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Abstract— In this paper we present an equivalent circuit model 

for power system networks that facilitates robust and efficient AC 

power flow simulation and enables the incorporation of more 

generalized bus and line models. The circuit equations are 

formulated in terms of voltages and currents in rectangular 

coordinates using a graph theoretic algorithm that provides for 

optimal numerical conditioning. A current-source based 

generator model is introduced that provides for more robust and 

efficient convergence as compared to our original approach. We 

show that the proposed framework supports nonlinear models 

with insensitivity to the initial guess and converges in few 

iterations. We illustrate the capabilities of generalized modeling 

by deriving a model for a grid-connected solar panel system that 

includes AC, DC and semiconductor components. 
 

Index Terms—Power flow, power grid, smart grid, simulation 
 

I. INTRODUCTION 

The transmission and distribution of AC power is typically 

simulated via power flow analysis. Nonlinear balance equations 

of real and reactive power are solved to calculate the voltage 

magnitudes and phases at all load buses, as well as the reactive 

power and voltage phase of all generators [1]. Of course the true 

state variables of the physical power grid are voltage and 

current, since it is an electrical circuit. We have shown that 

writing the system equations for power balance in terms of 

voltage magnitude and angles can limit the model complexity 

and robustness relative to what is achievable when the grid 

model is described in terms of its true state variables [2]. 

In this paper we extend the circuit simulation-based approach 

for AC power flow in [2] that is based on an equivalent circuit 

formulation of current and voltage variables. Most importantly, 

we propose a modified generator model that facilitates robust 

convergence and enables more generalized nonlinear load 

models. The proposed approach supports any nonlinear 

function of current and voltage in the same way that a 

traditional circuit simulator (e.g., SPICE [3]) handles 

nonlinearities for elements such as diodes and transistors. We 

describe the proposed formulation and algorithms and illustrate 

how the choice of state variables can improve robustness and 

facilitate incorporation of more complex, physical-based 

models using a grid-connected solar panel system example. 

Simulations performed on IEEE and Polish system benchmarks 

[4] demonstrate convergence superior to traditional power flow. 

II. POWER FLOW USING SPLIT CIRCUIT MODEL 

We briefly overview our equivalent circuit model based 

approach for AC power flow analysis [2]. The input to a power 

flow program is a network of buses linked by transmission 

lines and transformers. Each of these components is translated 

to an equivalent circuit based on the underlying relations 

between voltage and current. The circuit models, which may 

consist of controlled and independent voltage sources, current 

sources, and impedances, are all functions of complex 

variables. Some of the circuit elements are nonlinear, which 

necessitates the use of a nonlinear solution method. The 

Newton-Raphson (N-R) method is a preferred algorithm due 

to its quadratic rate of convergence, but it requires taking a 

derivative of the nonlinear equations, which is not possible for 

complex-valued non-analytic functions. To overcome this 

constraint, we split the equivalent circuit into a real sub-circuit 

and an imaginary sub-circuit, where the former contains all 

real-valued voltages and currents and the latter contains all 

imaginary-valued voltages and currents. The resulting models 

and functions are differentiable, so that N-R can be applied. 

As an example of split circuit modeling, consider a 

transmission line represented by the pi-model in Figure 1(a). 

By writing Ohm’s law in rectangular coordinates we obtain an 

expression for current in terms of voltage and admittance: 
 

𝐼 = 𝐼𝑅 + 𝑗𝐼𝐼 =  �̂��̂� = (𝑌𝑅 + 𝑗𝑌𝐼)(𝑉𝑅 + 𝑗𝑉𝐼)
= (𝑌𝑅𝑉𝑅 − 𝑌𝐼𝑉𝐼) + 𝑗(𝑌𝐼𝑉𝑅 + 𝑌𝑅𝑉𝐼) 

(1) 

 

To split the transmission line into real and imaginary circuits, 

we find the admittances of the “shunt” portions and the 

“branch” portion connecting the two shunts of the pi-model. 

The admittance of the shunt elements is purely imaginary 

(𝑌𝑠ℎ𝑢𝑛𝑡 = 𝑗 𝐵/2 ), but the branch connecting them has both real 

and imaginary terms (𝑌𝑏𝑟𝑎𝑛𝑐ℎ = 1/(𝑅 + 𝑗𝑋) = 𝑅/(𝑅2 + 𝑋2 ) −

𝑗 𝑋/(𝑅2 + 𝑋2 )). Substituting into (1) and extracting the real 

parts yields: 
 

𝐼𝑅,𝑏𝑟𝑎𝑛𝑐ℎ =
𝑅

𝑅2 + 𝑋2
𝑉𝑅,𝑏𝑟𝑎𝑛𝑐ℎ +

𝑋

𝑅2 + 𝑋2
𝑉𝐼,𝑏𝑟𝑎𝑛𝑐ℎ 

     (2) 

𝐼𝑅,𝑠ℎ𝑢𝑛𝑡 = −
𝐵

2
𝑉𝐼,𝑠ℎ𝑢𝑛𝑡 

     (3) 
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The first term in equation      (2) represents a conductance, 

because the real current is proportional to the real voltage; the 

second term of equation      (2), however, represents a voltage-

controlled current source, because the real-valued current is 

proportional to the imaginary voltage. Similar circuit 

components can be derived for the imaginary parts, leading to 

the equivalent circuit in Figure 1(b). This procedure of finding 

relations between current and voltage in rectangular 

coordinates and splitting the real and imaginary parts is 

repeated for all buses and lines in the system; see [2] for a full 

derivation. An example of a nonlinear generator model is given 

in the following sub-section. 

 
Figure 1 – (a) Pi-model of transmission line; (b) Split circuit 

model, with color-coded controlled sources to indicate coupling. 
 

Once an equivalent circuit model is obtained, the circuit is 

solved for its voltages and currents. Although Modified Nodal 

Analysis can be used, in this work, Tree-Link Analysis (TLA) 

[5]-[6] is employed to formulate the equations [2]. TLA is a 

graph theoretic approach that offers superior robustness 

compared to nodal analysis. A “tree” is formed by selecting 

elements to touch all circuit nodes and form no loops, and we 

solve for the voltages across these elements; all other elements 

comprise the “links,” and we solve for their currents. The TLA 

system of circuit equations is given by (4), where 𝑣𝑡 is a vector 

of tree branch voltages and 𝑖𝑙 is a vector of link currents. 𝑅 is 

a matrix of resistances used to calculate the voltage across a 

tree branch from the current flowing through the branch. 𝑉𝑡 is 

a vector of independent voltage sources that appear on tree 

branches. 𝛼 is a matrix where the only non-zero entries 

represent dependent voltage sources in the tree that are 

controlled by link voltages. 𝐺 is a matrix of conductances, 𝐼𝑙 a 

vector of independent current sources, and 𝛽 a matrix of tree 

branch current-controlled current sources that appear in the co-

tree. 𝐹 is a matrix where each row is a fundamental cutset 

relating a single branch to all other links. 
 

[
1 + 𝛼𝐹𝑇 𝑅𝐹

−𝐺𝐹𝑇 1 + 𝛽𝐹
] [

𝑣𝑡

𝑖𝑙
] = [

𝑉𝑡

𝐼𝑙
] 

(4) 

 

Components are selected for the tree or links based on their 

type and the more “natural” variable to solve for; for example, 

it is clearly simplest to solve for the voltage of an independent 

voltage source and for the current of an independent current 

source, and so the former is selected for the tree and the latter 

for the links. Very small impedances have correspondingly 

small voltage drops but large currents, and so solving for the 

voltage by placing these impedances in the tree makes for a 

better-conditioned system. Likewise, large impedances are 

best treated in terms of their (small) currents, and so these are 

selected for the links. This priority ordering can lead to 

optimally-conditioned matrices for more robust computation. 

TLA is also capable of handling perfect switches, which is 

important for contingency analyses built on top of steady state 

power flow. 

As the equations for voltage and current are nonlinear, we 

apply the Newton-Raphson algorithm to iteratively compute 

the solution. On each iteration, model calls are made to update 

the values of all the nonlinear circuit elements (i.e., those that 

comprise the generators and loads) according to their 

respective equations. The linearized TLA system of equations 

(4) is then updated and solved for new tree branch voltage and 

link current values. 
 

III. CURRENT SOURCE-BASED GENERATOR MODEL  

In [2], the split circuit model of a generator was derived in 

terms of voltage. We began by writing the equations for real 

power (𝑃𝐺) and voltage magnitude (|𝑉𝐺|), which are the known 

quantities for this bus, in terms of the real and imaginary 

voltages (𝑉𝑅𝐺 , 𝑉𝐼𝐺) and currents (𝐼𝑅𝐺 , 𝐼𝐼𝐺): 
 

𝑃𝐺 = 𝑉𝑅𝐺𝐼𝑅𝐺 + 𝑉𝐼𝐺𝐼𝐼𝐺  (5) 
|𝑉𝐺|2 = 𝑉𝑅𝐺

2 + 𝑉𝐼𝐺
2  (6) 

 

Solving for the voltages yields the following expressions: 
 

𝑉𝑅𝐺 =
𝑃𝐺𝐼𝑅𝐺 ± 𝐼𝐼𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
 

(7) 

𝑉𝐼𝐺 =
𝑃𝐺𝐼𝐼𝐺 ± 𝐼𝑅𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
 

(8) 

  
These nonlinear equations were linearized via a first-order 

Taylor expansion for Newton-Raphson iterations, leading to a 

number of equivalent circuit components derived from partial 

derivatives of equations (7) and (8). Note that if the argument 

under the square root in either of these is negative, a non-

physical solution for voltage arises (e.g., a complex value for 

real voltage). To prevent this from occurring, damped Newton-

Raphson iterations were applied in [2] to reduce the step size 

if an iteration yielded a non-physical result. The large number 

of iterations reported in [2] is a direct result of damping, since 

very small steps were taken to avoid non-physical solutions. 

There is an alternate approach to formulating a generator 

model, however, whereby equations do not contain square 

roots. From the definition of apparent power 𝑆 = 𝑉𝐼∗: 
 

𝑃𝐺 + 𝑗𝑄𝐺 = (𝑉𝑅𝐺 + 𝑗𝑉𝐼𝐺)(𝐼𝑅𝐺 − 𝑗𝐼𝐼𝐺) (9) 
 

We can solve equations (5) and (9) simultaneously to obtain: 
 

𝐼𝑅𝐺 =
𝑃𝐺𝑉𝑅𝐺 + 𝑄𝐺𝑉𝐼𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  
         (10) 

𝐼𝐼𝐺 =
𝑃𝐺𝑉𝐼𝐺 − 𝑄𝐺𝑉𝑅𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  
(11) 

 

The generator reactive power 𝑄𝐺 is not known, and so it is 

added as a variable. An extra equation must be added to keep 

the number of equations and variables consistent; equation (6) 

is therefore added as a constraint that ensures the voltage 

magnitude remains constant and equal to the specified value. 

(a) (b) REAL CIRCUIT IMAGINARY CIRCUIT

Branch 
component

Shunt 
component
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Taylor expansions of equations  (10) and (11) are taken to 

linearize the functions and derive equivalent circuit 

components. For example, the Taylor expansion of the real 

generator current about the (𝑘 + 1)𝑡ℎ iteration is given by: 
 

𝐼𝑅𝐺
𝑘+1 =

𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑄𝐺

𝑘+1) +  
𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑉𝑅𝐺

𝑘+1) 

+
𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑉𝐼𝐺

𝑘+1) + 𝐼𝑅𝐺
𝑘  −  

𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑄𝐺

𝑘) 

− 
𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑉𝑅𝐺

𝑘 ) −
𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|𝑄𝐺
𝑘,𝑉𝑅𝐺

𝑘 ,𝑉𝐼𝐺
𝑘 (𝑉𝐼𝐺

𝑘 ) 

(12) 

 

The second term represents a conductance, because the real 

current is proportional to the real voltage; the third term 

represents a voltage-controlled current source, because the real 

current is proportional to the imaginary voltage. The remaining 

terms (except for the first) are all dependent on known values 

from the previous iteration, so they can be lumped together and 

represented as an independent current source. Figure 2 shows 

the equivalent circuit with symmetric elements for the real and 

imaginary generator current. Note that none of the terms 

contains a square root, which eliminates the need for damping. 

The implications of this are discussed in the Results section. 

The first term in equation (12) is not a true circuit element, 

as it represents a value of current controlled by reactive power. 

The equation for this term is appended to our matrix of circuit 

equations, such that the system in (4) becomes: 
 

[
1 − 𝛼𝐹𝑇 𝑅𝐹 0

−𝐺𝐹𝑇 1 + 𝛽𝐹 𝜏
𝛾 0 0

] [

𝑣𝑡

𝑖𝑙

𝑄𝑔

] =  [
𝑉𝑡

𝐼𝑙

0
] 

 

(13) 

 

𝜏 represents the partial derivatives of the generator current 

(real and imaginary) with respect to 𝑄𝑔, and 𝛾 represents the 

linearized constraints derived from (6) to keep the voltage 

magnitude of a given generator at its prescribed value. 

 
Figure 2 – Generator equivalent circuit model using current 

sources; the red controlled sources indicate coupling between the 

real and imaginary sub-circuits. 
 

IV. GENERALIZED MODELING: SOLAR ARRAY EXAMPLE 

All electrical devices can be characterized by a relationship 

between current and voltage. In the previous section we 

derived a nonlinear expression for generator current in terms 

of voltage based on fixed power and voltage constraints. This 

approach can be extended to model any nonlinear relationship 

that describes an element of the power system, allowing for 

novel models that are not compatible with traditional power 

flow. As an example, we next derive a model of a solar array 

to illustrate how generalized modeling in terms of current and 

voltage can be used to create physical buses that are not 

capable of being described as constant-PV or constant-PQ. 

A. Description of Solar System 

Figure 3 shows a block diagram of a grid-connected solar 

system. A DC-to-AC inverter applies a maximum power point 

tracking (MPPT) control strategy to force the solar array to 

operate at is maximum power point (𝑃𝑀𝑃𝑃), with an output DC 

voltage of 𝑉𝑀𝑃𝑃 and output DC current of 𝐼𝑀𝑃𝑃. The AC output 

of the inverter is filtered by an RLC circuit and an isolation 

transformer transfers the generated power (𝑃𝑔) to the grid. We 

assume 𝑄 = 0 since solar systems are commonly designed to 

operate at unity power factor and that the real power output of 

the inverter is equal to the solar output (𝑃𝑀𝑃𝑃). Figure 3 is 

similar to the model in [7], but we solve the entire system 

together and do not treat the bus as fixed-PV or fixed-PQ. 
 

 
Figure 3 – Block diagram of grid-connected solar system. 

 

B. Equivalent Circuit Representation 

An equivalent circuit of the system diagram in Figure 3 is 

shown in Figure 4. The solar array is replaced by a single diode 

model, where 𝐼𝑃𝐻 is the photovoltaic current generated by solar 

irradiance, 𝑅𝑆𝐻 is a parasitic shunt resistance, and 𝑅𝑆 is the 

series resistance of the array. The inverter loads the array with 

impedance 𝑍𝑀𝑃𝑃 to force the array to operate at its maximum 

power point, which occurs when 
 

𝜕(𝐼𝑀𝑃𝑃𝑉𝑀𝑃𝑃)

𝜕𝑉𝑀𝑃𝑃
= 𝐼𝑀𝑃𝑃 + 𝑉𝑀𝑃𝑃

𝜕𝐼𝑀𝑃𝑃 

𝜕𝑉𝑀𝑃𝑃
= 0 

(14) 

 
Figure 4 – Equivalent circuit model of solar system. 

 

The AC side represents the output of the inverter. �̂�𝐴𝐶 is the 

voltage that appears at the input to the transformer, and is equal 

to the output voltage of the inverter minus any voltage drop 

across the filter elements. The output voltage of the 

transformer �̂�𝑔 is applied directly to the grid. The real output 

power 𝑃𝑔 is equal to the generated solar power 𝑃𝑀𝑃𝑃 minus any 

real power losses in the filter and transformer. 
 

C. Linearized Split Circuit Model 

To solve the circuit in Figure 4 we must linearize it following 

the same procedures outlined in Section III. The current 

through the diode (𝐼𝐷) is given by: 
 

𝐼𝐷 = 𝐼0(𝑒𝑉𝐷/𝑎 − 1) (15) 
 

where 𝐼0 is the reverse saturation current, 𝑉𝐷 is the diode 

voltage, and 𝑎 is a non-ideality factor. This equation is 

linearized by taking a first-order Taylor expansion to yield: 

REAL CIRCUIT IMAGINARY CIRCUIT

Solar 
Array

DC

AC
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𝐼𝐷
𝑘+1 = 𝐼𝐷

𝑘 +
𝜕𝐼𝐷

𝜕𝑉𝐷
|𝑉𝐷

𝑘𝑉𝐷
𝑘+1 −  

𝜕𝐼𝐷

𝜕𝑉𝐷
|𝑉𝐷

𝑘𝑉𝐷
𝑘 

(16) 

 

The first and third terms depend only on values from the 

previous iteration and can therefore be represented as an 

independent current source. The second term gives a 

component of the diode current that is proportional to the diode 

voltage, and therefore represents a conductance. The parallel 

combination of these elements replaces the diode in the 

linearized circuit of Figure 5. 

The load the inverter presents to the solar array forces 

maximum power operation when equation (14) holds. By 

evaluating the equation at the maximum power point we see 

the current 𝐼𝑀𝑃𝑃 flowing through the load is: 
 

𝐼𝑀𝑃𝑃 = 𝑉𝑀𝑃𝑃

(𝐼0𝑅𝑆𝐻𝜒 − 𝑎)

𝑎(𝑅𝑆𝐻 + 𝑅𝑆) + 𝐼0𝑅𝑆𝑅𝑆𝐻𝜒
 

 (17) 

 

where 𝜒 = exp([𝑉𝑀𝑃𝑃 + 𝐼𝑀𝑃𝑃𝑅𝑆]/𝑎) . By taking a Taylor 

expansion of equation  (17) we again obtain two equivalent 

circuit elements, an independent current source (𝐼𝐿
𝑘) and a 

conductance (𝐺𝐿
𝑘). These are shown at the output of the DC 

circuit in Figure 5. The maximum power point is updated on 

every iteration until convergence. 

The AC side of the circuit must be split into real and 

imaginary parts. We have assumed the reactive power is zero 

and that the real output power of the inverter is 𝑃𝑀𝑃𝑃. Using 

the relationship expressed in equation (5) we can solve for the 

real and imaginary voltage components of �̂�𝐴𝐶 to obtain: 
 

𝑉𝑅 =
𝐼𝑀𝑃𝑃𝑉𝑀𝑃𝑃

𝐼𝑅
2 + 𝐼𝐼

2 − 𝑅𝐹𝐼𝑅 
         (18) 

𝑉𝐼 =
𝐼𝑀𝑃𝑃𝑉𝑀𝑃𝑃

𝐼𝑅
2 + 𝐼𝐼

2 − 𝑅𝐹𝐼𝐼 
(19) 

 

Note that we have lumped the voltage drop across the filter 

resistance into the source values. By taking Taylor expansions 

of (18) and (19) we obtain the equivalent circuit components 

shown in Figure 5. The real circuit contains an independent 

voltage source, two current-controlled voltage sources (one 

dependent on 𝐼𝐼 and the other on 𝐼𝑀𝑃𝑃), and one voltage-

controlled voltage source (dependent on 𝑉𝑀𝑃𝑃). Similar 

elements are shown for the imaginary circuit. The procedure 

for splitting a transformer is given in [2]. 
 

V. RESULTS AND DISCUSSION 

The proposed method was implemented in MATLAB. The 

program reads in power flow case files in the standard IEEE 

CDF format and represents each bus and line with circuit 

element models. The TLA equations are formulated and solved 

via Newton-Raphson method. 
 

A. Iteration Count 

For robust convergence from arbitrary initial guesses, the 

voltage source-based generator model in [2]  requires damping 

that leads to excessive iteration counts. The generator model in 

Section III, however, does not require damping to avoid the 

non-physical solutions, thereby converging in significantly 

fewer iterations. Table I shows that only 5-7 iterations are 

required to converge to a solution independent of system size 

for test systems ranging from a few buses to several thousand 

buses. An arbitrary initial guess was used; a good initial guess 

would further reduce the iteration count.  

 
Figure 5 – Linearized circuit model of the solar system. 

 

Beyond the elimination of damping for arbitrary initial 

guess, the proposed current source generator model may 

provide faster convergence because it expresses the generator 

in terms of the more “natural” variable. A typical solution in a 

power system is one where the load voltages are high (≈1 p.u.) 

and the currents are correspondingly low to satisfy 𝑆 = 𝑉𝐼∗, 

where 𝑆 is given. The generators, of course, supply the current 

to the system. For these high voltage/low current solutions, the 

generator is therefore better suited as a link element in the TLA 

formulation. Being able to model a bus in multiple ways to 

choose the easiest variable to solve for further illustrates the 

flexibility of this method; in traditional power flow, there is 

only one way to model a generator or a load. 
 

Table I – Iteration counts for test systems using voltage source-

based (VS) generator models with damping and current source-

based (CS) generator models without damping. 

#Buses 14 30 57 118 300 2383 3120 

VS Model [2] 29 30 30 98 265 - - 

CS Model 5 5 5 5 6 7 7 
 

B. Convergence and Robustness 

Traditional power flow is known to be sensitive to the initial 

guess [2],[8], which can be represented as a point on a complex 

plane with real voltage as the x-axis and imaginary voltage as 

the y-axis. The result for a sweep of 10000 initial guesses for 

load voltage in the IEEE 30-bus case using our method is 

shown in Figure 6, where green points represent convergence 

to the correct solution and red points represent convergence to 

a spurious solution. Roughly 96% of initial guesses, even poor 

ones, ultimately yield the correct solution. 

To further improve convergence, we implemented a power 

stepping algorithm borrowed from circuit simulation [9]. A 

common method to find the DC solution to a nonlinear circuit 

+

-

+

-

+

-
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is to scale down the supply voltage to a small value, where all 

node voltages are nearly zero and an initial guess of zero works 

well. The supply is then incrementally stepped up to its original 

value, using the previous condition’s solution as the initial 

guess for each iteration. This is akin to simulating the “turning 

on of the circuit,” and can be applied to the “turning on of the 

grid.” All real power is first scaled down by 1000x. The 

solution to this system is used as the initial guess for the next 

iteration where the loads are increased, and this is repeated 

until all loads are returned to their initial values. The inset of 

Figure 6 illustrates that any initial guess can work when this 

method is applied.   

 
Figure 6 – Roughly 96% of initial guesses for load voltage yield 

the correct solution (green points) in the 30-bus system; (inset) 

any initial guess works when power stepping is applied. 
 

Importantly, power stepping is only applicable to our 

formulation. In traditional power flow, the Jacobian is 

constructed from derivatives with respect to voltage magnitude 

and phase; if power is scaled, nothing in the Jacobian changes 

because the derivatives of constant power terms are zero, and 

so convergence is not improved. The results demonstrated here 

are another benefit of working with physical models and the 

true state variables of the system. 
 

C. Integration of Solar Model 

To demonstrate the use of the generalized solar bus model, 

we removed a generator from the IEEE 14-bus system and 

replaced it with the equivalent model in Figure 3. The solar 

array was designed to output 40 MW, the same real power that 

was delivered by the generator it replaced. The AC voltages 

and currents of the model were scaled to their per unit values 

to be compatible with the rest of the system, but the DC circuit 

was solved with standard units. 

The generalized circuit-based modeling allows the DC and 

AC circuits to be solved together with the same algorithm and 

without having to fit the model to a PQ- or PV-bus type, in 

contrast to other approaches [7]. As the DC circuit converges 

to the maximum power point, the AC side transfers that power 

output to the rest of the grid. Convergence is obtained in seven 

iterations with no damping and an absolute tolerance of 1e-4 

p.u. The solar array and slack bus are the only sources of real 

power in the system, and we observe the output power of the 

latter decreases with increasing solar power injected into the 

network (Figure 7). 

 

 

VI. CONCLUSION 

We have presented an approach for single phase power flow 

based on equivalent circuits with current and voltage variables. 

By expressing the equations in terms of the true state variables, 

we show that nonlinear relationships between current and 

voltage can be efficiently handled with excellent convergence 

behavior. A new current source-based generator model was 

introduced that significantly reduces the iteration count 

compared to a previous implementation. The approach 

facilitates generalized modeling in terms of current and voltage 

that enables simulation with a wide range of complex nonlinear 

models. 
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