
Re-thinking Polynomial Optimization: Efficient 
Programming of Reconfigurable Radio Frequency (RF) 

Systems by Convexification
Fa Wang, Shihui Yin, Minhee Jun, Xin Li, Tamal Mukherjee, Rohit Negi and Larry Pileggi 

ECE Department, Carnegie Mellon University, Pittsburgh, PA 15213 
{fwang1, syin, mjun, xinli, tamal, negi, pileggi}@ece.cmu.edu 

ABSTRACT 
Reconfigurable radio frequency (RF) system has emerged as a 
promising avenue to achieve high communication performance 
while adapting to versatile commercial wireless environment. In 
this paper, we propose a novel technique to optimally program a 
reconfigurable RF system in order to achieve maximum 
performance and/or minimum power. Our key idea is to adopt an 
equation-based optimization method that relies on general-
purpose, non-convex polynomial performance models to 
determine the optimal configurations of all tunable circuit blocks. 
Most importantly, our proposed approach guarantees to find the 
globally optimal solution of the non-convex polynomial 
programming problem by solving a sequence of convex semi-
definite programming (SDP) problems based on convexification. 
A reconfigurable RF front-end example designed for WLAN 
802.11g demonstrates that the proposed method successfully finds 
the globally optimal configuration, while other traditional 
techniques often converge to local optima. 

1. INTRODUCTION 
Rapidly introduced new wireless standards and applications 

have presented grand challenges for wireless chip design. 
Reconfigurable RF system [1]-[2] has emerged as a promising 
avenue to achieve high communication performance while 
adapting to versatile wireless environment. In a reconfigurable RF 
system, circuit blocks (e.g., low noise amplifier, mixer, filter etc.) 
can be adaptively reconfigured to adjust their block-level 
performance metrics (e.g., gain, bandwidth, noise figure, etc.) to 
meet a set of system-level performance specifications (e.g., 
signal-to-noise ratio, bit error rate, power, etc.). 

Programming a reconfigurable RF system is a critical-yet-
challenging task. The objective is to find the optimal 
configurations of all tunable circuit blocks for the given wireless 
standard, spectrum condition, and system specifications. In 
practice, a reconfigurable RF system often carries numerous 
configuration options. Hence, exhaustively searching all these 
options is not practically feasible. Instead, we must find the 
optimal configuration by using a “smart” optimization algorithm. 

It is important to note that most conventional analog/RF 
optimization techniques are ill-equipped to address the 
aforementioned programming problem for reconfigurable RF 
systems. The conventional optimization methods fall into two 
broad categories: (i) simulation-based [3]-[6], and (ii) equation-
based [7]-[9]. The simulation-based methods rely on numerical 
simulations (e.g., by SPICE) to evaluate the performance metrics, 
and adopt stochastic optimization algorithms to avoid local 
optima. While these methods have been successfully applied to a 
number of applications, their computational cost is often 
prohibitively high, thereby limiting their practical utility. On the 
other hand, the equation-based methods use analytical 
performance models (i.e., design equations) for analog/RF circuit 

optimization. These performance models are often expressed in a 
special form (e.g., as convex posynomial functions [7]-[8]) so that 
the resulting optimization problem is convex and can be 
efficiently solved. However, since various simplifications are 
made to derive these analytical models, the equation-based 
methods may lead to an optimal solution that does not accurately 
match the actual circuit behavior. 

In this paper, we propose a novel equation-based optimization 
method to efficiently program reconfigurable RF systems. Instead 
of relying on a convex model template, we adopt the general-
purpose polynomials to model analog/RF performance functions. 
Such a choice has a two-fold implication. First, polynomial 
models are not necessarily convex and, hence, can accurately 
capture a broad range of analog/RF performance functions. In 
other words, our proposed polynomial models are expected to be 
more accurate than the conventional convex models (e.g., the 
posynomial models [7]-[8]) in the literature. 

Second, but more importantly, since the polynomial 
performance models may not be convex, the resulting 
optimization problem is not convex in general and, hence, is non-
trivial to solve [10]. To address this issue, we further borrow the 
convexification technique that is derived from the theory of 
moments and positive polynomials [11]-[16]. The key idea here is 
to search the globally optimal solution of a non-convex 
polynomial programming problem by solving a sequence of 
convex SDP problems. As will be demonstrated by our example 
of a reconfigurable RF system designed for WLAN 802.11g in 
Section 4, the aforementioned convexification method can find 
the optimal configuration both robustly (i.e., with guaranteed 
global optimum) and efficiently (i.e., with low computational 
cost). 

The remainder of this paper is organized as follows. In 
Section 2 we briefly review the background on reconfigurable RF 
system, and then describe the proposed approach for polynomial 
modeling and optimization in Section 3. The efficacy of our 
proposed method is demonstrated by a reconfigurable RF system 
example in Section 4. Finally, we conclude in Section 5. 

2. BACKGROUND 
To cope with multiple wireless standards, a traditional 

communication system often uses multiple fixed narrow-band RF 
front-ends, with each front-end designed for a particular standard. 
However, with the overwhelming introduction of wireless 
standards and applications, the design cost of fixed RF front-ends 
has increased dramatically. In order to alleviate the design cost 
and improve the user experience, software-defined radio (SDR) 
has been proposed. Early SDRs use a wide-band RF front-end to 
enable the operation over a wide range of frequencies. However, 
this wide-band solution is vulnerable to nonlinear effects such as 
inter-modulation, and may lead to bad performances when large 
interferers are present. 
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In this context, reconfigurable RF system has been proposed. 
An example of reconfigurable RF receiver, as shown in Figure 1, 
is composed of tunable RF/IF filters, low noise amplifier (LNA), 
mixer and local oscillator (LO). The RF/IF filters can be 
configured to select the desired frequency bands. The LO can be 
tuned to adjust the operating frequency. The LNA and mixer can 
be configured to achieve the optimal system-level performances 
(e.g. signal-to-noise ratio, power, etc.) by leveraging the tradeoffs 
between different block-level performances (e.g. linearity vs. 
gain). The optimal configuration for each circuit block may vary 
dramatically under different environmental conditions and 
applications. For example, with or without the presence of strong 
interference, the required linearity can be substantially different 
for the LNA. 

Figure 1.  An example of reconfigurable RF front-end is shown, 
including two filters, an LNA, a mixer and an LO. 

Programming a reconfigurable RF system is one of the most 
important tasks in order to maximally exploit the benefit of its 
reconfigurability. Here, the objective of programming is to find 
the optimal configurations of all tunable circuit blocks for the 
given wireless standard, spectrum condition, and system 
specifications. Mathematically, we formulate such a programming 
problem as the following optimization problem: 

1

( )
( ) ( )

min

s.t. 1,2, ,m m

f

g G m M
S

≤ =
∈

x
x

x
x

, (1) 

where 
2 [ ]1 2

T
Nx x x=x  (2) 

contains the tuning knobs for the reconfigurable system, f(x)
denotes the system-level performance (e.g. power consumption) 
that should be minimized, {gm(x); m = 1, 2, ⋅⋅⋅, M} stands for the 
system-level performances (e.g. signal-to-noise ratio) that are 
constrained by their specifications {Gm; m = 1, 2, ⋅⋅⋅, M}, and the 
set S defines the lower and upper bounds of x (i.e., the tuning 
ranges of these knobs): 
3 ( ){ }1,2, ,n n nS l x u n N= ≤ ≤ =x . (3) 

In general, the optimization problem in (1) is non-convex, 
because the cost function f(x) and/or the constraint functions 
{gm(x); m = 1, 2, ⋅⋅⋅, M} may not be convex. Finding the globally 
optimal solution of a non-convex optimization problem has been 
considered as a grant challenge in the literature. There is no 
elegant solution that has been proposed yet. In what follows, we 
will adopt the recent breakthrough on polynomial programming 
from the mathematic community to develop a novel CAD 
methodology that addresses this fundamental challenge. 

3. PROPOSED APPORACH 
To efficiently program a reconfigurable RF system, we 

propose the following two-step flow: (i) polynomial performance 
modeling, and (ii) polynomial programming. To solve the 

optimization in (1), we first approximate f(x) and {gm(x); m = 1, 2, 
⋅⋅⋅, M} by polynomial functions: 

4 ( ) 1 2 ( )( ) ( )
1 2

1

N

R
rr r

r N
r

f x x x θθ θα
=
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5 ( ) ( )1 2 ( )( ) ( )
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1
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R
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m m r N
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g x x x m Mθθ θβ
=

≈ ⋅ =x , (5) 

where 

6 ( )
1

N

n
n

r tθ
=

≤ . (6) 

In (4)-(6), { r; r = 1, 2, ⋅⋅⋅, R} contains the model coefficients of 
f(x), { m,r; r = 1, 2, ⋅⋅⋅, R} contains the model coefficients of gm(x),
{ n(r); n = 1, 2, ⋅⋅⋅, N} defines the non-negative integer exponents 
of the r-th polynomial term, R denotes the total number of 
polynomial terms, and t stands for the degree of these polynomial 
functions. The model coefficients { r; r = 1, 2, ⋅⋅⋅, R} and { m,r; m
= 1, 2, ⋅⋅⋅, M; r = 1, 2, ⋅⋅⋅, R} can be fitted by various performance 
modeling techniques [17]. 

Once the polynomial performance models f(x) and {gm(x); m
= 1, 2, ⋅⋅⋅, M} are available, solving the polynomial programming 
problem in (1), however, is still not trivial. The grand challenge 
stems from the fact that the polynomial functions f(x) and {gm(x); 
m = 1, 2, ⋅⋅⋅, M} are not necessarily convex and, hence, the 
optimization problem in (1) is not convex. It has been shown in 
the literature that a general polynomial programming problem is 
NP-hard [15]. In this paper, we will adopt a novel convexification 
technique to find the globally optimal solution of (1) by solving a 
sequence of convex SDP problems. In other words, the 
convexification technique can solve a non-convex polynomial 
programming problem both efficiently (i.e., with low 
computational cost) and robustly (i.e., with guaranteed global 
optimum) in practice. In what follows, we will discuss the 
convexification procedures for the cost function and the 
constraints in (1), respectively.

3.1 Convexifying Polynomial Cost Function 
To start with, we convert the cost function in (1) to a new 

representation based on a probability density function (PDF): 
7

( )
( ) ( )min f d

μ
μ⋅ ⋅

x
x x x . (7) 

where (x) is a multivariate PDF. To understand (7), we re-write 
the integration in (7) as: 
8 ( ) ( ) ( ) ( )i i

i
f d fμ μ⋅ ⋅ ≈ ⋅ ⋅ Δx x x x x x , (8) 

where Δx is sufficiently small and 
9 ( ) 1i

i
μ ⋅ Δ ≈x x . (9) 

In other words, the integration in (7) is a weighted sum of f(x)
over all x’s, where the weights are determined by (x). Let f* be 
the optimal value of f(x), and x* be the corresponding x value. 
(Here, we assume that only a single global optimum x* exists). To 
reach the minimum of the integration, one can construct an 
optimal PDF *(x) that is non-zero at x* only. Mathematically, we 
can represent such an optimal *(x) as: 
10 ( ) ( )* *μ δ= −x x x , (10) 

where 

11 ( )
*

*
*

,
0,

δ +∞ =
− =

≠
x x

x x
x x

 (11) 
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12 ( )* 1dδ − ⋅ =x x x . (12) 

A simple one-dimensional example is shown in Figure 2 for 
illustration purposes. 

Figure 2.  A one-dimensional example of the optimal PDF *(x) is 
shown for illustration purposes. 

Substituting (4) into the integration in (7) yields: 

13
( ) ( ) ( )

( )
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1 2
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1

( )( ) ( )
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1
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N
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r N
r
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r

f d x x x d

x x x d
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α μ

=

=

=

=

x x x x x

x x
. (13) 

Define the moments: 
14 ( )1 2 ( )( ) ( )

1 2
N rr r

r Ny x x x dθθ θ μ= x x  (14) 

and the moment vector: 
15 [ ]1 2

T
R Ry y y=y . (15) 

Without loss of generality, we extend the moment sequence to 
infinity: 
16 [ ]1 2

Ty y=y . (16) 
Given (7) and (13)-(16), we can write out a moment 
representation for the cost function: 

17 ( )
1

min
R

r r
r

e yα
=

= ⋅
y

y . (17) 

Note that the moments are considered as the problem unknowns 
and the new cost function is a linear combination of these 
moments. Thus the cost function in (17) is convex with respect to 
the unknown moments. 

It should be noted that the moment sequence y in (16) cannot 
take arbitrary values, because a valid PDF function (x) must 
exist to generate the sequence. Hence, additional constraints must 
be posed for the moment values. For example, in a one-
dimensional case, a negative second-order moment is not valid. In 
what follows, we will further discuss how to add extra constraints 
for the moment sequence. 

Consider a polynomial q(x) with degree of d:

18 ( ) ( )
1

S

s s
s

q q b
=

= ⋅x x , (18) 

where  

19
( ) ( ) ( )

( )
1 2

1 2( )
1,2, ,

Ns s s
s Nb x x x

s S

θ θ θ=
=

x  (19) 

20 ( )
1

N

n
n

s dθ
=

≤ . (20) 

In (18)-(20), S is the total number of polynomial terms, and {qs; s
= 1, 2, ⋅⋅⋅, S} stands for the polynomial coefficients. We define the 
coefficient vector of q(x) as: 
21 [ ]1 2

T
Sq q q=q  (21) 

and the basis function vector as: 

22 ( ) ( ) ( ) ( )1 2[ ]T
Sb b b=b x x x x . (22) 

Thus we have: 
23 ( ) ( )Tq = ⋅x q b x . (23) 

Given that both q(x)2 and (x) must be non-negative, we can 
easily derive the following constraint: 
24 ( ) ( )2 0q dμ⋅ ⋅ ≥x x x . (24) 

Substituting (23) into (24) yields: 

25
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

0

TT

TT

q d d

d

μ μ

μ

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ≥

x x x q b x b x q x x

q b x b x x x q
. (25) 

The integration in (25) is a moment matrix: 

26 ( ) ( ) ( ) ( )
11 12 1

21

1

S

T
d

S SS

c c c
c

C d

c c

μ= ⋅ ⋅ ⋅ =y b x b x x x , (26) 

where 
27 ( ) ( ) ( ) ( ), 1,2, ,ij i jc b b d i j Sμ= ⋅ ⋅ ⋅ =x x x x . (27) 

In other words, each entry in the matrix is a moment, and can be 
found in the moment sequence y. Combining (25) and (26), we 
have the following constraint: 
28 ( ) 0T

dC⋅ ⋅ ≥q y q . (28) 
For any polynomial q(x) with arbitrary values of q and d, the 
inequality constraint in (25) must be satisfied. Hence, the moment 
matrix Cd(y) must be positive semi-definite: 
29 ( ) ( )0 1,2,dC d= =y . (29) 

To help understand the aforementioned mathematical 
concepts, we now consider a simple one-dimensional example 
where the cost function is given as: 
30 ( ) 2

1 2 3min
x

f x x xα α α= + ⋅ + ⋅ . (30) 

According to (7) and (13)-(17), the cost function in (30) can be 
converted to a moment representation: 
31 ( ) 1 1 2 2 3 3min e y y yα α α= ⋅ + ⋅ + ⋅

y
y , (31) 

where 
32 ( ) ( )1 1,2,3r

ry x x dx rμ−= ⋅ ⋅ = . (32) 

We then set up the constraints based on (18)-(29). For q(x) with 
degree of d = 1: 
33 1 2( )q x q q x= + ⋅ , (33) 
we can enforce the linear matrix inequality (LMI) constraint: 
34 ( )1 0C =y , (34) 
where 

35 ( ) 1 2
1

2 3

y y
C

y y
=y . (35) 

As the order d increases, we can get a sequence of the LMI 
constraints shown in (29). 

3.2 Convexifying Polynomial Constraints 
Note that the constraints in (1) are polynomial functions. 

Hence, we can re-write these constraints in a standard form: 
36 ( ) ( )ˆ 0 1,2, ,mg m M N≥ = +x , (36) 
where 

*(x) = (x-x*)

f(x)

x* x
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37 ( ) ( ) ( )
( ) ( ) ( )

1,2, ,
ˆ

1, ,
m m

m
m M m M m M m M

G g m M
g

x l u x m M M N− − − −

− =
=

− ⋅ − = + +
x

x . (37) 

The polynomial functions { m(x); m = 1, 2, ⋅⋅⋅, M + N} can be 
expressed as: 

38 ( ) ( ) ( ),
1

ˆ 1,2, ,
R

m m r r
r

g b m M Nω
=

= ⋅ = +x x , (38) 

where { m,r; m = 1, 2, ⋅⋅⋅, M + N; r = 1, 2, ⋅⋅⋅, R} contains the 
polynomial coefficients and 

39
( ) ( ) ( ) ( )

( )
1 2

1 2

1,2, ,

Nr r r
r Nb x x x

r R

θ θ θ=
=

x
 (39) 

are the basis functions. 
In (29), a set of constraints have been added to the moment 

sequence y without considering the optimization constraints in 
(36). In what follows, we will discuss how to further bound the 
moment sequence y based on these optimization constraints. We 
define a polynomial q(x) with degree of d, as shown in (18)-(23). 
Given that q(x)2, (x), and { m(x); m = 1, 2, ⋅⋅⋅, M + N} must be 
non-negative, we derive the following constraints: 
40 ( ) ( ) ( ) ( )2ˆ 0 1,2, ,mg q d m M Nμ⋅ ⋅ ⋅ ≥ = +x x x x . (40) 

The constraints in (40) enforce that (x) can only take non-zero 
values where m(x) is non-negative. If there exists xv such that

(xv) > 0 and m(xv) < 0, we have m(xv)· (xv) < 0. In this case, 
one can easily construct a polynomial qv(x) such that qv(x) is 
peaked around xv and the integration in (40) is negative. 

Substituting (23) into (40) yields: 

41

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2ˆ

ˆ 1,2, ,

ˆ 0

m

T T
m

T T
m

g q d

g d m M N

g d

μ

μ

μ

⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = +

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≥

x x x x

x q b x b x q x x

q x b x b x x x q

.(41) 

The integration in (41) is a moment matrix: 

42 ( ) ( ) ( ) ( ) ( )
11 12 1

21
,

1

ˆ ˆ ˆ
ˆˆ ˆ

ˆ ˆ

S

T
m d m

S SS

c c c
c

C g d

c c

μ= ⋅ ⋅ ⋅ ⋅ =y x b x b x x x , (42) 

where 
43 ( ) ( ) ( ) ( ) ( )ˆ ˆ , 1,2, ,ij m i jc g b b d i j Sμ= ⋅ ⋅ ⋅ ⋅ =x x x x x . (43) 

Substituting (38) into (43), we have: 

44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

,
1

,
1

ˆ

1,2, , , 1,2, ,

R

ij m r r i j
r

R

m r r i j
r

c b b b d

b b b d

m M N i j S

ω μ

ω μ

=

=

= ⋅ ⋅ ⋅ ⋅ ⋅
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= + =

x x x x x

x x x x x . (44) 

In other words, each element in the moment matrix (42) is a linear 
combination of several moments. Combining (41) and (42), we 
can derive the following constraints: 
45 ( ) ( ),

ˆ 0 1,2, ,T
m dC m M N⋅ ⋅ ≥ = +q y q . (45) 

For any polynomial q(x) with arbitrary values of q and d, the 
inequality constraints in (45) must be satisfied. Therefore, the 
moment matrix m,d(y) must be positive semi-definite: 
46 ( ) ( ) ( ),

ˆ 0 1,2, , 1,2,m dC m M N d= = + =y . (46) 
To help understand the LMI constraints in (46), we now 

consider a simple one-dimensional example with the following 

constraint: 
47 ( )1ˆ 0g x x= ≥ . (47) 
For a polynomial q(x) with degree d = 1: 
48 1 2( )q x q q x= + ⋅ , (48) 
we enforce the LMI constraint: 
49 ( )1,1

ˆ 0C =y , (49) 
where 

50 ( ) 2 3
1,1

3 4

ˆ y y
C

y y
=y  (50) 

51 ( ) ( )1 2,3,4r
ry x x dx rμ−= ⋅ ⋅ = . (51) 

As the order d increases, we can further get a sequence of the LMI 
constraints: 
52 ( ) ( )1,

ˆ 0 1,2,dC d= =y . (52) 

3.3 Sequential Semidefinite Programming 
Combining (17), (29) and (46), we can formulate a sequence 

of SDP problems corresponding to different polynomial degrees: 

53 ( )
( ) ( )

( )

1

,

min ( )

: s.t. 0
ˆ 0 1,2, ,

1,2,

R

r r
r

d
d

m d

e y

C

C m M N

d

α
=

= ⋅

=

= = +

=

y
y

H y

y
. (53) 

Let {hd; d = 1, 2, ⋅⋅⋅} be the optimal values of the cost functions of 
{Hd; d = 1, 2, ⋅⋅⋅}. Note that the sequence {hd; d = 1, 2, ⋅⋅⋅}
satisfies the following inequalities: 
54 ( )1 1,2,d dh h d+≤ = , (54) 
because Cd(y) and m,d(y) are the principal sub-matrices of Cd+1(y)
and m,d+1(y) respectively and, hence, the constraint set of Hd+1 is 
a subset of that of Hd.

Let x* be the global optimum of the optimization in (1) and f*

= f(x*) be the corresponding cost function value. It has been 
proven in [11] that: (i) the SDP problems {Hd; d = 1, 2, ⋅⋅⋅} are 
feasible, and (ii) the sequence {hd; d = 1, 2, ⋅⋅⋅} asymptotically 
converges to f*. Considering both the inequalities in (54) and the 
aforementioned convergence property, we have: 
55 1 2 *h h f≤ ≤ ≤ . (55) 
It is further shown in [11]-[12] that there exists a finite value D
such that: 
56 1 2 1 *D Dh h h h f+≤ ≤ ≤ = = = , (56) 
where D is determined by the inherent complexity of (1). Once the 
optimal moment sequence y* is solved from HD, the global 
optimum {xn

*; n = 1, 2, ⋅⋅⋅, N} of (1) is determined by the first-
order moments {yn

*; n = 1, 2, ⋅⋅⋅, N}:
57 ( ) ( )* * * 1,2, ,n n nx x d y n Nμ= ⋅ ⋅ = =x x . (57) 

Since D is unknown in practice, a simple criterion must be 
derived to determine its value. Let {yd; d = 1, 2, ⋅⋅⋅} be the optimal 
moment sequences solved from {Hd; d = 1, 2, ⋅⋅⋅}, and {xd; d = 1, 
2, ⋅⋅⋅} be the first-order moments calculated by (57). A given 
value d is equal to D, if the following conditions hold: 
58 ( ) ( )ˆ 0 1,2, ,d

mg m M N≥ = +x  (58) 

and 
59 ( )d df h=x . (59) 
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To understand (58)-(59), we consider (55) and the definition of f*:
60 ( ) ( ) ( )* ˆ 0 1,2, ,d d d

mh f f where g m M N≤ ≤ ≥ = +x x . (60) 

Combining (58)-(60) yields: 
61 ( )*d dh f f= = x . (61) 

Therefore, the conditions in (58)-(59) guarantee that xd is the 
global optimum of (1). More details about the SDP formulation 
can be found in [11]. 

3.4 Summary 
Algorithm 1 summarizes the major steps of our proposed 

method for programming RF systems based on convexification. It 
consists of two major steps: (i) performance modeling and (ii) 
sequential SDP. The efficacy of the proposed method will be 
further demonstrated by our numerical examples in the next 
section. 

Algorithm 1: Programming of RF System by Convexification 
1. For the cost function f(x) and the constraint functions {gm(x); 

m = 1, 2, ⋅⋅⋅, M} in (1), fit the polynomial performance 
models in (4)-(5). 

2. Initialize d = 1. 
3. Solve the SDP problem Hd in (53) to obtain hd and yd.
4. Calculate xd using (57). 
5. Check the conditions in (58)-(59). If these conditions are 

satisfied, take xd as the global optimum of (1). Otherwise, set 
d = d + 1 and go to step 3. 

4. NUMERICAL EXPERIMENTS 

Figure 3.  The simplified block diagram is shown for a 
reconfigurable RF front-end designed for WLAN 802.11g. 

Table 1.  Polynomial modeling results for SNR 
Model order 2 3 4 
# of Coefficients 28 148 411 
Maximum Error (dB) 3.03 1.91 1.81 
Average Error (dB) 1.81 1.01 0.69 

In this section, a reconfigurable RF front-end is used to 
demonstrate the efficacy of the proposed RF system programming 
algorithm. The RF front-end is designed for the wireless 
communication standard WLAN 802.11g, where the center 
frequency is 2.4GHz. It is composed of three tunable LNAs, as 
shown in Figure 3. Each LNA consists of three stages where the 
bias current of each stage can be independently tuned. We 
consider the total power consumption (Power) of the three LNAs 
and the signal-to-noise ratio (SNR) of the entire front-end as the 
performances of interest. In this example, the objective of 

programming is to find the optimal bias currents for all LNAs so 
that the power consumption is minimized subject to a given SNR 
specification. Our numerical experiments are performed on a 
3.4GHz Linux server. 

Towards this goal, we first build the polynomial performance 
models for SNR and Power. The power consumption can be 
approximated as an analytical function of the bias currents based 
on hand analysis. To fit the SNR model, the RF front-end is 
simulated by MATLAB SIMULINK and 800 sampling points are 
collected. Next, a polynomial model with nine variables (i.e., 
three variables for each LNA) is fitted for SNR by using the 
sparse regression method [17]. Table 1 summarizes the modeling 
error for SNR, as the polynomial order varies from two to four. 
Based on the results in Table 1, we conclude that a 4th-order 
polynomial model is sufficiently accurate for SNR in this 
example. 

Table 2.  Optimization results of different methods (SNR  13dB) 
Fitted 

SNR (dB) 
Simulated 
SNR (dB) 

Power 
(mW) 

IP 14.71 14.35 11.97 
SA 14.72 14.35 11.99 
Proposed 14.71 14.35 11.97 

Table 3.  Optimization results of different methods (SNR  15dB) 
Fitted 

SNR (dB) 
Simulated 
SNR (dB) 

Power 
(mW) 

IP 15.00 15.58 15.48 
SA 15.00 14.99 13.49 
Proposed 15.00 15.04 12.58 

Table 4.  Optimization results of different methods (SNR  17dB) 
Fitted 

SNR (dB) 
Simulated 
SNR (dB) 

Power 
(mW) 

IP 17.00 16.05 31.48 
SA 17.00 16.61 21.95 
Proposed 17.00 17.30 19.24 

Figure 4.  The optimization results are shown for 100 independent 
runs with randomly selected initial guess. (a), (b) and (c) show the 
results by IP with the SNR specification set to 13dB, 15dB and 
17dB, respectively. (d), (e) and (f) show the results by SA with 
the SNR specification set to 13dB, 15dB and 17dB, respectively. 

Once the polynomial performance models are available, we 
apply three different methods to solve the optimization problem in 
(1) for testing and comparison purposes: (i) the interior-point 
method (IP) [10], (ii) the simulated annealing method (SA) [3], 
and (iii) the proposed method based on convexification 
(Proposed). The optimization parameters are carefully tuned for 
SA to achieve good results. When implementing Algorithm 1, the 
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SDP problems are solved by a commercial optimization tool 
MOSEK. 

Table 2-Table 4 compare the optimization results for three 
different methods where the SNR specification is set to different 
values. Note that the power consumption achieved by our 
proposed method is less than those by IP and SA in most cases. It 
demonstrates that the proposed method is able to find an optimal 
solution that is superior over those solved by IP and SA. In 
particular, as the SNR specification becomes tight, it is 
increasingly difficult for IP and SA to converge to a good solution 
with low power consumption. 

To further study the robustness for IP and SA, Figure 4 
summarizes their optimization results for 100 independent runs 
with randomly selected initial guess. Since neither IP nor SA 
guarantees to find the global optimum, their optimization results 
depend on the initial guess. In most cases, only a local optimum is 
found by IP or SA. 

Table 5.  Runtime comparison for different methods 
SNR Spec 

(dB) 
Model Fitting 

(Sec.)
Optimization (Sec.) 

IP  SA Proposed 
13.00 

3.852×105
0.10 76 2.4 

15.00 0.11 76 67 
17.00 0.21 76 76 

Table 5 compares the runtime for three different methods. 
Here, the computational cost consists of two major components: 
(i) model fitting cost (i.e., the cost of generating sampling points 
by SIMULINK and solving polynomial model coefficients), and 
(ii) optimization cost (i.e., the cost of solving the optimization 
problem in (1) based on polynomial performance models). As 
shown in Table 5, the computational cost is dominated by model 
fitting in this example. Since the three optimization methods rely 
on the same polynomial performance models, the overall 
computational cost is similar for these three methods. 

It should be noted that the complexity of the SDP problem in 
(53) grows quickly with the number of basis functions used for 
performance modeling. Therefore, performance models must be 
carefully simplified in order to apply our proposed 
convexification approach to practical applications. 

5. CONCLUSIONS 
In this paper, a novel equation-based optimization method 

based on polynomial programming is proposed for efficient 
programming of reconfigurable RF systems. The proposed 
method first builds polynomial performance models to capture 
analog/RF performance functions. Next, a non-convex polynomial 
programming problem is formulated and its globally optimal 
solution is efficiently found by solving a sequence of convex SDP 
problems based on convexification. As is demonstrated by a 
reconfigurable RF front-end example designed for WLAN 
802.11g, the proposed method guarantees to find the globally 
optimal configuration, while other traditional techniques often 
converge to local optima. In our future work, we will further 
apply the proposed method to program large-scale reconfigurable 
RF systems in silicon. 
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