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Abstract— Steady state analysis of power grids is typically 
performed using power flow analysis, where nonlinear balance 
equations of real and reactive power are solved to calculate the 
voltage magnitude, phase, and power at every bus. Transient 
analysis of the same power grids are performed using circuit 
simulation methods. We propose a novel approach to modeling 
the nonlinear steady state behavior of power grids in terms of 
equivalent circuits with currents and voltages as the state 
variables that is a step toward unifying transient and steady state 
models. A graph theoretic formulation approach is used to solve 
the circuits that enables incorporation of switch models for 
contingency analyses. Superior nonlinear steady state 
convergence is demonstrated by use of current as a state variable 
and application of circuit simulation methods. Furthermore, 
current and voltage state variables will offer greater 
compatibility with future smart grid components and monitors. 

Index Terms—Power flow, power grid, smart grid 

I. INTRODUCTION 

While the power flow method [1],[2] continues to be 
improved for optimization and real-time control modeling of 
the power grid, simulation of future smart-grid systems will rely 
on a combination of steady state and transient simulation 
methods under various operating conditions and scenarios that 
require multiple simulation engines. Power flow analysis is 
based on nonlinear balance equations of real and reactive power 
that are solved to calculate the voltage magnitude, phase, and 
power, while transient analyses follow similar methods used for 
circuit simulation. Unification of the models and methods, 
particularly for steady state and transient analyses, would 
provide a more robust simulation infrastructure for modeling 
and control.  

 Decades of research have advanced circuit simulation 
algorithms, namely those based on SPICE [3], which can be 
used for transient analysis of power grids. But these algorithms, 
based on solving for voltages and currents, have heretofore 
been incompatible with the power flow method and state 
variables used to evaluate the steady state behavior. In this 
paper we introduce a steady state simulation formulation that is 
based on solving for complex AC currents and voltages in 
Cartesian form as the state variables. An equivalent circuit of 
the power grid is formed and split into real and imaginary sub-
circuits to facilitate the use of Newton-Raphson based solution 

of the nonlinear circuit equations. Modeling the grid in this 
manner enables decades of circuit simulation research to be 
applied to solve power flow problems. We discuss the benefits 
of the approach for sensitivity and N-1 analyses, modeling short 
and open circuits in the event of failures, and the ability to 
introduce other devices and models into this proposed 
simulation environment. The benefits of using current as a state 
variable for steady state analysis is shown to provide for a more 
robust convergence of the nonlinear equations as a function of 
the initial guesses for the variables. 

 

II. SPLIT CIRCUIT MODEL 

To begin, an equivalent circuit model of a power grid with 
currents and voltages as the state variables is constructed. 
Consider the three bus network shown in Figure 1(a). The 
buses and transmission lines can be replaced with circuit 
elements (voltage sources, impedances, etc.) as shown in 
Figure 1(b). The generator voltage is a complex function of the 
generator current; similarly, the load current is a complex 
function of the load voltage. 

We would like to apply the Newton-Raphson (NR) 
algorithm to solve this nonlinear circuit, which involves taking 
a first-order Taylor expansion on the non-linear equations. 
However, a complex function with conjugate operator (e.g., 
generator voltage) is not an analytical function and, hence, not 
differentiable. In this case, NR cannot be directly applied to the 
circuit in Figure 1(b). A key insight is that the circuit can itself 
be split into two circuits: one real, and one imaginary (see 
Figure 2 and Table I). The two circuits are coupled by 
controlled sources. For example, consider the controlled 
source V2 in the schematic. The voltage of this source is 
controlled by the current flowing through its counterpart in the 
imaginary circuit, V5. By splitting the circuit, we are no longer 
solving complex functions; the actual generator voltage ܸ ீ, for 
example, is the sum of the voltages in the real circuit ( ோܸீ) and 
imaginary circuit ( ூܸீ) at the generator node (ܸீ ൌ ோܸீ 
݆ ூܸீ). NR is used to handle the quadratic non-linearities. The 
following sections describe how the circuit elements are 
derived. 
 



 
Figure 1 – (a) Three bus network with generator, slack bus, and load; (b) 
Equivalent circuit model of three bus network. ࡸࢀࢆ ൌ ࡸࢀࡾ   is the ࡸࢀࢄ
impedance of the transmission line, ࡸࢀ is the shunt susceptance of the 
transmission line, and ࡸࢆ is the load impedance. 

 
Figure 2 – Split circuit model of three bus system in Figure 1. Branch 
numbers are bolded and component values are given in Table I. 

Table I – Component values/expressions for the circuit in Figure 2. 
REAL CIRCUIT IMAGINARY CIRCUIT 

Component Value Component Value 
V1 ோܸீ



െ
߲ ோܸீ

ூீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫூீ
 ሻ

െ
߲ ோܸீ

ோீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫோீ
 ሻ 

V4 ூܸீ


െ
߲ ூܸீ

ோீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫோீ
 ሻ

െ
߲ ூܸீ

ூீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫூீ
 ሻ 

V2 ߲ ோܸீ

ூீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫூீ
ାଵሻ 

V5 ߲ ூܸீ

ோீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ ሺܫோீ
ାଵሻ 

V3 ோܸாி cos V6 ோܸாி ߠ sin ߠ
R1 ߲ ோܸீ

ோீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ  
R2 ߲ ூܸீ

ூீܫ߲
|
ூೃಸ
ೖ ,ூಸ

ೖ  

I1 
െ
்ܤ
2
ሺ ଵܸଽሻ 

I9 ்ܤ
2
ሺ ସܸሻ 

I2 
െ
்ܤ
2
ሺ ଶܸଶሻ 

I10 ்ܤ
2
ሺ ܸሻ 

I3 
െ
்ܤ
2
ሺ ଶܸସሻ 

I11 ்ܤ
2
ሺ ଽܸሻ 

I4 
െ
்ܤ
2
ሺ ଶܸሻ 

I12 ்ܤ
2
ሺ ଵܸଶሻ 

I5 ்ܺ
்ܴ
ଶ  ்ܺ

ଶ
ሺ ଶܸሻ 

I13 
െ

்ܺ
்ܴ
ଶ  ்ܺ

ଶ
ሺ ହܸሻ 

I6 ்ܺ
்ܴ
ଶ  ்ܺ

ଶ
ሺ ଶܸହሻ 

I14 
െ

்ܺ
்ܴ
ଶ  ்ܺ

ଶ
ሺ ଵܸሻ 

I7 ߲ܫோ
߲ ூܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ூܸ
ାଵሻ 

I15 ߲ܫூ
߲ ோܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ோܸ
ାଵሻ 

I8 ܫோ


െ
ோܫ߲
߲ ூܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ூܸ
ሻ

െ
ோܫ߲
߲ ோܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ோܸ
 ሻ 

I16 ܫூ


െ
ூܫ߲
߲ ோܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ோܸ
 ሻ

െ
ூܫ߲
߲ ூܸ

|
ೃಽ
ೖ ,ಽ

ೖ ሺ ூܸ
ሻ 

G1 ்ܴ
்ܴ
ଶ  ்ܺ

ଶ  
G4 ்ܴ

்ܴ
ଶ  ்ܺ

ଶ  

G2 ்ܴ
்ܴ
ଶ  ்ܺ

ଶ  
G5 ்ܴ

்ܴ
ଶ  ்ܺ

ଶ  

G3 ߲ܫோ
߲ ோܸ

|
ೃಽ
ೖ ,ಽ

ೖ  
G6 ߲ܫூ

߲ ூܸ

|
ೃಽ
ೖ ,ಽ

ೖ  

 

A. Generator Model 

For the generator, we need to express the real and imaginary 
voltage as a function of the real and imaginary current (ܫோீ and 
 ூீ, respectively). To do this, we solve the following equationsܫ
simultaneously, which relate the aforementioned variables to 
the provided/controlled values of real power (ܲீ ) and voltage 
magnitude (|ܸீ |): 
 
ܲீ ൌ ோܸீܫோீ  ூܸீܫூீ (1) 
|ܸீ |ଶ ൌ ோܸீ

ଶ  ூܸீ
ଶ  (2) 

 
The resulting expressions for voltage are: 
 

ோܸீ ൌ
ܲீ ோீܫ േ ூீඥܸீܫ

ଶሺܫோீ
ଶ  ூீܫ

ଶ ሻ െ ܲீଶ

ோீܫ
ଶ  ூீܫ

ଶ  
 

(3) 

ூܸீ ൌ
ܲீ ூீܫ േ ோீඥܸீܫ

ଶሺܫோீ
ଶ  ூீܫ

ଶ ሻ െ ܲீଶ

ோீܫ
ଶ  ூீܫ

ଶ  
 

(4) 

 
The correct root to choose for each expression depends on 

the sign of the reactive power (Q) for the generator; for 
negative values of ܳ (generator supplying reactive power), the 
positive root is selected for  ோܸீ and the negative root for ூܸீ. 
For positive ܳ, the negative root is chosen for ோܸீ and the 
positive root for ூܸீ.  

The equations are linearized via a first-order Taylor 
expansion; for example, the expansion of the real voltage at the 
(݇  1)th iteration  is: 

ோܸீ
ାଵ ൌ

߲ ோܸீ

ோீܫ߲
|ூೃಸೖ ,ூಸ

ೖ ൫ܫோீ
ାଵ൯ 

߲ ோܸீ

ூீܫ߲
|ூೃಸೖ ,ூಸ

ೖ ൫ܫூீ
ାଵ൯  ோܸீ



െ
߲ ோܸீ

ூீܫ߲
|ூೃಸೖ ,ூಸ

ೖ ൫ܫூீ
 ൯ െ

߲ ோܸீ

ோீܫ߲
|ூೃಸೖ ,ூಸ

ೖ ൫ܫோீ
 ൯

(5) 

The first term represents a non-linear resistor (R1 in Figure 
2 and Table I), where the voltage across it is proportional to 
the current through it; the second term represents a dependent 
voltage source (V2 in Figure 2 and Table I), where the 
controlling variable is the imaginary generator current flowing 
in the opposite sub-circuit; the final terms represent an 
independent voltage source (V1 in Figure 2 and Table I) based 
on values from the previous iteration. Symmetric elements in 
the imaginary sub-circuit (R2, V5, V4) can be derived in an 
identical manner. 
 

B. Load Model 

Real and imaginary load current (ܫோ and ܫூ, respectively) 
as a function of real and imaginary load voltage ( ோܸ and ூܸ, 
respectively) are derived by solving the following equations 
simultaneously: 

 
ܲ ൌ ோܸܫோ  ூܸܫூ (6) 
ܳ ൌ െ ோܸܫூ  ூܸܫோ (7) 

 
yielding the following expressions: 
 

ோܫ ൌ
ܲ ோܸ  ܳ ூܸ

ோܸ
ଶ  ூܸ

ଶ   
(8) 

V2

1
2 3

4

5

6

7 8 9

10

11

12 13 14 15

V1 V3

R1

I1 I2 I3 I4

I5 I6

I7 I8

G1 G2

G3

V5

16
17 18

19

20

21

22 23 24

25

26

27 28 29 30

V4 V6

R2

I9 I10 I11 I12

I13 I14

I15 I16

G4 G5

G6

REAL CIRCUIT

IMAGINARY CIRCUIT



ூܫ ൌ
ܲ ூܸ െ ܳ ோܸ

ோܸ
ଶ  ூܸ

ଶ   
(9) 

 
Linearizing the load via Taylor expansion results in three 

elements in parallel in both circuits: a conductance, a voltage-
controlled current source, and an independent current source. 
The values are given in Table I and the models in Figure 2. G3, 
I7, and I8 are the load elements in the real circuit, and G6, I15, 
and I16 are the load elements in the imaginary circuit. 

 

C. Slack Bus Model 

The slack bus is the simplest bus type to model. In the real 
circuit, it appears as an independent voltage source of value 
ோܸாி cos  and in the imaginary circuit it appears as a voltage ,ߠ

source of value ோܸாி sin  is 0° the ߠ When the phase .ߠ
imaginary component appears as a short to ground. 

 

D. Transmission Line Model 

A transmission line is represented in the equivalent circuit as 
a pi-model as shown in Figure 1(b). To split this model into the 
real and imaginary sub-circuits, we begin with 

 
ሚܫ ൌ ෨ܻ ෨ܸ ൌ ሺ ோܻ  ݆ ூܻሻሺ ோܸ  ݆ ூܸሻ

ൌ ሺ ோܻ ோܸ െ ூܻ ூܸሻ
 ݆ሺ ூܻ ோܸ  ோܻ ூܸሻ 

(10) 

 
The admittance of the shunt elements in the pi-model is 

purely imaginary ( ௦ܻ௨௧ ൌ ݆


ଶ
	), but the admittance of the 

branch connecting them has both real and imaginary 

components ( ܻ ൌ
ଵ

ோା
ൌ

ோ

ோమାమ
െ ݆



ோమାమ
). Plugging 

these expressions into equation (10) yields: 

ோ,ܫ ൌ
ܴ

ܴଶ  ܺଶ ோܸ, 
ܺ

ܴଶ  ܺଶ ூܸ, (11) 

ூ,ܫ ൌ
ܴ

ܴଶ  ܺଶ ோܸ, െ
ܺ

ܴଶ  ܺଶ ூܸ, (12) 

ோ,௦௨௧ܫ ൌ െ
ܤ

2 ூܸ,௦௨௧ 
(13) 

ூ,௦௨௧ܫ ൌ
ܤ

2 ோܸ,௦௨௧ 
(14) 

 
An element where the current through it is proportional to 

the voltage across it is represented as a conductance (G1, G2 in 
the real circuit, G4, G5 in the imaginary circuit). An element 
where the current through it is proportional to the voltage 
across its companion element in the opposite sub-circuit is 
represented as a voltage-controlled current source (I5, I6, in the 
real circuit, which are dependent on the voltages across I13, I14 
in the imaginary circuit, and vice versa). 

 

E. Transformer Model 

Although a transformer is not present in the simple 3-bus 
example of Figure 1, they appear as branch elements 
connecting buses in nearly every network of reasonable size. 
To derive their split circuit equivalent model, we begin by 
relating the primary and secondary voltages ( ෨ܸଵ and ෨ܸଶ) 

through the turns ratio ݊ and the phase angle ߠ (which is only 
non-zero for phase shifters): 

 
෩భ

෩మ
ൌ ݊݁ఏ →

భೃାభ

మೃାమ
ൌ ݊ cos ߠ  ݆݊ sin  (15)  ߠ

 
If we solve for the real and imaginary components of V2, we 

obtain the following expressions for secondary side elements: 
 

ଶܸோ ൌ
ଵܸோ cos ߠ

݊


ଵܸூ sin ߠ

݊
 

(16) 

ଶܸூ ൌ
ଵܸூ cos ߠ

݊
െ

ଵܸோ sin ߠ

݊
 

(17) 

 
The first term of equation (16) represents a voltage-

controlled voltage source, where the controlling voltage is the 
primary side voltage in the real circuit. The second term is a 
voltage-controlled voltage source, but here the controlling 
voltage is the primary side voltage in the imaginary circuit. The 
same types of elements are found in equation (17). 

We can also express primary and secondary side currents (ܫሚଵ 
and ܫሚଶ) in terms of the turns ratio: 

 
ሚ୍మ
ሚ୍భ
ൌ ‐ne୨ →

୍మା୨୍మ

୍భା୨୍భ
ൌ ‐ሺn cos θ  jn sin θሻ  (18) 

 
From equation (18), we can derive expressions for the primary 
side current: 
 

ଵோܫ ൌ െ
ଶோܫ cos ߠ

݊

ଶூܫ sin ߠ

݊
 

(19) 

ଵூܫ ൌ െ
ଶூܫ cos ߠ

݊
െ
ଶோܫ sin ߠ

݊
 

(20) 

 
The first term of equation (19) represents a current-

controlled current source, where the controlling current is the 
current which flows through the secondary side in the real 
circuit. The second term represents a current-controlled current 
source, but here the controlling current is the current which 
flows through the secondary side in the imaginary circuit. The 
same types of elements are found in equation (20). 

The final term to model is the leakage impedance, ்ܼோ ൌ
்ܴோ  ்݆ܺோ,. This is handled the same way as the branch 
impedance found in transmission lines. A similar analysis 
results in the following equations: 

ோ,்ோܫ ൌ
்ܴோ

்ܴோ
ଶ  ்ܺோ

ଶ ோܸ,்ோ 
்ܺோ

்ܴோ
ଶ  ்ܺோ

ଶ ூܸ,்ோ 
(21) 

ூ,்ோܫ ൌ
்ܴோ

்ܴோ
ଶ  ்ܺோ

ଶ ோܸ,்ோ െ
்ܺோ

்ܴோ
ଶ  ்ܺோ

ଶ ூܸ,்ோ 
(22) 

 
The first term of equation (21) is a conductance and the second 
term is a voltage-controlled current source; likewise for 
equation (22). A full equivalent circuit model for the 
transformer is shown in Figure 3. 



 
Figure 3 – Real and imaginary circuit models for a transformer. 

F. Shunt Model 

Shunt elements at buses are modeled similarly to the 
transmission line shunts. We begin from equation (10), and 
note that ௦ܻ ൌ ௦ܩ   ௦. Usually the shunts are purelyܤ݆
susceptive. The following expressions are obtained: 
 
ோ,௦௨௧ܫ ൌ ௦ܩ ோܸ െ ௦ܤ ூܸ (23) 
ூ,௦௨௧ܫ ൌ ௦ܤ ோܸ  ௦ܩ ூܸ (24) 

 
The first term of (23) represents a conductance to ground and 

the second term represents a controlled current source to 
ground, where the controlling voltage is the voltage across the 
conductance element in the imaginary circuit. Likewise, the 
first term of (24) represents a conductance to ground and the 
second term represents a controlled current source to ground, 
where the controlling voltage is the voltage across the 
conductance element in the real circuit. 

 

III. TREE-LINK ANALYSIS AND FORMULATION OF 

EQUATIONS 

A graph theory-based method known as tree-link analysis 
(TLA) is used to solve the circuit for voltages and currents [4]-
[6]. A directed graph of the circuit is constructed, and a 
spanning tree is found that touches all nodes and forms no 
loops. Branches not included in the tree form a set of links, or 
co-tree. A system of equations is formulated such that the 
solutions are the tree branch voltages and the link currents. 
Inclusion of an element in the tree is based on priority ordering, 
with greatest preference given to voltage sources, capacitors, 
and small-valued resistors, for which solving for the voltage is 
most efficient. Current sources, inductors, and large resistors 
are included in the links, as it is more efficient to solve for their 
currents. The TLA formulation yields provably optimal matrix 
conditioning [6]. 

Figure 4 shows the graph representation of the three-bus split 
circuit, where each node of the graph represents a node in the 
circuit and each branch represents a two-terminal element in 
the circuit. The direction given to each branch represents the 
current flow through the element and is based on the associated 

reference direction of that element; for example, the current 
through a voltage source is defined as positive when directed 
from the positive to the negative terminal of the source. An 
incidence matrix () of size (#nodesൈ#branches) is used to 
represent the graph, such that: 
 
,ሺ݅ ݆ሻ ൌ 1 if branch ݆ is directed away from node ݅ 
,ሺ݅ ݆ሻ ൌ െ1 if branch ݆ is directed to node ݅ 
,ሺ݅ ݆ሻ ൌ 0 if branch ݆ does not touch node ݅ 
 

 
Figure 4 – Directed graph representation of circuit shown in Figure 2. 

After the elements are ordered into a tree and co-tree,  is 
row-reduced to form the cutset matrix ࡲ, where each row of ࡲ 
represents a fundamental cutset. The tree branch currents (࢚) 
can be expressed in terms of the link currents () via ࡲ: 

 
࢚ ൌ െࡲ (25) 

 
This is also a statement of Kirchoff’s current law (KCL). 

To determine the tree branch voltages (࢚࢜) we solve:  
 
ሾ െ ࢀࡲࢻ  ሺࡲࡾ  ࢚࢜ሿࢀࡲࡳሻିଵࡲࢼ

ൌ ࢚ࢂ െ ሺࡲࡾ   ࡵሻିଵࡲࢼ
(26) 

where 
 
࢚࢜ ൌ ࢚ࡾ  ࢚ࢂ   (27) ࢜ࢻ
 ൌ ࢜ࡳ  ࡵ   (28) ࢚ࢼ

 
 is a matrix of resistances used to calculate the voltage ࡾ

across a tree branch from the current flowing through the 
branch; it is a statement of Ohm’s law. ࢚ࢂ is a vector of 
independent voltage sources that appear on tree branches. ࢻ is 
a matrix where the only non-zero entries represent dependent 
voltage sources in the tree that are controlled by link voltages. 
 is a matrix ࡳ ,have similar meanings; in this case ࢼ and ,ࡵ ,ࡳ
of conductances, ࡵ a vector of independent current sources, 
and ࢼ a matrix of tree branch current-controlled current 
sources that appear in the co-tree. Tree branch currents and link 
voltages can be back-calculated from these equations if 
necessary.  

 

IV. RESULTS AND DISCUSSION 

A prototype solver was implemented in MATLAB. The 
program reads in power flow case files in the standard IEEE 
CDF format and replaces each bus, line, and transformer with 
their equivalent circuit models from Section II. A graph and 
spanning tree are built from this circuit and the TLA equations 
are formulated. These equations are solved on every Newton-



Raphson iteration. If the result of an iteration would yield an 
infeasible solution on the next iteration (e.g., a complex 
number for a tree branch voltage in the real circuit, which can 
occur if the discriminant of equation (3) or (4) becomes 
negative), no values are updated and the iteration is repeated 
with damping. The sign of the change in value remains the 
same, but the magnitude of the change is reduced. If the 
solution is acceptable, the last remaining step is to calculate the 
reactive power of the generator buses and the voltage 
magnitude and phase of the load buses. This is trivial, because 
the solution of the tree/link equations of the split circuit yields 
all values for real and imaginary voltages and currents at every 
bus. 

The proposed implementation successfully simulates the 14-
, 30-, 57-, 118-, and 300-bus IEEE test cases. Iteration counts 
are given in Table II. The large number of iterations required, 
especially for the bigger test systems, is primarily due to 
damping. Reducing the iteration count with a better damping 
mechanism is a direction for future research. 

The An ill-conditioned 11-bus system from the literature [7] 
was also tested. The solution converges in nine iterations from 
a flat start with all load voltages initially set to 1+j0. The 
Newton-Raphson residue at each iteration for this test case is 
shown in Figure 5. 
 
Table II – Iteration count for IEEE standard test cases. 

Case Iteration Count 
14-bus 29 
30-bus 30 
57-bus 30 

118-bus 98 
300-bus 265 

 

 
Figure 5 – Newton-Raphson residue decreases with iteration number for 
ill-conditioned 11-bus system. 

Traditional power flow methods are known to be sensitive 
to the choice of the initial guess of the solution. Consider the 
simple two-bus system in Figure 6 with a slack bus and a load. 
The system has two solutions for the load voltage, one high 
(stable) and one low (unstable). An initial guess of the load 
voltage (including both real and imaginary components) is 
required to run a power flow simulation. This guess can be 
represented as a point on a complex plane, with the y-axis 
representing the imaginary component of the voltage and the 
x-axis representing the real component. Ten thousand choices 

of initial guess were supplied to MATPOWER, of which 6785 
led to convergence to the low voltage solution (red points in 
Figure 7) and 49 led to non-convergence in 1000 iterations 
(black points in Figure 7). 

 
Figure 6 – Sample two-bus system. 

 
Figure 7 – Nearly 70% of initial seeds lead to non-convergence 
(black points) or convergence to a low voltage solution (red 
points) in a power flow simulation of a two bus system. 

The same experiment was run using the current/voltage TLA 
simulator. Figure 8 shows that this method is significantly less 
sensitive to the initial guess than traditional power flow, with 
only 131 out of the 10000 seeds leading to convergence to the 
low voltage solution. However, the equivalent circuit 
formulation allows for borrowing techniques from circuit 
simulators to further improve the convergence properties. A 
common method to find the DC solution to a non-linear circuit 
is power stepping, where the supply voltage (VDD) is scaled 
down and stepped back up to its original value in increments 
[8]. This technique is similar to representing “turning on the 
circuit” in simulation, and can equally be applied to “turning 
on the grid.” All generation and loads are scaled back by a 
factor of 0.001. The solution to this scaled system is then used 
as the initial guess for the next iteration where the loads are 
increased, and this is repeated until all loads are returned to 
their initial values. Figure 9 shows that any choice of initial 
guess leads to convergence to the correct solution when this 
approach is applied. This is because unstable solutions only 
occur when the current is large enough such that a small 
voltage magnitude can still yield the constant P and Q 
demanded by the load. When P and Q are scaled down as they 
are here, low values for the current are found even for low 
voltage initial guesses. This allows the simulation to avoid 
being steered toward high current solutions that lead to low bus 
voltages. 

The same experiment was tried on all IEEE test systems, 
with all loads assumed to begin with the same voltage 

0 2 4 6 8 10
10

-6

10
-4

10
-2

10
0

10
2

Iteration

R
e

si
d

u
e



magnitude and angle. Fewer than 20 of the 10000 initial 
guesses cause convergence to a low-voltage solution in each 
case without power stepping. When power stepping is applied, 
100% of initial guesses lead to the correct solution. 

 

 
Figure 8 – Only 1.3% of initial seeds lead to convergence to a low 
voltage solution in the current/voltage TLA approach. 

 
Figure 9 – 100% of initial seeds ultimately yield the high voltage 
solution in the TLA simulator when power stepping is applied. 

It is worth noting that this technique does nothing to 
improve the convergence properties of traditional power flow 
methods. This is because scaling P and Q does not affect the 
Jacobian, nor does it help force the current to be small (due to 
the lack of a current variable). Applying this technique to 
traditional power flow results in a plot similar to Figure 7. The 
only difference is that every initial guess converges to one of 
the two solutions, but nearly 70% of those initial guesses cause 
convergence to the low voltage solution. 

 

V. CONCLUSION AND FUTURE WORK 

We have introduced an equivalent circuit formulation for the 
steady state analysis of power grids in terms of current and 
voltage state variables. By splitting the circuit into real and 
imaginary sub-circuits we can accommodate the use of 
Newton-Raphson to iteratively compute the nonlinear solution. 
Initial results demonstrate that this formulation can solve 
power flow problems with improved robustness as a function 
of the initial guess. The use of an equivalent circuit for the 
steady state analysis is a first step toward unification of steady 
state and transient models, and further enables the use of circuit 
simulation methods to be applied to power grid problems. 

With tree-link circuit analysis, for example, it is trivial to 
model both short- and open-circuit elements. This could enable 
more efficient contingency analysis, where it may be necessary 
to simulate a short or open between any two nodes in the event 
of a catastrophe. Replacing lines with shorts or opens does not 
require the entire problem to be reformulated; only local 
changes to the tree are required. Sensitivity analysis methods 
that are borrowed from the circuit simulation community 
[4],[9]-[10] could also be applied to the equivalent circuit 
models for the power grid to perform optimal power flow 
analysis. And most importantly, since any element that can be 
expressed in terms of voltages and currents (e.g. converters, 
solar cells, or high voltage DC components) can be 
incorporated into the equivalent circuit, this circuit-based 
unification of models could enable powerful new capabilities 
for modeling and monitoring future smart grids.  
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