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ABSTRACT 
In this paper, we propose a novel Dual-Prior Bayesian Model 
Fusion (DP-BMF) algorithm for performance modeling. Different 
from the previous BMF methods which use only one source of 
prior knowledge, DP-BMF takes advantage of multiple sources of 
prior knowledge to fully exploit the available information and, 
hence, further reduce the modeling cost. Based on a graphical 
model, an efficient Bayesian inference is developed to fuse two 
different prior models and combine the prior information with a 
small number of training samples to achieve high modeling 
accuracy. Several circuit examples demonstrate that the proposed 
method can achieve up to 1.83× cost reduction over the traditional 
one-prior BMF method without surrendering any accuracy. 
 
1. INTRODUCTION 

The continuous scaling of integrated circuits (ICs) leads to 
severe process variations. These device–level process variations 
(e.g., Vth, Tox, etc.) pose large-scale uncertainties in circuit 
performances and, hence, impact the parametric yield of analog 
and mixed-signal (AMS) circuits [1]. To model, analyze and 
optimize process variations at all levels of design hierarchy, 
various techniques have been developed for performance 
modeling during the past decades [2]-[4]. The objective is to 
describe the performance of interest (e.g., offset of an operational 
amplifier) by an analytical (e.g., linear, quadratic, etc.) function of 
device-level variations and/or environmental conditions. Once the 
performance models are created, they can be applied to various 
applications such as parametric yield prediction [5] and worst-
case corner extraction [6].  

Although many performance modeling techniques were 
developed, the evolution of AMS circuits, especially the increase 
of circuit size and complexity, has posed a number of new 
challenges in this area. On one hand, a large number of random 
variables have to be used to model the process variations 
associated with large-scale circuits. In consequence, a huge 
amount of simulation samples must be generated for high-
dimensional modeling. On the other hand, the computational cost 
of circuit simulation increases significantly due to increasingly 
large circuit size, which makes circuit simulation extremely time-
consuming. These recent trends have made performance modeling 
prohibitively expensive today [7]. 

To address this challenging issue of modeling cost, several 
advanced performance modeling techniques (e.g., sparse 

regression [8], elastic net regularization [9], etc.) have been 
proposed. In particular, a framework of Bayesian Model Fusion 
(BMF) was developed for efficient high-dimensional performance 
modeling [10]-[11]. BMF optimally combines the early-stage (e.g., 
schematic-level) information and a small number of late-stage 
(e.g., post-layout) samples via Bayesian inference. The late-stage 
model coefficients are then determined by maximizing the 
posterior distribution. An extended version of BMF, referred to as 
Co-Learning BMF (CL-BMF), was recently proposed to further 
reduce the modeling cost [12]. CL-BMF trains an extra low-
complexity model to generate pseudo samples for fitting a high-
complexity performance model. In this way, it greatly reduces the 
number of required physical samples and, hence, the overall 
modeling cost. 

The aforementioned BMF approaches attempt to exploit only 
one source of prior knowledge (i.e. early-stage model coefficients). 
In practice, we can often obtain useful knowledge from multiple 
sources to facilitate late-stage performance modeling. For 
example, to model the performance metrics based on post-silicon 
measurements, we can take advantages of the models fitted by (i) 
the pre-silicon data collected from simulation and (ii) the post-
silicon data measured from a previous tape-out. Consider another 
important application of modeling the aging behavior for analog 
circuits. To capture the aged performance metrics at the post-
layout stage, we can borrow the prior knowledge from the models 
fitted by (i) the schematic-level simulation data for the aged 
performance metrics and (ii) the post-layout simulation data at t = 
0. These various sources of prior knowledge are expected to 
provide the useful information that facilitates us to efficiently fit 
the performance model of interest. Therefore, a new BMF 
framework must be created to properly fuse multiple sources of 
prior knowledge for performance modeling. 

Towards this goal, we propose a novel BMF technique 
referred to as Dual-Prior Bayesian Model Fusion (DP-BMF) that 
takes into account multiple sources of prior knowledge. DP-BMF 
is derived from the Bayesian inference that can be represented as 
a graphical model [13]-[14]. The performance model of interest is 
built by combining multiple prior models and a small number of 
training samples. As will be demonstrated by our experimental 
results in Section 5, the proposed method can achieve up to 1.83× 
cost reduction over the conventional BMF approach. 

The reminder of this paper is organized as follows. We briefly 
review the background of BMF in Section 2 and then derive our 
DP-BMF method in Section 3. In Section 4, several 
implementation issues are further discussed. The efficacy of the 
proposed method is demonstrated by two circuit examples in 
Section 5. Finally, we conclude in Section 6. 
 
2. BACKGROUND 

The performance modeling of an AMS circuit aims to 
describe certain performances of interests with an analytical 
function of device-level variations and/or environmental 
conditions. For example, we can approximate the offset of an 
operational amplifier as a polynomial function of variables like 

Vth, L, and DC bias current. 
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 Generally, the performance model of a given circuit can be 
described as: 
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where y denotes the performance metric to be estimated, x is a 
vector representing the variations and operation point, f is the 
performance function. The performance function is a linear 
combination of M basis functions (e.g., linear or quadratic 
polynomials) {gm(x); m = 1, 2, …, M}, and { m; m = 1, 2, …, M} 
are the model coefficients.  
 The unknown coefficients in (1) are traditionally determined 
by solving the following least-squares regression problem: 
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In (2)-(5), || ||2 stands for the L2-norm of a vector, K represents the 
total number of sampling points, and x(k) and y(k) are the k-th 
sampling values of x and y respectively.  is a vector containing 
all the model coefficients and yL is a vector consisting of all the 
samples of y. When applied to high-dimensional performance 
modeling, the least-squares fitting method requires a huge number 
of sampling points and thus leads to extremely expensive 
modeling cost. 

To address the complexity issue of least-squares fitting, sparse 
regression method [9] has recently been developed by exploiting 
the fact that most high-dimension model coefficients are close to 
zero. However, traditional sparse regression approach only fits the 
performance model based on the simulation data of a single stage. 
BMF can be applied to further combine the knowledge from early 
stage and thus reduce the performance modeling cost.  

In the conventional BMF method, the prior knowledge of 
model coefficients obtained from early stage data (e.g., schematic-
level simulation data) is encoded into a nonzero-mean Gaussian 
prior distribution. With only a few samples from late-stage data 
(e.g., post-layout simulation data), the estimated late-stage model 
coefficients L can then be derived as: 
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where  
7 E E,1 E,2 E,[ ]T

Mα α α=  (7)  

8 ( )2 2 2
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E is the coefficient vector of a model fitted by the early-stage 
data. G and yL are defined by (3) and (5) respectively, and diag( ) 
represents the operator to construct a diagonal matrix.  is a 
hyper-parameter controlling the confidence in prior knowledge. In 
the case that  is sufficiently large, (6) can be reduced as: 
9 L E≈ , (9)  
which reveals that the prior knowledge is very accurate; In 
another extreme case that  is very small, we have: 
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L L
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which implies that the prior knowledge is inaccurate, so the least-

squares regression is applied on the late-stage data alone for 
model fitting. The optimal value of  can be determined by the 
cross-validation technique [13]. 
 While the aforementioned BMF method proves to achieve 
significant speedup over least-squares regression, it restricts the 
prior knowledge to single source. In practice, we often have 
multiple sources of prior knowledge. It is possible to exploit more 
correlated information from different aspects to further facilitate 
the late-stage statistical analysis. With this motivation, we propose 
a new BMF strategy to utilize two sources of prior knowledge.  
 
3. PROPOSED APPROACH 

In this section, we develop our proposed DP-BMF method to 
borrow prior knowledge from two sources of early-stage data for 
more efficient performance modeling. 
3.1 Problem Formulation 

Specifically, we denote the two groups of prior model 
coefficients as E,1 and E,2, where 
11 E,1 E,1,1 E,1,2 E,1,[ ]T

Mα α α= , (11)  

12  E,2 E,2,1 E,2,2 E,2,[ ]T
Mα α α= . (12)  

The two groups of coefficients are obtained by fitting from two 
different sources of existing data respectively, using the same set 
of basis functions for late-stage performance modeling. Therefore, 
we are supposed to know the two groups of coefficients before 
fitting the late-stage model. 

The fundamental problem of the proposed method then 
becomes: with the input information of (i) two groups of early-
stage model coefficients { E,1,m; m = 1, 2, …, M} and { E,2,m; m = 
1, 2, …, M} and (ii) a few late-stage samples of x and y, how to 
properly estimate the late-stage model coefficients  by borrowing 
prior knowledge of the two sources. To this end, a Bayesian 
inference strategy will be constructed and represented by a 
graphical model. 

3.2 Graphical Model and Likelihood Function 
We consider three different performance models: two single-

prior model f1(x), f2(x) and the late-stage model fc(x) we aim to fit: 
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where { 1,m; m = 1, 2, …, M} and { 2,m; m = 1, 2, …, M} 
represent the coefficients of two single-prior models, and { m; m 
= 1, 2, …, M} denote the late-stage model coefficients to be 
estimated. We assume f1(x), f2(x) and fc(x) share the same set of 
basis functions. The meaning of single-prior models will be 
explained soon in the details of the graphical model. 

As shown in figure 1, a graphical model is constructed to 
illustrate the main strategy of our method. Each node represents a 
random quantity, and each directed/undirected edge represents a 
unidirectional/non-directional dependency. The two small solid 
circles stand for the two sources of prior knowledge. The filled 
node indicates that the corresponding data (i.e., the physical 
samples of y) have been observed. We call f1(x) and f2(x) single-
prior models because they aim to predict the late-stage model 
coefficients based on single source of prior knowledge (i.e. E,1 or 

E,2) respectively. Our target model fc(x) then works as a 
consensus function to balance the two single-prior models and 
combine the useful information they extract from their respective 



 

prior information. We expect that the three models f1(x), f2(x) and 
fc(x) are consistent, since they are supposed to predict the same 
performance metric, although in different ways.  

 
Figure 1.  A graphical model is shown to illustrate the Bayesian 
inference strategy of DP-BMF. 

According to the graphical model in Figure 1, we can derive 
the joint probability density function (PDF) as: 
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Here we assume the distribution of the difference between < f1, 
fc>, < f2, fc> and <fc, y> are all zero-mean Gaussian, with 1, 2 
and c to be the corresponding standard deviations. Given a 
number of independent late-stage samples {(x(r), y(r)); r = 1, 2, ..., 
K}, the joint PDF for all the collected samples can be described as: 
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where 
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and yL is defined as (5). 
 According to (13)-(15), f1, f2 and fc can be re-written as: 
21 1 1= ⋅f G  (21)  
22 2 2= ⋅f G  (22)  
23 c = ⋅f G , (23)  

where G and  are defined as (3) and (4) respectively, and 
24 1 1,1 1,2 1,[ ]T

Mα α α= , (24)  

25 2 2,1 2,2 2,[ ]T
Mα α α= . (25)  

Then, by substituting (21)-(23) into the joint PDF (17), we can get 
the likelihood function: 
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The first two L2-norm terms represent the differences between the 
target model fc and two single-prior models f1 and f2 respectively, 
and the third L2-norm term stands for the modeling error of fc , as 

compared to the observed samples of y. 

3.3 Prior Distribution Definition 
Since f1(x) and f2(x) aim to estimate the late-stage model 

coefficients based on prior knowledge E,1 and E,2 respectively, 
we expect that the model coefficients { 1,m; m = 1, 2, …, M} are 
close to { E,1,m; m = 1, 2, …, M}, and the coefficients { 2; m = 1, 
2, …, M} are close to { E,2,m; m = 1, 2, …, M}. Therefore, we 
construct two nonzero-mean Gaussian distributions for each of the 
two sets of coefficients: 
27 ( ) ( ) ( )2

1, E,1, 1 E,1,, 1, 2, ,m m mpdf Gauss k m Mα α α⋅ = , (27)  

28 ( ) ( ) ( )2
2, E,2, 2 E,2,, 1, 2, ,m m mpdf Gauss k m Mα α α⋅ = . (28)  

k1 and k2 are two hyper-parameters that can be determined by 
cross-validation as will be discussed in detail in Section 4. In the 
prior distribution (27), we assume pdf( 1,m) is peaked at its mean 
value 1,m = E,1,m, implying the early-stage coefficient E,1,m and  
the late-stage 1,m are likely to be similar. Also, the standard 
deviation of pdf( 1,m) is assumed to be proportional to | E,1,m|, 
which provides each late-stage coefficient 1,m with a relatively 
equal opportunity to deviate from the corresponding early-stage 
coefficient E,1,m. The prior distribution pdf( 2,m) in (28) can be 
interpreted in a similar way. 

Then, we further assume that all late-stage model coefficients 
are statistically independent. In this way, we can encode the prior 
knowledge of 1, 2, and  as the joint PDF function pdf( 1, 2, ): 
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where  
30 ( )2 2 2
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31 ( )2 2 2
2 2 E ,2, 1 E ,2, 2 E ,2,, , , Mk d ia g α α α− − −= ⋅D .  (31)  

Since we have no prior knowledge for fc(x) and its coefficients , 
the contribution of  to the joint distribution is represented as a “1” 
at the end of (29). 

3.4 Maximum-A-Posteriori Estimation 
Once the prior distribution pdf( 1, 2, ) is defined by (29), 

we can combine it with K late-stage physical samples {(x(r), y(r)); r 
= 1, 2, ..., K} and estimate the optimal values of late-stage model 
coefficients  by maximum-a-posteriori (MAP) estimation. 

Based on Bayes’ theorem, the posterior distribution is 
proportional to the prior distribution pdf( 1, 2, ) multiplied by 
the likelihood function pdf(yL| 1, 2, ): 
32 ( ) ( ) ( )1 2 L 1 2 L 1 2, , | , , | , ,pdf pd f pd f∝ ⋅y y . (32)  

MAP attempts to find the optimal values of 1, 2 and  to 
maximize the posterior distribution pdf( 1, 2, |yL). Namely, it 
aims to find the solutions 1, 2 and  that are most likely to occur 
according to the posterior distribution, although we actually only 
care about the value of  as it contains the coefficients of the 
target model. 
 Mathematically, the MAP solution can be found by solving 
the following optimization problem: 
33 ( )

1 2
1 2 L, ,

max , , |pdf y . (33)  

Substituting (32) by (26) and (29) and taking the logarithm for the 
posterior distribution, we can convert (33) to the following 
equivalent optimization problem: 
34 ( )

1 2
1 2, ,

min , ,h , (34)  

y



 

where 
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In this cost function, the first two terms penalize the discrepancy 
between the prediction results of the target model fc(x) and the 
other two single-prior models f1(x) and f2(x). The third term 
represents the error of traditional least-squares fitting. The last 
two terms penalize the differences between the model coefficients 
of f1(x), f2(x) and their prior knowledge E,1, E,2, respectively. We 
can see the cost function aims to compromise among three parts: 
fc(x)’s prediction error, its similarity to the other two single-prior 
models and the similarity of the single-prior models to their 
perspective prior knowledge. 

Although our target is to get the solution of  in (34), the 
model coefficients 1, 2 and  are solved together. By taking 
partial derivatives of h( 1, 2, ) with respect to 1, 2,  and then 
setting them to zero,  we can get the MAP estimation of the target 
model coefficients : 
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From (36)-(38) we can see the estimated result is controlled 
by five hyper-parameters 1, 2, c, k1 and k2. These parameters 
control the balance in two aspects: (i) the balance between trusting 
prior knowledge ( E,1 and E,2) and trusting late-stage samples in 
yL; (ii) the balance between the confidence in two sources of prior 
knowledge. To calculate the coefficient vector L in (36), these 
hyper-parameters must be carefully determined. In practice, only 
three of them are independent and we can determine their values 
by a two-dimensional cross-validation process. In Section 4.1, we 
will discuss in detail about the respective influence of these hyper-
parameters and the method to find their optimal values. 

4. IMPLEMENTATION ISSUES 
To make the proposed DP-BMF method practically efficient, 

we also need to consider several implementation issues. In this 
section, we discuss these issues in detail, including (i) the 
influence of hyper-parameters and how to determine their optimal 
values, and (ii) the detection method of two highly biased sources 
of prior knowledge. 

4.1 Hyper-Parameters 
The hyper-parameters 1, 2, c, k1 and k2 in (37)-(38) control 

the trust in prior information E,1, prior information E,2 and the 
late-stage data samples in yL. They should be carefully determined 
so that we can properly exploit the information from prior 
knowledge and data samples to get an accurate estimation result.  

In fact, 1, 2, c are not independent. As shown in Figure 2, 
since we suppose the distributions of differences between < f1, fc> 
and <fc, y> are all zero-mean Gaussian with variance 12 and c2 
respectively, the distribution of difference between f1 and y is then 

 
Figure 2.  The distribution of the differences between models and 
observed data. 

zero-mean Gaussian with  variance 1: 
39 2 2

1 1 cγ σ σ= + . (39)  
By running the conventional single-prior BMF in Section 2 with 
prior information E,1 and late-stage samples, we can then 
estimate the value of 1 from the variance of modeling error. 
Similarly, the distribution of difference between f2 and y is 
another zero-mean Gaussian distribution with variance 2: 
40 2 2

2 2 cγ σ σ= + . (40)  
The value of 2 can be estimated by running another single-prior 
BMF with prior information E,2. Once we get the estimated 
values of 1 and 2, both 1 and 2 can be uniquely determined by 

c. Thus, overall we only need to find the optimal values for three 
independent hyper-parameters c, k1 and k2. 

Now we discuss the influence of the hyper-parameters c, k1 
and k2 by considering several extreme cases: 
Case 1: k1 and k2 are small enough (close to zero) 

In this case, the terms concerning k1 and k2 in (37)-(38) can all 
be eliminated and we can then reduce (36) to: 

41 ( ) 1

L L
T T−

≈ ⋅ ⋅ ⋅G G G y , (41)  

which is exactly the least-squares estimation. It indicates that both 
sources of prior knowledge are inaccurate, so the model 
coefficients are fitted simply by the late-stage data samples. 
Case 2: k1 >> k2, and k2 is close to zero 

In this case, (37)-(38) can be reduced and transformed to: 
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which then yields:  
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From these cases, we can interpret k1 and k2 as the trust in 
prior information E,1 and E,2 respectively. With larger value of 
k1 (or k2), more weight is assigned to E,1 (or E,2) in estimation. 
The ratio of k1 and k2 then controls the balance between two 
sources of prior knowledge. That is why we have (41) when k1 
and k2 are both small and have (44) in the case that k1 is obviously 
larger than k2. On the other hand, c2 can be interpreted as the 
distrust in late-stage samples. Intuitively, large c2 implies small 

12 (or 22), which then indicates that fc is much closer to f1 (or f2) 
than to the observed samples of y. Therefore, the estimation result 
is similar to the prior information, as shown in (44). Small c2 then 
implies that the estimation based on observed samples of y is 

y



 

accurate, so the estimation result tends to largely rely on late-stage 
samples as (45) shows. 

It is important to find the optimal values of the hyper-
parameters c, k1 and k2 to minimize the modeling error. Towards 
this goal, we first set the value of c2 as: 
46 ( )2

c 1 2min ,σ λ γ γ= ⋅ . (46)  
where  is a scale factor between 0 and 1, since we can see from 
(39)-(40) that c2 should be no more than 1 or 2. In practice, we 
set  close to 1. It is because the number of late-stage samples is 
far less than the number of model coefficients, so that simply 
estimating from late-stage samples would be very inaccurate, 
which then leads to large value of c2. 

Then we use two-dimensional cross-validation [15] to find the 
optimal values for k1 and k2 based on few late-stage samples. All 
combinations of k1 and k2 within a pre-defined range are chosen as 
candidates. For each combination, we apply a Q-fold cross-
validation strategy. We divide the entire set of data samples into Q 
groups and modeling error is estimated from Q independent runs. 
At each run, Q-1 groups are used to calculate the model 
coefficients and the remaining group is used to estimate the 
modeling error. Different groups are selected for error estimation 
in different runs. After a complete cross-validation process of Q 
runs, we then calculate the average error of the Q modeling errors 
and use it to indicate the estimation accuracy of the given hyper-
parameters k1 and k2. The combination with the least modeling 
error is then selected as the optimal values of k1 and k2. 

4.2 Highly Biased Prior Knowledge 
Given two sources of early-stage information each of which 

can facilitate the late-stage performance modeling, we still need to 
consider the scenario when there is great competence disparity 
between the two sources of prior knowledge. Namely, when one 
source of prior knowledge provides far more useful information 
for coefficient estimation than the other one does. 

Ideally, the two sources of prior knowledge are equally 
competent and complementary to each other. Thus, we can extract 
more useful information for modeling and achieve higher 
estimation accuracy than using single source. With two highly 
biased sources, however, we can expect that cross-validation will 
automatically assign an extremely small weight value to the less 
useful prior information. When k1 >> k2, for example, the 
estimation result is then similar to (44). In this case, modeling by 
borrowing two sources of prior knowledge cannot achieve better 
result than using single prior knowledge E,1, since our result is 
always a compromise between two sources and one of them now 
becomes a pure hindrance. 
 Fortunately, such situation can be easily detected from two 
signs. The first sign is the values of 1 or 2 after applying two 
times of single-prior BMF. For example, if 1 is much larger than 

2, then obviously its corresponding prior knowledge E,1 is far 
less useful than E,2. The second sign is the ratio of k1 to k2 after 
the two-dimensional cross-validation process. If the ratio is 
extremely high, for instance, then it implies we should trust much 
more in E,1 than in E,2 because E,2 is useless. If both signs show 
that the two sources of prior knowledge are highly biased, then 
DP-BMF cannot do any better than traditional single-prior BMF 
with the more competent source as prior knowledge. 
4.3 Summary 

Algorithm 1 summarizes the major steps of our proposed DP-
BMF method for performance modeling from two sources of prior 
knowledge. Starting from two groups of given early-stage model 
coefficients as prior knowledge and a set of late-stage samples, we 
first determine the values of hyper-parameters by the method in 
Section 4.1. The hyper-parameters control the weights of each 

source of prior knowledge and information from late-stage 
samples. Once the optimal values of hyper-parameters are 
obtained, we estimate the late-stage model coefficients L based 
on MAP.  
Algorithm 1:Dual-Prior BMF for Performance Modeling 
1. Start from two groups of existing coefficients { E,1,m; m = 1, 

2, …, M} and { E,2,m; m = 1, 2, …, M} and a set of late-stage 
samples {(x(r), y(r)); r = 1, 2, ..., K}. 

2. Run single-prior BMF method as defined in Section 2 twice, 
with { E,1,m; m = 1, 2, …, M} and { E,2,m; m = 1, 2, …, M}  as 
prior knowledge respectively. Then estimate 1 and 2 from the 
fitting error of each time. 

3. Determine the value of hyper-parameter c by (45) and the 
values of k1 and k2 by two-dimensional cross-validation. Then 
calculate the values of 1 and 2 according to (39) and (40) 
respectively. 

4. Estimate the late-stage model coefficients L by (36)-(38). 

5. NUMERICAL EXAMPLES 
In this section, we use two circuit examples to demonstrate the 

efficiency of our proposed DP-BMF method. Our objective is to 
build performance models for pre-silicon verification of these 
circuits. To illustrate the improvement by using multiple sources 
of prior knowledge, we compare three different performance 
modeling methods: (i) single-prior BMF using one source of prior 
information, (ii) single-prior BMF using another source of prior 
information, and (iii) the proposed DP-BMF using both sources of 
prior information. All experiments are performed on a server with 
2.5GHz dual-core CPU and 16GB memory. 

5.1 Operational Amplifier 
In this example, we use a two-stage operational amplifier (Op-

amp) designed in a 45nm CMOS process. We consider the post-
layout verification as late-stage and generate the data samples by 
post-layout simulation. The first source of prior knowledge is 
from least-squares fitting from many existing data samples of 
schematic-level simulations. On the other hand, by exploiting the 
underlying sparsity of model coefficients, we apply the sparse 
regression method [8] on a small set of obtained post-layout 
samples to get a group of coefficients as the second source of 
prior knowledge. We aim to accurately estimate the model 
coefficients of certain performance metrics in post-layout 
simulation by borrowing the prior knowledge of two groups of the 
given coefficients. It is noted that the sources of prior knowledge 
are not restricted to these we use. Other correlated information 
from simulation/measurement data of different working modes, 
different environment corners or previous time can also be reused 
as prior knowledge.  

In this example, we use 581 independent random variables to 
model the device-level process variations, including both inter-die 
variations and random mismatches. Our objective is to 
approximate the offset of the Op-amp as a linear function of these 
581 random variables.  

For testing and comparison purpose, we generate a set of 
Monte-Carlo samples by both schematic-level and post-layout 
simulations, in which the device-level variations of all transistors 
are considered.  We use Monte-Carlo samples of schematic-level 
simulation to calculate the model coefficients as prior information 
1, and apply the sparse regression method on 80 samples of post-
layout simulation to get another group of coefficients as prior 
information 2. A group of another 2000 post-layout simulation 
samples is used as test group to measure the modeling error. 

Figure 4 shows the modeling error as a function of the number 
of late-stage samples. The errors are calculated from 50 repeated 
runs based on independent samples to average out random 



 

fluctuations. Note that the DP-BMF method achieves higher 
accuracy than traditional BMF using single source of prior 
information. In particular, DP-BMF only needs 120 samples to 
achieve high modeling accuracy. However, even the single-prior 
BMF with better performance (denoted as Single-prior 1) takes 
about 220 samples to achieve the same accuracy. Studying the 
plot reveals that DP-BMF achieves more than 1.83× cost 
reduction over single-prior BMF. 

We also examine whether DP-BMF can effectively adjust the 
weights assigned to each source of prior knowledge. In Figure 4, 
traditional BMF achieves higher modeling accuracy with the first 
source of prior knowledge, which means that the first source 
provides more useful information than the second one. This is 
reflected in the values of hyper-parameters k1 and k2 determined 
by cross-validation. The optimized ratio of k2 to k1 is relatively 
small for all the different sample numbers (e.g., k2/k1 = 0.1 when 
post-stage sample number is 140). This implies that we trust the 
first source of prior knowledge more because it provides more 
useful information. 

 
Figure 4. The modeling error is plotted as a function of the 
number of late-stage samples.  

5.2 Analog to Digital Converter 
In this example, we consider a flash analog to digital 

converter (ADC) in a 0.18 m CMOS process. The sources of 
prior information are the same as the previous example. We use 
132 independent random variables to model the device-level 
process variations. The objective is to approximate the power of 
the ADC as a linear function of these 132 random variables.  

 
Figure 5.  The modeling error is plotted as a function of the 
number of late-stage samples. 

We use Monte-Carlo samples of schematic-level simulation to 
calculate the model coefficients as prior information 1, and apply 
the sparse regression method on 50 samples of post-layout 
simulation to get another group of coefficients as prior 
information 2. A group of another 2000 post-layout simulation 
samples is used as test group to measure the modeling error. 

Figure 5 shows the modeling error as a function of the number 
of late-stage samples. Studying the plot reveals that DP-BMF 
achieves more than 1.83× cost reduction over single-prior BMF. 

In addition, in Figure 5 we can see that the second source of prior 
knowledge provides more useful information than the first one. 
That is why the optimized ratio of k2 to k1 is obviously larger than 
1 for all the different sample numbers (e.g., k2/k1 = 4.42 when 
post-stage sample number is 58). This implies that we trust the 
second source of prior knowledge more because it is more useful. 
6. CONCLUSIONS 

In this paper, we propose a novel performance modeling 
algorithm DP-BMF. To achieve high modeling accuracy with low 
modeling cost, an efficient Bayesian inference is developed to 
fuse two different prior models and combine the prior information 
with a small number of training samples. Several circuit examples 
demonstrate that the proposed method can achieve up to 1.83× 
cost reduction over the traditional method without surrendering 
any accuracy.  
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