve existing methods. The main contributions of this article are as
follows:

• First, in the recursive statistical blockade method, more samples will be generated
when the failure region is redefined gradually. To mitigate these problems, the new
approach applies an elite sampling scheme, which considers both effectiveness of
samples and well coverage for process parameter search space, to reduce the number
of generated samples after the failure regions are relocated.

• Second, our approach provides safe boundaries or in-spec boundaries of process pa-
rameters to satisfy the design specification and manage yield variability of the circuit.
The new method first applies variance-based feature selection to find the dominant
parameters. A quasirandom sampling with dominant parameters is then used to
quickly determine proper boundaries of those parameters.

The presented method has been tested on several types of digital and analog/mixed-
signal circuits: a 4-gate logic circuit with 48 process parameters; a charge pump opera-
tion failure diagnosis in a PLL circuit with 81 process parameters; a 6T-SRAM reading
failure diagnosis with 27 process parameters; and a 16b 6T-SRAM column reading fail-
ure diagnosis with 432 process parameters. Experimental results show that, given the
same computing costs, the proposed method in general can be more accurate than all
existing methods. For instance, for the 16b 6T-SRAM column, with a similar number
of samples used, EliteScope can deliver about 3X to 10X accuracy improvement over
existing methods. Furthermore, the 16b 6T-SRAM column example also shows that the
new method can easily handle the statistical analysis problems with large numbers of
process variables.

The rest of this article is organized as follows. Section 2 discusses essential back-
ground for sample-based failure analysis and revisits some important techniques for
improving MC performance. In Section 3, we first introduce the overall flow of the
proposed method and review of the mathematical framework for the recursive sta-
tistical blockade–based method. We then present the proposed elite sampling method
to reduce the number samples for efficiency improvement. We then introduce a new
guidance technique of parameters to meet target performance. Section 4 contains the
experimental result for verifying the accuracy and efficiency of the proposed method.
Computation complexity and convergence performance analysis of EliteScope is also
discussed. Section 5 presents our conclusions.
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Fig. 1. Generated PDF by importance sampling in 2D random variables.

Fig. 2. General flow of statistical blockade approach.

2. BACKGROUND

2.1. Importance Sampling

In sample-based statistical analysis, IS is a general technique to estimate properties of
rare-event regions using the samples generated from the initial distribution. Figure 1
shows the generated distribution g(x) by IS with two parameters. As we can see in
the figure, the property of the failure region can be captured as more samples are
obtained in the failure region. Therefore, the proper sampling scheme is needed to
build the right distribution representing the rare-event region. One of the IS-based
approaches is focusing on quasirandom sampling to explore the parameter space
more uniformly. The samples can be selected by the initial MC sampling so that more
regular space filling makes the initial samples to cover large variety combinations
of parameters [Montgomery 2013]. Another well-known approach is mean shifting
and variance reconstructing, for which the initial distribution is centered around the
failure region [Nassif et al. 2006; Qazi et al. 2010]. However, all these approaches
assume a linear relation between the reconstructed and the initial distributions; thus,
the generated samples cannot reflect the nonlinear rare-event region correctly.

2.2. Statistical Blockade

We first briefly review the concept of the SB approach for fast estimation of properties
of the rare-event region. A general framework of SB is shown in Figure 2. This method
starts with drawing initial samples with uniform or normal distribution to capture a
crude shape of performance distribution by circuit simulation. The classifier can be
built by training with initial simulation data. Once we obtain the classifier, samples
that tend to fall into the failure criteria can be identified without actual simulation.
With these filtered samples, SB calculates the probability of failure region by fitting
samples in a proper distribution model. Thus, “classification” and “failure probability
calculation” are both key steps in the SB method. The rest of this section describes
these two steps.
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Fig. 3. The classification accuracy of two different methods.

2.2.1. Classification. Classification is a step in which the samples can be classified
into likely-to-fail samples for circuit simulation. Building a classifier needs a training
step with initial samples to render real shapes of the failure region. The classifier
can shrink the number of samples, thus the simulation cost is reduced. However, it
is not capable of fully replacing the simulator due to its accuracy. Thus, a marginal
filtering approach is used to improve the accuracy of classification [Singhee et al.
2008; Wu et al. 2014a, 2014b; Singhee and Rutenbar 2009]. This method uses relaxed
threshold bounds instead of a real failure criterion to capture more samples to minimize
classification error. Meanwhile, it is not sufficient to use a simple and linear classifier
due to the nonlinearity of the failure region [Singhee et al. 2008; Wu et al. 2014a;
Singhee and Rutenbar 2009]. Thus, Gaussian radial basis function kernel (GRBF) and
neural network methods are available for nonlinearclassifiers [Wu et al. 2014b; Hastie
2009]. Figure 3 shows the accuracy of classification in a 2-dimensional search space
example. Even when the solution space is separated a with nonlinear relation, GRBF
can recognize patterns properly while the LSVM draws a wrong boundary between two
categories.

2.2.2. Failure Probability Calculation. The failure samples should be fitted to a particular
distribution form in order to calculate the probability of the failure region. Suppose that
simulation results for a certain performance metric Y can be fitted to the Gaussian
distribution. The PDF of the result distribution can be represented as

f (y, μ, σ ) = 1

σ
√

2π
e− (y−μ)2

2σ2 , (1)

where parameters μ and σ are the mean and standard deviation in this distribution.
We define FY (y) as the cumulative density function (CDF) of the performance metric Y .
If we know the threshold value t that separates a tail region from the whole distribution
f (y), the conditional CDF of this region can be written as follows:

Ft(y) = P(Y ≥ y | Y ≥ t) = FY (y) − FY (t)
1 − FY (t)

, (2)

where Ft(y) means the failure probability decided by y. Once we have a suitable fitting
model for CDF of the failure region with a failure bound y, the failure probability with
given values can be calculated as

P(Y ≥ y) = [1 − FY (t)] · [1 − Ft(y)]. (3)

In the several generalized extreme value distributions, GPD is one of the most accurate
models to describe tail distribution corresponding to failure region [Wallis and Hosking
1987]. With the location parameter μ, the scale parameter σ and the shape parameter
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ξ , CDF of the failure region can be formulated by GPD fitting:

Ft(y) = G(ξ,μ,σ )(y)

=

⎧⎪⎨
⎪⎩

1 −
(

1 + ξ (y − μ)
σ

)−1/ξ

for ξ �= 0

1 − e
−(y−μ)

σ for ξ = 0

. (4)

The location parameter μ means a starting point of GPD and corresponds to the thresh-
old t of the tail distribution. Consequently, the failure probability with a given threshold
t and failure bound y can be computed as follows:

P(Y ≥ y) = [1 − FY (t)] · [1 − G(ξ,t,σ )(y)]. (5)

To approximate the rest of the parameters for GPD fitting, we use the maximum
likelihood estimation [Hosking 1985].

3. PROPOSED NEW FAILURE REGION DIAGNOSIS METHOD

3.1. The Overall Analysis Flow and Iterative Computing of Failure Probability

In this section, we first present the overall analysis flow of the proposed EliteScope
method, which is illustrated in Figure 4. Nezxt, we present the mathematical frame-
work for the iterative computing of failure probability. Then, we explain our three major
contributions of the proposed method: (1) iterative computing of failure probability,
(2) elite learning sample selection, and (3) parameter guidance for performance
targeting.

Our algorithm starts with given data, such as process variations and some parame-
ters for failure-region determination. The failure criteria tc denotes the reference value
of failure and the percentile bound p to calculate the threshold in each ith iteration. The
first step is to perform initial MC sampling and simulation to capture overall circuit
performance metrics. After this, the relaxed threshold ti can be obtained to separate a
failure region from the main PDF; the probability of this region is P(Y > ti) = p. The
classifier can then be modeled with n simulation result of the initial samples. In the
classification step, the GRBF nonlinear classifier is used for accurate sample filtering.
With the simulation result and the classifier, the new method can calculate the in-spec
conditions of process parameters to achieve a targeted yield in the ith iteration. At
the same time, the algorithm generates n ∗ mi (m is a constant number) MC samples,
which will be filtered by the classifier Ci to likely-to-fail samples based on ti. Then,
elite sample selection can be employed to further reduce the number of samples for
actual simulation. After the simulation, the failure probabilities P(Y > ti) are updated
by GPD fitting. Our approach iterates the whole procedure with the updated threshold
bound ti by percentile bound p and the increased number of MC samples to calculate
the failure probability P(Y > ti). It finishes when the threshold bound meets the given
failure criterion tc.

It is a typically difficult task to choose the right threshold bound in the failure anal-
ysis for an extreme rare-event region. For instance, the failure region is decided by the
failure criterion tc and the probability of this region is around 99.9999%. Suppose that
we use the single threshold method; then, we can choose a very loose threshold t as
P(Y > t) around 99% to safely cover the whole failure region even though the threshold
can be quite far away from tc. Moreover, the number of MC samples for filtering will be
determined at once. If the number of MC samples is relatively enormous, a classifier
will select too many likely-to-fail samples, which will significantly increase simula-
tion cost. Meanwhile, if the number of selected likely-to-fail samples is every small,
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Fig. 4. The proposed iterative failure region diagnosis flow.

this will cause an inaccurate estimation of the failure region, and thus the failure
probability.

To mitigate this problem, one idea is to gradually locate the failure region in an iter-
ative way based on the RSB scheme [Singhee et al. 2008]. Unlike the single-threshold
method, which calculates a failure probability at once, our approach updates a failure
region Y1(>99%) and the probability by GPD fitting after the first iteration. With this
updated failure region, the threshold bound is recomputed for a newly updated region
Y2(>99.99%). The GRBF classifier is trained by failure samples in the first iteration so
that it can capture likely-to-fail samples more precisely in the updated failure region.
In the second iteration, the number of MC samples increases from 10n to 102n as the
increasing ratio is 10; thus, the new classifier will capture more likely-to-fail samples,
better estimating the updated failure region.

As the algorithm iterates, the failure region is scoped continuously close to the
given failure criterion tc based on the recomputed ti, and likely-to-fail samples are
converged on the updated failure region. Therefore, the proposed method can achieve
more accurate failure analysis than a single-threshold method with relatively less total

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 56, Pub. date: May 2016.



56:8 Y. Zhao et al.

Fig. 5. Iterative locating of failure region by changing thresholds.

simulation cost. Figure 5 shows an iterative locating procedure for finding the failure
region.

Mathematically, as discussed in Section 2, the CDF with given a threshold t and a
failure criterion tc can be calculated as

PIS(Y ≥ tc) = PMC(Y ≥ t) · P(Y ≥ tc|Y ≥ t)

P(Y ≥ tc|t ≥ t) = P(Y ≥ tc, Y ≥ t)
P(Y ≥ t)

. (6)

The conditional probability part in Equation (6) can be estimated by GPD fitting using
simulated failure samples. Therefore, Equation (6) can be rewritten as

PIS(Y > tc) = PMC(Y ≥ t) · PMIS(Y ≥ tc|Y ≥ t), (7)

where PMIS represents the conditional probability in updated distribution by GPD
fitting. If the proposed method iterates twice with t1 and t2 as threshold bounds, the
second failure probability can be calculated based on the first failure region. Thus, the
failure probability in each step can be calculated as

PIS(Y ≥ tc) = PIS(2)(Y ≥ tc)
PIS(1)(Y ≥ t2) = PMC(Y ≥ t1)

· PMIS(1)(Y ≥ t2|Y ≥ t1)
PIS(2)(Y ≥ tc) = PMC(Y ≥ t1) · PMIS(1)(Y ≥ t2)

· PMIS(2)(Y ≥ tc|Y ≥ t2)

PMIS(i)(Y ≥ tc|Y ≥ ti) = PMIS(i)(Y ≥ tc)
PMIS(i)(Y ≥ ti)

(8)

Without loss of generality, we can formulate the iterative failure probability calculation
as

PIS(i)(Y ≥ tc)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PMC(Y ≥ ti) · PMIS(i)(Y ≥ tc|Y ≥ ti) for i = 1

PMC(Y ≥ ti) ·
k−1∏
i=1

(PMIS(i)(Y ≥ ti+1)

· PMIS(k)(Y ≥ tc|Y ≥ tk)) for i > 1,

(9)

where k is the number of iterations. Finally, the failure probability can be obtained by
combining all calculated probabilities in each iteration.

3.2. Elite Learning Sample Selection

Simulation cost is a major bottleneck in the statistical analysis of the circuit. The
proposed iterative failure diagnosis method can lead to an extra simulation cost in
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each iteration. To mitigate this problem, we propose the elite learning sample selection
scheme, which significantly reduces the number of samples required. The elite sample
selection process is represented in the box named “Smart sample selection” in Figure 4.
Effectiveness of the sample group is the first factor. Each sample consists of the com-
bination of process parameters, which affect simulation results differently. Therefore,
the sensitivity of each parameter should be considered for the sample selection.

Suppose that we have a set of n samples, which are represented by the parameter
vectors xi, i = 1, . . . , n. Each sample has m process variables (m dimensions). Together,
they form a process parameter matrix X = [x1 x2 ... xn] such that each column
indicates an xi. It is not difficult to see that each row of X is the n samples of a single
parameter. Denote Xj as the vector formed from the jth row of X ( jth process variable).
A scalar vector y = [y1, y2, . . . , yn]T contains all the corresponding n simulation results.
σXj and σY are variances of Xj and y, respectively. The proposed selection method
calculates correlation coefficients between parameters and simulation results for the
sensitivity analysis as follows:

Xj, y ∈ Rn

ρXj ,y = cov(Xj, y)
σXj σy

j = 1, 2, . . . , m

ρX,y = [ρX1,y ρX2,y ... ρXm,y]T ∈ Rm

, (10)

where ρX,y means the covariance coefficient of simulation results and mprocess param-
eters.

The second factor is the coverage ratio of parameter search space by selected samples.
The diversity of samples can be calculated by Euclidean distances with the reference
sample, which is the median from simulation results. Samples around the median can
be chosen as the median is located on the highest probability region in the distribution
of simulation results. Simultaneously, samples found in the boundary region of the
search space can be selected, as these samples represent the maximum and minimum
conditions of parameters. Thus, the proposed sampling method can calculate two dis-
tance factors of a given sample that cover both central and boundary regions of the
search space as follows:

ỹ = median(y)
xref = {x|ỹ = f (x), x ∈ Rm}
Dcentral(x) = 1∣∣∣ x−xref

Range(X)

∣∣∣ ∈ Rm

Dboundary(x) =
∣∣∣∣ x − xref

Range(X)

∣∣∣∣ ∈ Rm

, (11)

where Range(X) is a normalization term such that the jth element of vector x − xref is
normalized by |max(Xj) − min(Xj)|, the value range of jth row in X. In Equation (11),
Dcentral increases when the sample is closer to the reference sample. On the other hand,
Dboundary increases. Since D(x) and ρX,y mean the distance and correlation coefficient in
the same dimensions, we can obtain the sample’s weight by the inner product of ρX,y
and D(x) of each sample:

Wcentral(x) = ρX,y
T · Dcentral(x)

Wboundary(x) = ρX,y
T · Dboundary(x)

. (12)
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Fig. 6. Sample candidates weight distribution of a single-bit SRAM test.

According to the selection ratio r, which determines the number of selected samples,
the final set of samples can be chosen in the following way:

E(n, r) = S
(

nr
2

, Wcentral(xn)
)

∪ S
(

nr
2

, Wboundary(xn)
)

, (13)

where S(n, W(xn)) is the set of n samples sorted by W(xn).
An example of normalized sample candidates weight distribution is shown in

Figure 6. Nearly 1200 sample candidates are filtered out by the nonlinear SVM classi-
fier. By employing the Elite Learning Sample Selection scheme, the weight concerning
both central and boundary distance are calculated sorted in descending order. All
weights in the same set are then normalized by sets maximum. For the normalized
weight distribution in the set Wboundary, only the first 50 samples are listed since rest
samples’ weights are very close to zero, and thus negligible. It is very clear to see that
weight values decease dramatically. According to previous discussion, a sample with
larger weight leads to a more significant contribution in constructing the failure region.
Unlike the traditional RSB method, which directly simulates all sample candidates,
we need to utilize only samples with larger weight to perform actual simulation to
estimate failure regions with great efficiency.

3.3. Parameters Guidance for Performance Targeting

In order to improve the yield of a circuit, designers need to know good ranges of process
parameters with regard to the circuit performance specification. However, applying all
possible combinations of parameters is impossible due to exponential possibilities with
a large number of parameters.

The proposed method ranks priorities of process parameters based on its variances.
The parameter guidance operation is represented by the two left boxes in Figure 4.
Since the parameters with huge variance mainly lead to spread samples in search
spaces, these parameters must be handled to avoid certain failure regions. In Figure 4,
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Fig. 7. Overall flow of parameter guidance for performance targeting: (1) feature selection, (2) sampling and
classification, and (3) calculating the boundaries for in-spec conditions.

the variances of parameters can be calculated from simulation data of the updated
failure region in our iterative framework. Given n samples with m process parameters,
as denoted by X = [x1 x2 ... xn], the variance of samples can be written mathemat-
ically as follows:

Var(X) = 1
n

n∑
i=1

(xi − μ)2, (14)

where xi is an ith Xand μ is the mean vector of nsamples of X. Next, our method redraws
samples considering only the distributions of high-ranked parameters. Nominal values
are assigned for not chosen parameters. We use the SOBOL sequence [Joe and Kuo
2003] to redraw these samples. It uses a quasirandom low-discrepancy sequence; thus,
these samples can cover the search spaces of parameters more uniformly than the
previous samples for simulation. Suppose that l is the number of redrawn samples and
the first k high-ranked parameters are chosen. Redrawn samples can be formed as

xi = [xi,1, xi,2, . . . , xi,k, xi,(k+1), . . . xi,m]T ∈ Rm

[xi,1, xi,2, . . . , xi,k] = SOBOL[x1,...l, MIN(x1,...,l), MAX(x1,...,l)]
[xi,(k+1), xi,(k+2), . . . xi,m] = NOMINAL(x1,...l)

, (15)

where i = 1, 2, . . . , l, xi,k denotes the kth element of xi, terms MIN(x1,...,l) and
MAX(x1,...,l) mean the minimum and maximum values of l vectors in X, respectively.
We assign nominal values for the rest of the m− k parameters of the redrawn samples.
As a result, we can generate samples with not only reduced dimensions, but also well
coverage of the failure region. The classifier with the updated threshold can filter out
these samples to determine the pass or fail condition of process parameters. With the
classification result of samples, the proposed method induces if-then rules from the
highest-ranked parameters so that all failure conditions of parameters can be filtered.
The overall steps of the new in-spec guidance method are explained in Figure 7.

4. NUMERICAL RESULTS AND DISCUSSIONS

The proposed method (EliteScope) has been implemented in Python 2 and tested on a
Linux workstation with 32 CPUs (2.6GHz Xeon processors) and 64GB RAM.
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Table I. Process Parameters of MOSFET

Variable name Std(σ ) Unit
Flat-band voltage (V f b) 0.1 V
Gate oxide thickness (tox) 0.05 m
Mobility (μ0) 0.1 m2/V s
Doping concentration at depletion Ndep) 0.1 cm−3

Channel-length offset (�L) 0.05 m
Channel-width offset (�Q) 0.05 m
Source/drain sheet resistance (Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.1 F/m
Drain-gate overlap unit capacitance (Cgdo) 0.1 F/m

Fig. 8. The schematic of the 4-gates logic circuit.

Table II. Comparison of the Accuracy and Efficiency on the 4-Gates Circuit

Failure probability # Sim. runs Speed-up(x) Error (%)
Monte Carlo 1.25E-04 600K − −
Rare Event Microscope (REscope) 6.00E-04 4531 132.4 380.16
Recursive Statistical Blockade (RSB) 1.49E-04 12369 48.5 19.2
Proposed method (EliteScope) 1.51E-04 5620 106.8 20.8

The performance and accuracy of the proposed method have been evaluated on a
number of circuits: (1) the critical path delay of the 4-gate logic circuit; (2) the failure
rate of a 6T-SRAM single-bit cell; (3) the failure rate of a 6T-SRAM 16b column; and
(4) a charge pump circuit in PLL, which are highly replicated instances for system-
on-chip (SOC) designs. All circuits were designed with the BSIM4 transistor model
and simulated in NGSPICE [Nenzi and Holger 2010]. Table I shows 9 major process
parameters of MOSFETs. To demonstrate the advantage of the proposed method, we
compare the proposed EliteScope against three other methods, Monte Carlo (MC),
REscope [Wu et al. 2014b], and the RSB method [Singhee et al. 2008] in terms of
their accuracies and performances. The three other methods are also implemented in
Python 2 and tested on the same workstation. In the last part of the section, we will
discuss algorithm and classifier complexity as well as the issue of the convergence
performance of EliteScope.

4.1. The Critical Path Delay of the Simple Logic Circuit

The test logic circuit consists of four gates (2 INVs, 1 NOR, and 1 NAND), as shown in
Figure 8. The critical path delay in the circuit is max( f all A, f all B) (X,Y is rising and
Z is 0). Two critical paths can be found, and the total number of process parameters is
48. The failure criterion is set to be P(Y< tc) = 0.999875, which indicates the 4-sigma
range in the distribution of the critical path delay. Two iteration threshold bounds are
P(Y< t1) = 0.93 and P(Y< t2) = 0.9951, respectively.

As we can see from Table II, both EliteScope and RSB have similar accuracies for
failure-region estimation, but RSB takes 2.20X more simulation time. By applying elite
learning sample selection, EliteScope uses only a small amount of samples, which are
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Fig. 9. The failure distribution P(Y< tc) = 0.999875 of the critical path delay of the simple circuit.

filtered by classifier, for simulation and further tail distribution fitting; RSB directly
simulates all of them.

In this case, REscope does not deliver very accurate estimation. There is about 19X
accuracy difference between REscope and EliteScope even though their simulation cost
difference is only about 20%1.

4.2. Failure Rate Diagnosis of Single-Bit 6T-SRAM Cell

The second example is a single-bit 6T-SRAM circuit. The schematic design of the
single-bit 6T-SRAM cell using the BSIM4v4.7 MOSFET Model is shown in Fig-
ure 10. 6T-SRAM fails when the voltage gap between BL and BL is not large enough
to be determined by sense amplifiers in a certain period. We measure the delay
of discharging BL as the failure criterion. Our experimental setup for the initial con-
ditions are Q̄ = 1, Q = 0, BL and BL = 0. When W L turns on, BL is discharged by
MN2 and MN1, and BL is charged by MP2. For process variables, we use the 9 model
parameters in Table I. To guarantee unbiased behavior, transistors on the left-hand
side should be totally identical to their corresponding transistors on the right (e.g.,
Mp1 and Mp2 share identical process parameters). Thus, the number of the process
parameters is 27(3 ∗ 9) in this reading operation. The initial number of samples for
capturing the circuit behavior is 2,000.

We set the failure criterion tc as P(Y ≥ tc) = 0.00023, which means 3-sigma in
terms of the yield level. The proposed method iterates twice with 97% percentile bound
for each iteration to separate the failure region from the initial distribution. Hence,
threshold bounds t1 and t2 are calculated as P(Y ≥ t1) = 0.03 and P(Y ≥ t2) = 0.0009
(0.03 × 3%), respectively. Table III shows the accuracy and performance of failure
analysis performed by different approaches.

As we can see, compared to REscope, EliteScope obtains better accuracy with simi-
lar computing costs compared to the RSB method, which obtains better accuracy but
needs almost 2X computing time. Figure 11 shows that our proposed method is more
accurate than previous methods since the tail of CDF depicting the 3-sigma failure

1Note that it is difficult to make the simulation samples exactly the same for both methods, as we do not
control them directly.
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Fig. 10. The schematic of the 6T-SRAM single-bit cell.

Table III. Comparison of the Accuracy and Efficiency on the 6T-SRAM Circuit

Failure probability # Sim. runs Speed-up(x) Error (%)
Monte Carlo (MC) 2.300E-04 1 million − −
Rare Event Microscope (REscope) 3.79E-04 5009 199.6 64.78
Recursive Statistical Blockade (RSB) 2.78E-04 29260 34.2 20.86
Proposed method (EliteScope) 2.85E-04 15730 63.6 24.00

Fig. 11. Estimating the CDF of the 6T-SRAM read time around the 3-sigma region.
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Fig. 12. Estimating the CDF of a charge pump mismatch around the 3-sigma region.

Table IV. Estimated In-Spec Guidance of Parameters on the 6T-SRAM Circuit

Rank
Parameter
@MOSFET

Initial condition
(μ, σ )

In-spec Guidance
[MIN,MAX]

1 v f b@MN1 (-5.5E-01,0.1) [-7.31E-01,-3.78E-01]
2 v f b@MP2 (5.5E-01,0.1) [3.54E-01,7.15E-01]
3 ndep@MN1 (2.8E+18,0.1) [1.84E+18,3.76E+18]
4 ndep@MN2 (2.8E+18,0.1) [1.70E+18,3.84E+18]
5 ndep@MP2 (2.8E+18,0.1) [1.89E+18,3.78e+18]
Failure
probability

0.0009(= t2) Estimation
Error (%)

1.21

region is more correlated to the gold standard reference (MC). For the estimated spec-
ification guidance for parameters, we find that only 1.2% of samples, which meet the
in-spec guidance, are determined as the misclassification samples by the classifier in
Table IV.

4.3. Charge Pump Failure Rate Diagnosis

The third example is a charge pump circuit. In a large logic circuit, a clock is frequently
distributed to several subclocks; thus, frequencies of subclocks are prone to be inac-
curate due to propagation delays. A PLL is frequently used to adjust the phase of the
clock. The functional block diagram of PLL is shown in Figure 13. After comparing
the output clock (CLKout) with the reference clock (CLKref ) by phase detector, a charge
pump circuit adjusts the frequency of a clock signal by charging and discharging capac-
itors controlled by input signals (UP and DN). The mismatch of MOSFETs in a charge
pump can cause unbalanced timing and phase jitter between two different operation
modes. Hence, we measure the timing ratio of charging and discharging operations,
which can be formulated mathematically as rmin ≤ tdischarge

tcharge
≤ rmax (rmin,max represents

the minimum and maximum ratio to determine failures). A charge pump circuit con-
sists of 9 MOSFETs, as shown in Figure 14. The total number of process parameters
is 81(9 ∗ 9); thus, the dimensionality of parameters is much higher than in the 6T-
SRAM case. We initially perform 3,000 samplings and simulations to model the initial
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Fig. 13. A functional diagram of the PLL circuit.

Fig. 14. Schematic representations of the charge pump and filter.

Table V. Comparison of the Accuracy and Efficiency for the Charge Pump Circuit

Failure
probability # Sim. runs Speed-up(x) Error (%)

Monte
Carlo(MC)

2.300E-04 1 million − −

Rare Event
Microscope
(REscope)

3.337E-04 4875 205.1 45.09

Recursive
Statistical
Blockade (RSB)

2.245-04 10432 95.9 2.39

Proposed
method
(EliteScope)

2.052-04 6263 159.7 10.78

performance distribution accurately. Similar to the 6T-SRAM case, we perform our
algorithm twice with 97% percentile bound (P(Y ≥ t1) = 0.03, P(Y ≥ t2) = 0.0009).

The result is summarized in Table V. Our approach requires only 6263 Spice sim-
ulation runs for estimating the failure probability of a 3-sigma region with 10.78%
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Table VI. Estimated In-Spec Guidance of Parameters for the Charge Pump Circuit

Rank
Parameter
@MOSFET

Initial
condition

(μ, σ )
In-spec Guidance [MIN,

MAX]
1 ndep@MN1 (2.8E+18,0.1) [1.74E+18,3.78E+18]
2 ndep@MP2 (2.8E+18,0.1) [1.68E+18,3.73E+18]
3 ndep@MP4 (2.8E+18,0.1) [1.78E+18,3.81E+18]
4 ndep@MN5 (2.8E+18,0.1) [1.78E+18,3.77E+18]
5 ndep@MP3 (2.8E+18,0.1) [1.88E+18,3.80E+18]
Failure
probability

0.0009(= t2) Estimation
Error (%)

2.00

Fig. 15. The schematic of a 16b 6T-SRAM column.

relative error compared to the traditional MC method. Even though RSB achieves
better accuracy with only a 2.39% error, it runs nearly 4000 more simulations than
EliteScope. REscope requires 4875 simulation runs, but it produces significantly large
errors compared to the MC method.

Table VI shows that the proposed method makes the decision for in-spec conditions
of process parameters with a 98% confidence level by managing only the first 5 ranked
parameters of 81.

The tail distribution of EliteScope in a 3-sigma failure region is much closer to MC
than REscope, as we can see in Figure 12.

4.4. 16b 6T-SRAM Column Failure Rate Diagnosis

To illustrate the scalability of the proposed method on large analog circuits, we per-
form a comparison on one large 16b 6T-SRAM column circuit (1b line), as shown in
Figure 15. In this example, we treat the delay of discharging BL as the failure cri-
terion. To mimic the worst-case scenario, in which the impact of leakage current can
be maximized, logic 0 is stored in cell < 0 > and the rest of the cells store logic 1. In
the reading operation, only cell < 0 >’s word line is turned on while all other word
lines are turned off. We choose the same process parameters used in one SRAM cell
experiment. The model parameters are independent in different cells. As a result, we
have 432 random variables (16 cells * 27 random variables) that make this case a good
example for scalability study. We run 6,000 samples to capture the circuit behavior.
The same failure criterion is set as tc = 2.3 × 10−4, which is about the 3-sigma in terms
of the circuit yield. The proposed method iterates twice with 97% percentile bound
as a slope guard to separate the failure region from the initial distribution. Hence,
threshold bounds t1 and t2 are calculated as P(Y ≥ t1) = 0.03 and P(Y ≥ t2) = 0.0009,
respectively.
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Table VII. Accuracy Improvement Comparisons with REscope and RSB for 16b 6T-SRAM
Column Case

# of Tail Fitting Samples 248 1392 6346

Monte Carlo Reference (MC)
FP 2.3E-04 2.3E-04 2.3E-04
Error(%) 0 0 0

Rare Event Microscope (REscope)
FP 11.4E-04 6.29E-04 2.61E-04
Error(%) 395.65 173.48 13.48

Recursive Statistical Blockade (RSB)
FP 7.705E-04 5.569E-04 2.39E-04
Error(%) 235.00 142.13 3.91

Proposed Method (EliteScope)
FP 6.47E-04 3.385E-04 2.33E-04
Error(%) 181.30 47.17 1.30

We set the same number of tail fitting samples for REscope, RSB, and EliteScope
(the actual samples used to fit the tail distribution) so that we can fairly compare their
accuracy. The estimated failure probability and their errors obtained from the three
methods are shown in Table VII. All results are compared against the results from the
MC method with one million runs, which give the failure probability as 2.3 × 10−4, the
gold standard reference for all the other methods.

In Table VII, the first row indicates the number of tail-fitting samples each approach
uses. For each column, two terms are given for each method. The first term is the
absolute failure probability (FP) obtained by the different methods; the second term is
the relative failure probability error rate against the MC method.

When a small number of tail-fitting samples are used (only a few hundred), all
methods result in large errors since the small number of samples cannot build a reliable
model for the tail distribution. By using more tail-fitting samples, overall performance
will be naturally improved. But still, the proposed method presents good performance
with the lowest estimation relative error among all approaches.

We note that, by applying the elite learning sampling selection, we select 1392 sam-
ples with higher effectiveness out of 6961 samples generated for tail distribution fitting.
Furthermore, the selected elite samples are quite effective for capturing tail distribu-
tion precisely. Compared to the REscope method, the proposed method achieves 3.67X
improvement in accuracy using the same simulation costs.

When 6364 tail-fitting samples are generated to fit the tail distribution, all methods
obtain a better approximation to the gold standard reference (very close to tc) while
EliteScope achieves the lowest error – 1% error compared to the standard MC simula-
tion. Note that all results are obtained based on GPD fitting in this case. In this case,
EliteScope is about 10X more accurate than the REscope.

4.5. Classifier Computation Complexity and Performance Convergence Analysis

In our implementation part, we use the Nu-Support Vector Classification (NuSVC) as
our classifier. It is a built-in classifier function in the scikit − learn Python machine-
learning package. It is a nonlinear C-support vector machine classifier. The computa-
tion complexity of the SVM is typically more than quadratic (O(n2)), where n is the
number of training samples. Depending on the test case and parameter selection, the
computation time spent on classifier training varies. The total computation time of
EliteScope is mainly spent in two parts: (1) classifier training and (2) NGSPICE circuit
simulation. In low-dimensional test cases, NGSPICE simulation is fast due to the sim-
ple circuit netlist. Thus, classifier training dominates the time cost since EliteScope
would run fewer NGSPICE simulations (usually 15% to 30% of sample candidates) by
applying the Elite Learning Sample Selection scheme. But for the 16b SRAM circuit,
which is a high-dimensional variable case, both classifier training cost and NGSPICE
simulation costs drastically increase. One reason is the nonlinear computational

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 56, Pub. date: May 2016.



Statistical Rare-Event Analysis and Parameter Guidance by Elite Learning Sample Selection 56:19

Fig. 16. Estimated Failure Threshold Error of RSB and EliteScope.

complexity of NuSVC. As we use more training samples to better capture the cir-
cuit behavior in high-dimensional space, more classifier training time is consumed. On
the other hand, performing one single NGSPICE simulation costs 4s due to the large
circuit size. The total NGSPICE simulation consumption time required by RSB is 3X
that of classifier training time, while EliteScope further sorts out those samples that
are more worthy to simulate. The proposed method can save over 50% of total com-
putation time, which makes it even more time efficient in the high-dimensional case
while keeping an acceptable accuracy level.

To further prove the feasibility of EliteScope, we repeatedly perform single-bit SRAM
tests by using different values of selection ratio r. The failure region thresholds esti-
mated by RSB and EliteScope are compared. We perform two separate tests for a given
selection ratio and take the average of the failure threshold estimation values as the
data in the figure.

Figure 16 shows the absolute estimation error of failure thresholds of RSB and
EliteScope. Even though EliteScope encounters over 200% error when selection ratio r
is set to be 0.05, it is acceptable since samples are still out of number and some highly
weighted samples are not considered. After 10% of samples are used, the estimation
error of EliteScope quickly converges to RSB but still exists due to its nature limitation.
Figure 17 illustrates the relative error of EliteScope compared to the RSB method,
with the selection range between 0.1 to 0.8. One observation is that the relative error
of EliteScope does decrease as more samples are used, but only a maximum of 50%
decrease of relative error at a cost of 5X simulation consumption occurs. Those low-
weight samples provide a very limited contribution to estimating failure threshold.
The result further supports that Elite Learning Sample Selection plays a smart role in
selecting samples with great efficiency in failure region estimation.

5. CONCLUSIONS

In this article, we present a novel statistical diagnosis method for rare failure events.
The proposed method introduced two new techniques to speed up the failure analysis
while providing the in-spec guidance of process parameters. First, the proposed method
applies the smart sample selection method to reduce the additional simulation cost
during the iterative failure region locating process. Second, the new approach can
provide safe design space of parameters, which can help design to improve the yield
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Fig. 17. Relative Failure Threshold Error of RSB and EliteScope.

and meet the target performance of design. Experiments on four circuit examples show
that EliteScope achieves a significant improvement on failure region estimation in
terms of accuracy and simulation cost over traditional approaches. The 16b 6T-SRAM
column example also shows that the new method is scalable for handling large problems
with a large number of process variables.
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