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Abstract— In this paper, we propose a novel methodology for 
detecting systematic spatial failure patterns at wafer level for 
yield learning. Our proposed methodology takes the testing 
results (i.e., pass or fail) of a number of dies over different 
wafers, cluster all these wafers according to their failures, and 
eventually identify the underlying spatial failure patterns. 
Several novel machine learning algorithms, including singular 
value decomposition, hierarchical clustering, dictionary learning, 
etc., are developed in order to make the proposed methodology 
robust to random failures. The efficacy of our proposed 
approach is demonstrated by an industrial data set. 

Keywords—wafer clustering; defect patterns; singular value 
decomposition; random failures. 

I. INTRODUCTION 

 The challenges associated with designing and 
manufacturing of leading edge integrated circuits (IC) have 
increased with the complexity of chip functionalities. Such 
complex functionalities have been made possible by the 
continuous drive towards scaling IC technologies [1]. 
However, with such scaling, catastrophic defects and process 
variations stand out among the most important factors limiting 
the product yield of IC designs [2]-[5]. 

 In order to improve the product yield in the IC design 
cycle, it is important to identify the underlying factors that 
contribute most to the yield loss [6]-[7]. As reported in the 
literature, different wafers may have remarkably different 
spatial signatures for a given measurement [8]. This in fact is 
due to the presence of different underlying defect sources 
contributing to the different spatial signatures. The presence of 
these variation sources is demonstrated by studying the 
contribution of different user-defined variation patterns on the 
die-level performance [9]-[10]. Therefore, to help yield 
learning, we need to identify the systematic spatial failure 
patterns among the wafers [6]. This goal is accomplished by 
partitioning the wafers into groups with similar spatial 
signatures. Such partitioning will help process engineers focus 
on the failure causes associated with the significant yield loss 
[7]. 

 Automatically grouping wafers of similar spatial signatures 
can be formulated as a clustering problem. Although clustering 
analysis has been extensively studied in the statistics 
community, the task of wafer clustering targeted here has its 
unique characteristics. Among the important characteristics of 
this problem is the binary nature of the measurements (i.e., 
pass or fail) for most digital test items. Similar problem has 
been tackled in [11], where the clustering is done based on 

measurements of continuous performance metrics. In practice, 
many measurements are done to verify whether chips on a 
wafer provide the correct functionality or meet a required 
design specification; hence, the result of such testing is binary. 
For this reason, we will consider in our approach that the 
available test data is in binary format. 

 Another important challenge associated with this problem 
is the presence of random defects and variations that can mask 
the underlying systematic failure pattern; thus, making the 
detecting task non-trivial [12]-[14]. Moreover, few wafers can 
have abnormal signatures that may be due to equipment 
malfunction. It is important to detect these special wafers as 
outliers and avoid including them in the desired clusters [11].  

 Given these problem features, we aim to identify the 
systematic wafer-level spatial pattern while significant random 
defects and variations exist. To achieve this goal, we propose a 
new methodology for clustering of wafer spatial signatures. 
The proposed method consists of three major steps. First, 
singular value decomposition (SVD) is performed on the 
available binary testing data, and then data is retrieved by using 
a chosen number of the important singular vectors. This step 
serves as a feature extraction method to reduce the impact of 
random defects and variations prior to performing the required 
clustering. Furthermore, this step will help in detecting outliers 
among wafers. Next, hierarchical clustering is applied on the 
retrieved data to generate a set of possible clustering results 
where the optimal number of clusters is chosen to get the final 
clustering [15]. Finally, to further reduce the effect of random 
defects and variations, a dictionary learning algorithm is 
adopted from binary data compression [17] and used to 
reconstruct the binary signatures of the resulting clusters. The 
reconstruction process includes only the important dictionary 
entries that are expected to capture the systematic spatial 
failure patterns. 

 The remainder of this paper is organized as follows. In 
Section II, we present the details of the proposed wafer 
clustering algorithm. The efficacy of the proposed method is 
demonstrated using an industrial example in Section III. 
Finally we conclude in Section IV. 

II. PROPOSED METHOD  

 Our proposed algorithm for identifying systematic spatial 
failure patterns is composed of three major steps: (i) SVD, (ii) 
hierarchical clustering, and (iii) binary dictionary learning. 

A. Singular Value Decomposition 

 Our goal is to capture the systematic spatial failure patterns 
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in the presence of significant random defects and variations. 
Singular Value decomposition (SVD) comes to play here as a 
means to extract important features of the systematic spatial 
signatures, while removing the random variations. 

  SVD is applied on the d-by-N matrix X containing the 
binary test data obtained from the wafers [15]: 
1 T= ⋅ ⋅X U Σ V , (1) 
where d is the number of dies per wafer, N is the total number 
of wafer, U is a d-by-d matrix whose columns represent the left 
singular vectors, V is an N-by-N matrix whose columns 
represent the right singular vectors, and S is a d-by-N diagonal 
matrix whose diagonal elements represent the singular values. 

 The singular values in S reflect the importance of the 
corresponding singular vectors in U. Therefore, we can reduce 
the random effects in the test data by considering the first k 
important singular vectors that carry the systematic pattern 
signatures. Namely, we want to choose k important singular 
vectors to represent the data. 

 To get the optimal value of k, its value is swept in an 
increasing order and at each step the total reconstruction error 
is computed as: 

2 T
k k k F

E X U Σ V= − ⋅ ⋅ , (2) 

where Ek is the value of the total error when k singular values 
are considered, Uk is the matrix containing the first k columns 
of U, Sk is the matrix containing the first k rows of S, and ||•|| 
represents the Frobenius norm of a matrix. 

 The optimal value of k is chosen as the value where adding 
more singular vectors will not significantly improve the total 
reconstruction error. This implies that any additional singular 
vector will only affect few dies on some wafers, thus it does 
not represent a systematic pattern but rather tries to model the 
random effects. 

 Once the optimal value of k is chosen, the data set is 
reconstructed as: 
3 T

K K K= ⋅ ⋅X U Σ V , (3) 
where K is the optimal value of k, , UK is the matrix containing 
the first K columns of U, and SK is the matrix containing the 
first K rows of S. 

B. Hierarchical Clustering  

We propose to group all wafers into a small number of 
clusters where the wafers in the same cluster share the same 
spatial failure pattern. As such, the failure patterns can be 
robustly extracted from these clusters. Since the data set is 
expected to contain outlier wafers with abnormal spatial 
signatures, hierarchical clustering is used so that the clustering 
results are not strongly biased by the outliers [11], [15]. The 
hierarchical cluttering algorithm tries to build clusters in a 
greedy manner starting from individual clusters, and iteratively, 
merging the two clusters with the shortest distance.  

 However, the definition of the distance between two 
clusters is not unique. In our implementation, we use the 
complete-link version of hierarchical clustering which defines 
the distance between two clusters as the maximum distance 
between two wafers belonging to these clusters. Physically, 

this means that all wafers in the same cluster are within a small 
distance from each other [15]. 

 Another important implementation issue is to choose the 
number of clusters. In practice, hierarchical clustering 
algorithm will provide at each merging step the current 
distance between the two merged clusters. Based on this 
measure, we use the modified L-Method described in [11],[15] 
to choose the optimal number of clusters. 

 The modified L-method generates a curve showing the 
merging distance versus the number of clusters at each merging 
step. While this curve presents a decreasing trend with the 
increase in the number of clusters, it usually has a sharp 
transition at the optimal clustering setup. The graph will show 
two different trends of decaying before and after the transition 
point. At this point, all merged clusters are close to each other 
and the distance between any two of the current clusters is 
relatively high. Hence, capturing this transition point will 
reveal the optimal number of clusters [11], [15]-[16]. 

 Since the wafer data is expected to contain abnormal wafers, 
single-wafer clusters may appear after clustering. These wafers 
are totally different from the formed clusters; hence 
hierarchical clustering will not merge them due to the high 
merging distance. The single-wafer clusters actually represent 
outlier wafers that are different from the systematic patterns 
present across the wafers; therefore, they are not used in the 
next steps since they do not carry any systematic failure pattern. 

 After the final clusters are formed, we are interested in 
obtaining one binary signature per cluster that represents its 
systematic spatial pattern. To achieve this goal, the spatial 
wafer patterns in the same cluster are averaged to build a single 
binary signature for each cluster. 

C. Dictionary Learning   

The binary group signatures carry the systematic spatial 
patterns of the wafers. However, random variations and defects 
may be still present in these patterns. Therefore, a dictionary 
learning step serves as a second stage of filtering out these 
random effects. 

We assume that the number of clusters obtained from 
hierarchical clustering is c, and yi is the binary spatial signature 
corresponding to the ith cluster (i = 1, 2, ⋅⋅⋅, c). Our goal is to 
form a dictionary that can represent these data using a compact 
set of basis vectors and coefficients [17]. Next, in an approach 
similar to choosing the important singular values in Section II-
A, only important dictionary entries are used to reconstruct the 
spatial signatures. 

In the first step, the available group signatures are 
considered as the candidates from which dictionary entries are 
chosen. Given the c available signatures, we want to choose the 
first entry in the dictionary as the signature that can achieve the 
lowest reconstruction error. Then, we iteratively choose the 
signatures that will reduce the reconstruction error of the 
residual. 

Since we are trying to build a binary dictionary, the 
associated coefficients are also binary. These coefficients are 
computed one at a time. In other words, when one dictionary 
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entry is chosen, the coefficients associated with this entry are 
computed before choosing the next entry. 

Initially, the dictionary is empty, and we initialize the 
residual vectors ri to be equal to the vectors yi (i = 1, 2, ⋅⋅⋅, c). 
Hence, we compute the reconstruction error associated with 
each candidate as [17]: 

4 ( ) ( ),
1

wt 1,2, ,
c

i j i j i
j

E i cα
=

 = ⊕ ⊗ =  r r  , (4) 

where ∆ is the XOR function, ⊗ is the binary multiplication, 
the weight function wt(•) returns the number of ones in a 
binary vector, and ai,j is a coefficient defined as [17]: 

5 
( ) ( )
( ) ( ),

1, wt wt

0, wt wt

j i j

i j

j i j

α
 ⊕ <= 

⊕ ≥

r r r

r r r
. (5) 

 Based on (4)-(5), the candidate with the lowest 
reconstruction error is chosen as the first dictionary entry and 
the coefficients associated with it are saved [17]. 

 At this stage, we have chosen the signature that represents 
the first dictionary entry; however this signature may still 
suffer from random variations and defects. As another filtering 
step, the residual vectors with non-zero coefficients associated 
with this entry are averaged and the bits of the resulting mean 
are rounded (to ‘0’ or ‘1’). The resulting binary vector is the 
actual entry saved in the dictionary. 

 Next, the residual is updated to: 

6 ( ) ( )* * 1,2, ,i i i i cα= ⊕ ⊗ =r r r  , (6) 

where r* is the new dictionary entry and a*i (i = 1, 2, ⋅⋅⋅, c) is 
the coefficient associated with it. 

 In the following iterations, the reconstruction error is 
computed again according to (4)-(5), a new entry is added to 
the dictionary, and the residuals are updated according to (6). 
When all residuals are zero, the dictionary is complete and the 
associated coefficients are also available [17]. 

 The goal behind this dictionary learning step is to filter out 
the random variations and defects and capture the systematic 
spatial patterns present in the data. Hence, once again, when 
reconstructing the group signatures we will only choose the 
first few important dictionary entries to represent the data. 
These vectors are expected to carry the systematic patterns of 
interest. 

 However, the way the dictionary is built may result in 
highly correlated dictionary entries especially when the 
systematic patterns are overlapping. For this reason, before 
reconstructing the signatures, a final dictionary update is done 
to remove the correlation between the entries. 

 After choosing the first l important entries in the dictionary, 
the correlation between each entry and all other ones is 
removed, starting from the last entry in the dictionary. This is 
done through the update equation: 

7 
( )( ) ( )
( )( ) ( )

( )
, wt wt

1,2, ,
, wt >wt

i j i j j i

i

i j j i j j i

d d d d d d
d j l

d d d d d d d

 ⊕ ⊕ ≤ ⊕= =
⊕ ⊕ ⊕ ⊕

 , (7) 

where di is the ith entry in the dictionary, and this update is 

done for all entries as the index i goes from l to 1. 

 Once all the dictionary entries are updated, the coefficients 
are recomputed according to (5)-(6) for each of the entries of 
the dictionary starting from the coefficients corresponding to 
the first entry. Algorithm 1 summarizes the major steps for the 
dictionary learning stage. Finally, the group signatures are 
reconstructed based on the formed dictionary and coefficients. 
These signatures carry the systematic spatial patterns of the 
wafer data.  

Algorithm 1: Dictionary Learning 
1. Initialize ri to yi (i = 1, 2, ⋅⋅⋅, c). 
2. While $ ri ≠ 0 (i = 1, 2, ⋅⋅⋅, c) 
3. Choose one signature according to (4)-(5). 
4. Update the candidate by averaging the signatures with non-

zero coefficients.  
5. Update the residuals according to (6). 
6. End While  
7. Choose l important dictionary entries.  
8. Remove correlation between dictionary entries using (7). 
9. Update the coefficients.  
10. Reconstruct the group signatures based on dictionary and 

coefficients. 

D. Summary 

Algorithm 2 summarizes The overall flow for our proposed 
method. Its efficacy will be further demonstrated by an 
industrial data set in the next section. 

Algorithm 2: Systematic Spatial Patterns Detection   
1. Apply SVD on X as described in (1) after subtracting the 

mean of each column. 
2. Choose k, the number of singular vectors, reconstruct the 

data as shown in (3), and then add back the mean of each 
column. 

3. Apply hierarchical clustering on the reconstructed data.  
4. Obtain the optimal number of cluster using the modified L-

Method. 
5. Obtain binary signatures for the clusters. 
6. Build the binary dictionary. 
7. Reconstruct the signatures of all clusters to obtain 

systematic spatial patterns. 

III. EXPERIMENTAL RESULTS 

 In this section, the efficacy of our proposed method is 
demonstrated by using the industrial measurement data 
collected at an advanced technology node. Each die is tested 
and reported as pass or fail. The data set consists of 417 wafers 
having 117 dies per wafer. 

 The proposed method for systematic failure pattern 
extraction is applied to the aforementioned wafer data. It 
results in six different clusters. Among these clusters, only 
three are carrying systematic spatial patterns while the other 
clusters are single-wafer clusters containing outlier wafers 
only. 

 Considering the three non-single-wafer clusters, each of 
them defines a systematic spatial failure pattern, as shown in 
Figure 1 (a). In addition, Figure 1 (b) shows one representative 
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wafer map for each of these three patterns. Table 1 further 
shows the statistics for the three patterns. The first pattern 
carries a number of failed dies across all wafers. The yield of 
these wafers associated with the first pattern is around 97%. 
The two other patterns carry many failed dies, and only a small 
number of wafers are associated with these two patterns. The 
corresponding yield values are around 70% and 21% for these 
two patterns, respectively. Such information would be 
extremely helpful for the process engineers in order to improve 
the product yield by addressing these spatial failure patters 
based on their importance. 

 
Figure 1.  (a) Three systematic spatial failure patterns are identified, and (b) 
one representative wafer map is shown for each pattern where red and green 
colors represent failing and passing dies respectively. 

 Table 1.  Statistics for the systematic spatial failure patterns across wafers 
 Pattern 1 Pattern 2 Pattern 3

% of wafers 89.9% 7.9% 1.4%
Average % of failing dies per wafer 3% 30% 79%

 Figure 2 shows the spatial patterns corresponding to the 
single-wafer clusters that are discarded and considered as 
outliers. It is clear that these wafers are in fact outliers as their 
spatial patterns are substantially different from those of the 
normal wafers. 

 The aforementioned case study based on industrial 
measurement data demonstrates that the proposed method is 
able to identify systematic spatial failure patterns in the 
presence of random variations and defects, and meanwhile 
detect the outlier wafers based on their abnormal spatial 
patterns. 

 
Figure 2.  The spatial failure patterns are shown for three outlier wafers 
corresponding to the single-wafer clusters. 

IV. CONCLUSIONS 

 In this paper, we develop a novel methodology to extract 
systematic spatial failure patterns across wafers to help 
improve the product yield of circuit designs. The objective is to 

extract these systematic failure patterns in the presence of 
significant random variation and defects, and wafers with 
abnormal spatial signatures. First, features of the spatial 
signatures are extracted using SVD. Second, complete-link 
hierarchical clustering is performed on the reconstructed 
signatures. Finally, a binary dictionary is learnt to further filter 
random effects from the systematic spatial failure patterns. The 
efficacy of the proposed method has been demonstrated by an 
industrial data set where the systematic spatial failure patterns 
were extracted in the presence of random effects, while 
detecting outlier wafers. 
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