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Abstract — In this paper, we describe a power flow formulation 

for 3-phase distribution systems that is based on an equivalent 

circuit model. It is shown that this physical model based solution 

is able to accommodate a wide range of complex and unbalanced 

loads without loss of generality. The approach is an extension of 

the single phase formulation in [1] that uses current and voltage 

as the state variables. This formulation is shown to provide 

excellent modeling efficiency for distribution system 

components, such as induction motors that can be modeled as 

linear circuit elements. The formulation is further capable of 

incorporating complex nonlinear models to capture more details 

or represent future bus models. A challenging IEEE 4-bus test 

case is used as a proof of concept to demonstrate the efficacy of 

this approach. 

Index Terms—three-phase power flow, smart grid, distribution 

systems 

I. INTRODUCTION 

 Single phase power flow methods based on iteratively 

solving the power mismatch equations were first conceived of 

decades ago [2], [3] and remain the standard for simulating 

transmission-level power grids, where perfect phase balance is 

assumed. At the distribution level, however, these methods 

experience poor convergence due to the radial distribution 

feeders and difficulties in handling unbalanced loads and 

certain load models, such as the constant impedance load 

model that appears as nonlinear in the power mismatch 

formulation [4]. The distribution problem can be instead 

formulated in terms of the current mismatch equations and 

using symmetrical component transformation techniques. 

Even though most of the current mismatch equations are 

linear, there are many cases [7] [8] where the current 

distribution system simulation tools either fail to converge or 

have difficulty handling specific configurations.  

Most importantly, these distribution formulations are 

mathematically derived, not physical model based, which can 

sometimes fail to produce natural governing power system 

(circuit) equations. For example, analyzing a nonlinear open-

Wye connected unbalanced PQ load with fixed-point iteration, 

which is the method proposed for many distribution problems 

[4][9], results in a “physical model” corresponding to three 

nonlinear independent current sources that are connected to a 

“floating node.” This represents an “unnatural circuit” 

configuration that is recognized to have convergence 

problems.  

In this paper we introduce a 3-phase steady state circuit 

formulation that is based on solving for complex AC currents 

and voltages in Cartesian form as the state variables. This is an 

extension of the single-phase equivalent circuit based 

approach proposed in [1]. The equivalent circuit of the 3-

phase power grid is formed and split into real and imaginary 

sub-circuits to facilitate the use of the Newton-Raphson 

method for solving the resulting nonlinear circuit equations.  

This physical model based approach to analyzing the grid 

enables decades of circuit simulation research to be applied to 

solve power flow problems. Most components in a distribution 

system, including induction motors, can be modeled as linear 

circuit elements, thereby resulting in fast and robust 

convergence. Moreover, the proposed simulation environment 

is capable of incorporating complicated nonlinear models for 

accurate power flow analysis of any imaginable smart-grid 

components. It, in turn, offers the opportunity of using the 

same unified models for different power system simulations 

(e.g., AC power flow, transient simulation, etc.). We will 

further show that our proposed formulation readily models 

short and open circuits in the event of failures for contingency 

analyses.  

II. BACKGROUND 

An equivalent split circuit formulation of the power flow 

problem with current and voltage state variables was recently 

introduced in [1]. It is shown that the buses, transmission 

lines and other power system devices could be replaced with 

circuit elements (voltage sources, impedances, etc.). A key 

insight is that the equivalent circuit could itself be split into 

two sub-circuits: one real, and one imaginary, coupled by 

controlled sources. By splitting the circuit, its equations are 

no longer complex and, hence, the Newton Raphson (NR) 

method can be used to solve the nonlinear equations with fast 

convergence.  

A graph-theory-based method known as tree-link analysis 

(TLA) is used to formulate the circuit equations for voltages 

and currents [5]-[6]. While Nodal Analysis formulation is 

applicable, with tree-link circuit analysis the resulting 
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equations are more robust, and it is trivial to model both 

short- and open-circuit elements. This can enable more 

efficient contingency analysis, where it may be necessary to 

simulate a short or open between any two nodes in the event 

of a failure. Replacing lines with shorts or opens does not 

require the entire problem to be reformulated; and only local 

changes to the tree are required. 
This tree-link formulation more effectively accommodates 

inductances and mutual couplings, thereby making it a 
preferred method for modeling the 3-phase power flow 
problem for distribution systems that are proposed in this 
paper. 

III. SPLIT CIRCUIT MODEL 

In this section we describe the mathematical and circuit 

models for some of the most critical system components. 

A. Slack Bus Model 

In the distribution system analysis, the transmission grid is 

usually modeled as a generator connected to the substation 

that feeds the power into the distribution system. This 

generator or slack bus is the simplest bus type to model. 

Depending on the configuration to which it is connected, in 

the real circuit (real portion of the split circuit [1]) it appears 

as an independent voltage source of value |𝑉𝐴| 𝑐𝑜𝑠 𝜃𝐴, and in 

the imaginary circuit (imaginary portion of the split circuit 

[1]) it appears as a voltage source of value |𝑉𝐴| 𝑠𝑖𝑛 𝜃𝐴 . It 

should be noted that if the slack bus is connected in a Wye 

configuration, its magnitude |VA|  represents the line-to-

neutral voltage, while if connected as a delta configuration 

will represent the line-to-line voltage. The complete split 

circuit model for a 3-phase slack bus connected as a grounded 

Wye configuration is shown in Figure 1. 

 
Figure 1: Complete split circuit of a slack bus generator. 

B. Transmission Line Model 

 There are two possible ways of modeling the transmission 

line. The first approach is based on the Kron reduction [4], 

which eliminates the neutral line from the model. The other 

approach is by considering all four lines without any 

reduction.   

After performing the Kron reduction, the transmission line 

branch currents are governed by Ohm’s Law, where �̃�𝐴𝑎, �̃�𝐵𝑏 

and �̃�𝐶𝑐 are the voltage drops across the lines: 

[

𝐼𝐴
𝐼𝐵
𝐼𝐶

] =  [

�̃�𝑎𝑎 �̃�𝑎𝑏 �̃�𝑎𝑐

�̃�𝑏𝑎 �̃�𝑏𝑏 �̃�𝑏𝑐

�̃�𝑐𝑎 �̃�𝑐𝑏 �̃�𝑐𝑐

] [

�̃�𝐴𝑎

�̃�𝐵𝑏

�̃�𝐶𝑐

] (1) 

Since the admittances of the branches have both real and 

imaginary components (𝑌𝑖𝑗 =
1

𝑅𝑖𝑗+𝑗𝑋𝑖𝑗
=

𝑅𝑖𝑗

𝑅𝑖𝑗
2+𝑋𝑖𝑗

2 − 𝑗
𝑋𝑖𝑗

𝑅𝑖𝑗
2+𝑋𝑖𝑗

2 = 

𝐺𝑖𝑗
𝑠 + 𝑗𝐵𝑖𝑗

𝑠 ), the system from (1) can be split as: 

 

[
 
 
 
 
 
 
𝐼𝐴
𝑅

𝐼𝐴
𝐼

𝐼𝐵
𝑅

𝐼𝐵
𝐼

𝐼𝐶
𝑅

𝐼𝐶
𝐼 ]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝐺𝑎𝑎

𝑠 −𝐵𝑎𝑎
𝑠 𝐺𝑎𝑏

𝑠

𝐵𝑎𝑎
𝑠 𝐺𝑎𝑎

𝑠 𝐵𝑎𝑏
𝑠

𝐺𝑏𝑎
𝑠 −𝐵𝑏𝑎

𝑠 𝐺𝑏𝑏
𝑠

    

−𝐵𝑎𝑏
𝑠 𝐺𝑎𝑐

𝑠 −𝐵𝑎𝑐
𝑠

𝐺𝑎𝑏
𝑠 𝐵𝑎𝑐

𝑠 𝐺𝑎𝑐
𝑠

−𝐵𝑏𝑏
𝑠 𝐺𝑏𝑐

𝑠 −𝐵𝑏𝑐
𝑠

𝐵𝑏𝑎
𝑠 𝐺𝑏𝑎

𝑠 𝐵𝑏𝑏
𝑠

𝐺𝑐𝑎
𝑠 −𝐵𝑐𝑎

𝑠 𝐺𝑐𝑏
𝑠

𝐵𝑐𝑎
𝑠 𝐺𝑐𝑎

𝑠 𝐵𝑐𝑏
𝑠

    

𝐺𝑏𝑏
𝑠 𝐵𝑏𝑐

𝑠 𝐺𝑏𝑐
𝑠

−𝐵𝑐𝑏
𝑠 𝐺𝑐𝑐

𝑠 −𝐵𝑐𝑐
𝑠

𝐺𝑐𝑏
𝑠 𝐵𝑐𝑐

𝑠 𝐺𝑐𝑐
𝑠 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝐴𝑎

𝑅

𝑉𝐴𝑎
𝐼

𝑉𝐵𝑏
𝑅

𝑉𝐵𝑏
𝐼

𝑉𝐶𝑐
𝑅

𝑉𝐶𝑐
𝐼 ]

 
 
 
 
 
 

 
(2) 

 

 

where the “R” and “I” superscripts denote the real and 

imaginary parts respectively. 

Using the same approach, the transmission line shunt 

current can be written in the same way, where �̃�𝐴, �̃�𝐵 and �̃�𝐶 

are the line-to-neutral nodal voltages. Since the admittance of 

the shunt elements in the pi-model is purely imaginary 

( �̃�𝑖𝑗
𝑠ℎ = 𝑗

𝐵𝑖𝑗

2
= 𝑗𝐵

𝑖𝑗
𝑠ℎ) , we derive the following formulation 

from Ohm’s law: 

 

[
 
 
 
 
 
 
𝐼𝐴𝑠ℎ
𝑅

𝐼𝐴𝑠ℎ
𝐼

𝐼𝐵𝑠ℎ
𝑅

𝐼𝐵𝑠ℎ
𝐼

𝐼𝐶𝑠ℎ
𝑅

𝐼𝐶𝑠ℎ
𝐼 ]

 
 
 
 
 
 

=  

[
 
 
 
 
 
 

0 −𝐵𝑎𝑎
𝑠ℎ 0

𝐵𝑎𝑎
𝑠ℎ 0 𝐵𝑎𝑏

𝑠ℎ

0 −𝐵𝑏𝑎
𝑠ℎ 0

    

−𝐵𝑎𝑏
𝑠ℎ 0 −𝐵𝑎𝑐

𝑠ℎ

0 𝐵𝑎𝑐
𝑠ℎ 0

−𝐵𝑏𝑏
𝑠ℎ 0 −𝐵𝑏𝑐

𝑠ℎ

𝐵𝑏𝑎
𝑠ℎ 0 𝐵𝑏𝑏

𝑠ℎ

0 −𝐵𝑐𝑎
𝑠ℎ 0

𝐵𝑐𝑎
𝑠ℎ 0 𝐵𝑐𝑏

𝑠ℎ

    

0 𝐵𝑏𝑐
𝑠ℎ 0

−𝐵𝑐𝑏
𝑠ℎ 0 −𝐵𝑐𝑐

𝑠ℎ

0 𝐵𝑐𝑐
𝑠ℎ 0 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝐴

𝑅

𝑉𝐴
𝐼

𝑉𝐵
𝑅

𝑉𝐵
𝐼

𝑉𝐶
𝑅

𝑉𝐶
𝐼 ]
 
 
 
 
 
 

 
(3) 

 

 

Equations (2) and (3) model the transmission line by using 

linear resistors and voltage-controlled current sources. Figure 

2 further shows the proposed real part of the split circuit 

model for one of the three phases of a transmission line. The 

imaginary part of the split circuit as well as the split circuits 

for two other phases can be obtained in the same way.  

 

 
Figure 2: Real part of the split circuit of a transmission line (Phase A). 

An alternative approach for transmission line modeling is 

to consider all four lines without Kron reduction. A similar 

split circuit model can be derived following the 

aforementioned steps where the neutral line is modeled as: 

  

�̃�𝑁 = 𝑍𝑁𝐴𝐼𝐴 + 𝑍𝑁𝐵𝐼𝐵 + 𝑍𝑁𝐶𝐼𝐶 + 𝑍𝑁𝐼𝑁 (4) 

 

Each impedance term has both real and imaginary parts, i.e.  

(𝑍𝑖𝑗 = 𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗). Substituting 𝑍𝑖𝑗 into (4) yields: 

 

𝑉𝑁
𝑅 = 𝑅𝑁𝐼𝑁

𝑅 − 𝑋𝑁𝐼𝑁
𝐼 + 𝑅𝑁𝐴𝐼𝐴

𝑅 − 𝑋𝑁𝐴𝐼𝐴
𝐼+𝑅𝑁𝐵𝐼𝐵

𝑅

− 𝑋𝑁𝐵𝐼𝐵
𝐼 + 𝑅𝑁𝐶𝐼𝐶

𝑅 − 𝑋𝑁𝐶𝐼𝐶
𝐼  

(5) 

 

REAL CIRCUIT IMAGINARY CIRCUIT

REAL CIRCUIT
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𝑉𝑁
𝐼 = 𝑅𝑁𝐼𝑁

𝐼 + 𝑋𝑁𝐼𝑁
𝑅 + 𝑋𝑁𝐴𝐼𝐴

𝑅 + 𝑅𝑁𝐴𝐼𝐴
𝐼+𝑋𝑁𝐵𝐼𝐵

𝑅

+ 𝑅𝑁𝐵𝐼𝐵
𝐼 + 𝑋𝑁𝐶𝐼𝐶

𝑅 + 𝑅𝑁𝐶𝐼𝐶
𝐼  

(6) 

 

 

The complete split circuit model of a neutral line is shown in 

Figure 3. 

 
Figure 3: Complete split circuit model of a neutral line. 

C. Induction Motor Model 

An induction motor (IM) that operates under unbalanced 

conditions is traditionally modeled by an iterative 

symmetrical component model. At each iteration, the phase 

motor voltage is converted into sequence quantities, from 

which the positive and negative sequence currents are 

calculated and converted back into phase quantities [9]. In [4], 

an equivalent three-phase asymmetric impedance matrix is 

used to model the line-to-line voltages and the line currents 

for a specific slip: 
 

[

�̃�𝐴𝐵

�̃�𝐵𝐶

�̃�𝐶𝐴

] =  [

𝑍𝐴𝐴 𝑍𝐴𝐵 𝑍𝐴𝐶

𝑍𝐵𝐴 𝑍𝐵𝐵 𝑍𝐵𝐶

𝑍𝐶𝐴 𝑍𝐶𝐵 𝑍𝐶𝐶

] [

𝐼𝐴
𝐼𝐵
𝐼𝐶

]       (7) 

 

 
Figure 4: Unnatural circuit model of an induction motor. 

This mathematically derived model, however, is known to 

produce an ill-conditioned impedance matrix that can result 

in numerical problems for power flow analysis. The genesis 

of this problem can be recognized from the physical 

representation of the corresponding circuit. Most notably, the 

model in (7) corresponds to an equivalent circuit that contains 

a loop of controlled voltage sources, as shown in Figure 4.  

Any loop of ideal voltage sources is problematic for an 

equivalent circuit model since the current flowing through 

that loop is unbounded. To address this problem, we derive a 

new model that follows Kirchhoff’s voltage law (KVL): 
 

�̃�𝐴𝐵 + �̃�𝐵𝐶 + �̃�𝐶𝐴 = 0         (8) 

 

Using Gaussian elimination, the linear system in (7) can be 

reduced to: 

 

[
�̃�𝐴𝐵

�̃�𝐵𝐶

] =  [
�̃�11 �̃�12

�̃�21 �̃�22

] [
�̃�𝐴
�̃�𝐵

] 

 

 

    (9) 

It should be noted that this corresponds to the removal of the 

three controlled voltage sources in Figure 4 that are redundant.  

We derive our proposed split circuit model for an induction 

motor by splitting (9) into real and imaginary parts: 
 

[
 
 
 
 
𝑉𝐴𝐵

𝑅

𝑉𝐴𝐵
𝐼

𝑉𝐵𝐶
𝑅

𝑉𝐵𝐶
𝐼 ]

 
 
 
 

=  [

𝑅11 −𝑋11

𝑋11 𝑅11
     

 𝑅12 −𝑋12

𝑋12 𝑅12

𝑅21 −𝑋21

𝑋21 𝑅21
      

𝑅22 −𝑋22

𝑋22 𝑅22

]

[
 
 
 
 
𝐼𝐴
𝑅

𝐼𝐴
𝐼

𝐼𝐵
𝑅

𝐼𝐵
𝐼 ]
 
 
 
 

 (10) 

 

Equation (10) models the induction motor by using linear 

resistors and current-controlled voltage sources. Figure 5 

further shows the circuit schematic of our proposed linear 

model for a 3-phase induction motor. 
 

 
Figure 5: Equivalent split circuit model of an induction motor. 

D. Constant PQ Load Model 

A nonlinear PQ load model was derived in [1], where the 

real and imaginary load currents are represented as nonlinear 

functions of the real and imaginary bus voltages: 
 

𝐼𝑅𝐿 =
𝑃𝐿𝑉𝐿

𝑅 + 𝑄𝐿𝑉𝐿
𝐼

(𝑉𝐿
𝑅)2 + (𝑉𝐿

𝐼)2
 

 

(11) 

𝐼𝐼𝐿 =
𝑃𝐿𝑉𝐿

𝐼 − 𝑄𝐿𝑉𝐿
𝑅

(𝑉𝐿
𝑅)2 + (𝑉𝐿

𝐼)2
 

 

(12) 

The load model in (11)-(12) can be directly applied to each 

phase of a 3-phase distribution system. 

E. Constant Impedance Load Model 

For the constant impedance load model, the real and 

reactive powers (P0 and Q0) are specified for the nominal 

voltage VL0. The mathematical expression for modeling the 

bus voltage and load current is given in (13) and (14): 

𝑃0 + 𝑗𝑄0 = �̃�𝐿0 (
�̃�𝐿0

𝑍0

)

∗

  (13) 

𝐼𝐿 =
�̃�𝐿0

𝑍0

  (14) 

Solving (13) for 𝑍0, substituting it into (14), and splitting the 

real and imaginary parts yields: 
 

IMAGINARY CIRCUIT

REAL CIRCUIT

REAL CIRCUIT IMAGINARY CIRCUIT
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𝐼𝐿
𝑅 =

𝑃0

|𝑉𝐿0|
2
𝑉𝐿

𝑅 +
𝑄0

|𝑉𝐿0|
2
𝑉𝐿

𝐼  (15) 

𝐼𝐿
𝐼 =

−𝑄0

|𝑉𝐿0|
2
𝑉𝐿

𝑅 +
𝑃0

|𝑉𝐿0|
2
𝑉𝐿

𝐼  (16) 

 

Equations (15) and (16) model the constant impedance load 

by using an equivalent circuit with linear resistors and voltage 

-controlled current sources. The equivalent split circuit of an 

open Wye connected constant impedance load is shown in 

Figure 6. 

 
Figure 6: Equivalent split circuit model of an Open Wye connected 

constant impedance load. 

F. Ideal Center-Tapped Transformer Model 

The model for a standard transformer model was derived 

in [1]. However, a center-tapped transformer, as a special 

type of transformer, can be found as a branch element 

connecting buses in nearly every distribution network. We 

derive the split circuit model of a center-tapped transformer 

by relating the primary voltage with the secondary voltage 

that is tapped (�̃�𝐴 and �̃�𝑎 = �̃�𝑎𝑛 + �̃�𝑛𝑏) through the turn ratios 

tan and tbn and the phase angle 𝜃 (which is only non-zero for 

phase shifters) [10]: 
 

�̃�𝑎𝑛

�̃�𝐴

=
1

𝑡𝑎𝑛

𝑒−𝑗𝜃 (17) 

�̃�𝑛𝑏

�̃�𝐴

=
1

𝑡𝑏𝑛

𝑒−𝑗𝜃 (18) 

 

After we solve the real and imaginary parts for both Ṽan 

and Ṽnb , we obtain the following secondary voltage 

expressions: 
 

[
 
 
 
 
𝑉𝑎𝑛

𝑅

𝑉𝑎𝑛
𝐼

𝑉𝑛𝑏
𝑅

𝑉𝑛𝑏
𝐼 ]

 
 
 
 

=  

[
 
 
 
𝑐𝑜𝑠 𝜃

𝑡𝑎𝑛
−

𝑠𝑖𝑛 𝜃

𝑡𝑎𝑛

𝑠𝑖𝑛 𝜃

𝑡𝑎𝑛

𝑐𝑜𝑠 𝜃

𝑡𝑎𝑛

    

𝑐𝑜𝑠 𝜃

𝑡𝑏𝑛
−

𝑠𝑖𝑛 𝜃

𝑡𝑏𝑛

𝑠𝑖𝑛 𝜃

𝑡𝑏𝑛

𝑐𝑜𝑠 𝜃

𝑡𝑏𝑛 ]
 
 
 
𝑇

[
𝑉𝐴

𝑅

𝑉𝐴
𝐼 ] (19) 

As can be seen from (19), each of the secondary voltages can 

be modeled with two voltage-controlled voltage sources that 

are controlled by the primary voltages in the real and 

imaginary circuits respectively. We can express the primary 

and secondary currents in terms of the turn ratios tan and tbn: 
 

𝐼𝐴 = −𝐼𝑎𝑛

1

𝑡𝑎𝑛
𝑒𝑗𝜃 − 𝐼𝑛𝑏

1

𝑡𝑏𝑛
𝑒𝑗𝜃 (20) 

 

Splitting (20) into real and imaginary parts, we obtain the 

following expressions for real and imaginary primary 

currents: 

[
𝐼𝐴
𝑅

𝐼𝐴
𝐼 ] =  

[
 
 
 
−𝑐𝑜𝑠 𝜃

𝑡𝑎𝑛

𝑠𝑖𝑛 𝜃

𝑡𝑎𝑛

−𝑠𝑖𝑛 𝜃

𝑡𝑎𝑛

−𝑐𝑜𝑠 𝜃

𝑡𝑎𝑛

    

−𝑐𝑜𝑠 𝜃

𝑡𝑏𝑛

𝑠𝑖𝑛 𝜃

𝑡𝑏𝑛

−𝑠𝑖𝑛 𝜃

𝑡𝑏𝑛

−𝑐𝑜𝑠 𝜃

𝑡𝑏𝑛 ]
 
 
 

[
 
 
 
 
𝐼𝑎𝑛
𝑅

𝐼𝑎𝑛
𝐼

𝐼𝑛𝑏
𝑅

𝐼𝑛𝑏
𝐼 ]

 
 
 
 

 (21) 

 

The primary currents can be modeled with four current-

controlled current sources that are controlled by the currents 

𝐼𝑎𝑛
𝑅 , 𝐼𝑎𝑛

𝐼 , 𝐼𝑛𝑏
𝑅  and 𝐼𝑛𝑏

𝐼  from the secondary side. The complete 

split circuit model is shown in Figure 7. 

 
Figure 7: Equivalent split circuit of ideal center-tapped transformer. 

IV. RESULTS AND DISCUSSION 

The equivalent circuit models derived in the previous 

section were applied to the IEEE 4-bus Wye–Delta center-

tapped transformer case, as well as the regular IEEE 4-bus 

test cases. The 4-bus Wye-Delta center-tapped case is 

considered as an extremely challenging case in the literature 

[7] because the transformer connection, also known as the “4-

wire delta” bank, is nontrivial to handle. Grounding the center 

tap shifts the secondary voltage reference to an unusual 

location for three-phase circuit analysis. It also results in 

unbalanced voltages and currents that can affect the three-

phase motors and overload the transformer [9]. 

The schematic diagram of the Wye-Delta center tapped 

transformer 4-bus system with labeled elements is shown in 
Figure 8. Its real part of the equivalent split circuit model is 

shown in Figure 9. The imaginary part is symmetric and can 

be obtained on the same way as the real part. Using the 

description provided in [7], two configurations of the 

aforementioned system were considered. Since the proposed 

TLA formulation is capable of handling shorts and opens 

easily, we have implemented ideal switches in our test case 

(Figure 9). As such, by closing switch 1 and leaving switch 2 

open, we obtain the first of two configurations. This 

configuration represents the normally operating 4-bus system 

with unbalanced loading and the ungrounded wye-delta 

transformer bank with a center-tapped transformer in one leg 
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of the delta secondary. The second configuration can be 

obtained by reversing switches 1 and 2, representing a system 

that operates in the event of a failure (primary phase C fault). 
 

 
Figure 8: Schematic diagram of 4-bus test case. 

 

 
Figure 9: Real part of the split circuit model of the 4-bus test case. 

 

Our prototype circuit solver was implemented in 

MATLAB. A graph and spanning tree were built and the 

TLA equations were formulated for the 4-bus test case. The 

TLA equations were solved using Newton-Raphson. The 

proposed implementation successfully simulated all 

aforementioned IEEE 4-bus test cases, as well as those 

reported in [7],[11]. The solutions for three-phase voltages at 

load bus are shown in Table 1 for various transformer and 

load configurations. Depending on load configuration at bus 

four, i.e. wye or delta, the three phase voltages are reported as 

phase or line voltages. Note that the solutions generated by 

the proposed method are in good agreement with the accepted 

solutions, also shown in Table 1. 

Table 1: Results for load bus voltages (bus 4) for various configurations. 

Configuration  Proposed Method 

[V∠°] 

Results in [7],[11] 

[V∠°] 

Balanced step-down 

Gr. Y-Gr.Y 
VA: 1918∠-9.1 

VB: 2062∠-128.3 

VC: 1981∠110.9 

VA: 1918∠-9.1 

VB: 2061∠-128.3 

VC: 1981∠110.9 

Balanced step-up D-D  VAB: 23659∠26.6 

VBC: 23690∠-93.5 

VCA: 23627∠146.5 

VAB: 23657∠26.6 

VBC: 23688∠-93.5 

VCA: 23625∠146.5 

Balanced step-up D-

Gr. Y  
VA: 13654∠26.6 

VB: 13679∠-93.5 

VC: 13645∠146.5 

VA: 13653∠26.6 

VB: 13678∠-93.5 

VC: 13644∠146.5 

Unbalanced step-down 

Y-D (center-tapped), 

with IM 

VAB: 232∠-0.4 

VBC: 233∠-119.8 

VCA: 235∠119.5 

VAB: 232∠-0.5 

VBC: 233∠-119.8 

VCA: 235∠119.5 

Unbalanced step-down 

open Y-D (center-

tapped), with IM 

VAB: 231∠-0.3 

VBC: 233∠-120.7 

VCA: 231∠119.0 

VAB: 231∠-0.3 

VBC: 233∠-120.8 

VCA: 231∠118.9 
 

Since most circuit elements in our proposed split circuit 

model are linear, the Newton-Raphson method converges 

quickly (after the second iteration). It is important to note that 

the induction motor model does not have to be solved 

iteratively like the traditional sequence model, and is simply 

modeled as a combination of linear circuit elements here. 

V. CONCLUSION AND FUTURE WORK 

We have extended the recently introduced equivalent 

circuit formulation in [1] to the 3-phase steady state analysis 

of distribution power grids. Our preliminary results 

demonstrate that the proposed approach provides fast and 

robust convergence, and is not limited to balanced loads, 

particular network configurations, type of simulation etc.  

The proposed equivalent circuit and TLA approach have the 

ability to incorporate any electrical load (e.g. converters, solar 

cells, high voltage DC components, etc.) effortlessly into its 

formulation.  Furthermore, the proposed approach in this 

paper allows for use of unified modeling methodology to 

perform various power system simulations such as steady-

state power flow, transient, and contingency analysis on a 

given network. Toward future work, we intend to extend this 

simulation approach to perform steady-state and transient 

simulations on a given network without altering the 

equivalent circuit models between the two.  This will be a 

significant improvement over the present commercially 

available methods, which require significant changes to the 

models if the transient analysis is performed on the network 

initially modeled for steady-state analysis.  
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