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Abstract—Despite best efforts, integrated systems are “born” 
(manufactured) with a unique ‘personality’ that stems from our 
inability to precisely fabricate their underlying circuits, and 
create software a priori for controlling the resulting uncertainty. 
It is possible to use sophisticated test methods to identify the best-
performing systems but this would result in unacceptable yields 
and correspondingly high costs. The system personality is further 
shaped by its environment (e.g., temperature, noise and supply 
voltage) and usage (i.e., the frequency and type of applications 
executed), and since both can fluctuate over time, so can the 
system’s personality.  Systems also “grow old” and degrade due 
to various wear-out mechanisms (e.g., negative-bias temperature 
instability), and unexpectedly due to various early-life failure 
sources. These “nature and nurture” influences make it 
extremely difficult to design a system that will operate optimally 
for all possible personalities. To address this challenge, we 
propose to develop statistical learning in-chip (SLIC). SLIC is a 
holistic approach to integrated system design based on 
continuously learning key personality traits on-line, for self-
evolving a system to a state that optimizes performance 
hierarchically across the circuit, platform, and application levels. 
SLIC will not only optimize integrated-system performance but 
also reduce costs through yield enhancement since systems that 
would have before been deemed to have weak personalities 
(unreliable, faulty, etc.) can now be recovered through the use of 
SLIC. 

Keywords— Integrated system design; low-power design; 
statistical and machine learning 

I.  INTRODUCTION 
 The most challenging problems in science and engineering 
are so incredibly complex that many have turned to statistical 
learning (SL) to derive accurate models from various forms of 
empirical data. Major advances in SL have resulted in 
algorithms that can now cope with significant amounts of 
high-dimensional data, and most importantly, are sufficiently 
robust to rely upon in critical applications. A popular use of 
SL is in two-step process optimization. The first step learns a 
model that approximates the relationship between system 
parameters and the resulting system performance.  This model 
is constructed on-line from data collected during system 
operation.  The second step uses active learning where the 
learned performance model is analyzed to determine which 
parameter settings to try next.  Active learning trades off the 
need to experiment untested areas of the parameter space in 
order to gain more information for learning, against the 
objective of selecting parameters that are likely to yield 
optimal performance.  Often the “learner” must accomplish 

this in the face of non-stationarity. 
 The design, manufacture and operational characteristics 
(e.g., yield, performance, reliability, power, security, etc.) of 
modern integrated systems also exhibit extreme levels of 
complexity that similarly cannot be easily modeled or 
predicted from first principles. In this nanoscale era, 
manufacturers find it increasingly difficult to control 
fabrication, thus making every aspect of design (circuits, logic, 
memory, communication networks, cores/uncores, etc.) a 
grand challenge. Moreover, the operating environment of a 
system which is characterized by temperature, supply voltage, 
the amount of noise, etc. also adds a level uncertainty that is 
extremely difficult to deal with optimally at the time of design. 
Finally, the fact that the use of an integrated system may vary 
widely from user to user adds yet another major source of 
uncertainty.  These sources all combine together in the worst 
possible ways to establish an overall level of uncertainty that 
leads to systems that exhibit non-optimal performance, or 
require excessive resources to design and fabricate. For 
example, modern portable, multimedia devices such as a tablet 
computer require millions of engineering hours to integrate 
several SoCs (systems on chip) including multiple radios, 
DSPs, µPs, application-specific processors, display drivers, 
and solid-state memories, altogether which execute a variety 
of applications. The uncertainty exhibited by the integration 
and use of various heterogeneous sub-systems within diverse 
environments can be better optimized by learning and then 
adapting. 

II. STATISTICAL LEARNING IN CHIP 
 We propose to develop new SL algorithms that enable an 
integrated system to learn and adapt operation across the 
system stack (i.e., the circuit, platform, and application levels) 
[1]. Conventional approaches to SL assume learning takes 
place on server farms characterized by virtually unlimited 
compute and storage resources. Integrated systems, on the 
other hand, have stringent constraints on power and security, 
and thus require a more compressed learning cycle which 
means a complete re-thinking of SL is necessary for it to be 
effective within an integrated-system environment.  
 While there is a great deal of active research that 
individually addresses each source of uncertainty within an 
integrated system, we instead want to tackle them all 
simultaneously using a universal solution that we call a self-
evolving system. A self-evolving system has the ability to 
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Figure 2: Statistical learning and optimization framework. 

adapt and evolve to changes and unknowns encountered both 
at the time of manufacturing and over the lifetime of the 
system.  Figure 1 shows a hierarchical view of a self-evolving 
system that consists of a bottom layer of circuits that together 
form a variety of cores at the middle (platform) layer, which 
are used by various tasks at the top layer to execute one or 
more applications. Sensors at the circuit, platform, and 
application levels collect various forms of data so that the state 
of the system, from various perspectives, can be learned.  This 
global view is used to evolve the system into a new state (via 
the various actuators shown) for improving a wide-variety of 
system attributes (performance, power, reliability, etc.). At the 
circuit level, temperature, voltage, and frequency are likely 
quantities to be sensed. For a platform of heterogeneous cores 
(e.g., computation, memory, etc.), this same data would be 
useful but in addition, various real-time measures of workload, 
queue occupancy, communication among different modules, 
etc. would be collected as well. Finally, for an application 
viewed as a plethora of interacting tasks, sensors of various 
sorts are likely to already exist for enabling the application. 
For instance, the brain-computer interface (BCI) application 
discussed later has a sensor array for measuring neural signals. 
All of this sensed data is provided to the SLIC (statistical 
learning in chip) cores for learning how to improve the 
behavior of the entire system which is achieved by providing 
new parameter values to the level-specific actuators shown in 
Figure 1. SLIC cores (SCs) perform the learning and are 
employed at the circuit, platform and application levels, and 
across levels. SCs are implemented in custom hardware, 
software, or even “in the cloud” depending on the amount of 
data and the time allotted for active learning. Actuators take 
on various forms, but in general they are “control knobs” that 
allow one or more operational parameters to be fine-tuned. For 
instance, at the circuit level, these are controls for supply 
voltage, clock frequency and body bias.  At the platform level, 
actuators can take the form of decisions on what memory 

accesses to grant [2] [3], what communication policy to 
invoke [4], and what resources to utilize or avoid to ensure 
both reliability and availability. At the application level, 
actuators may naturally exist already such as the sensitivity of 
a robotic prosthetic controlled by a BCI. In other applications, 
actuators may not be inherently present, but can always take 
the form of real-time optimizers that improve application-level 
performance using various statistical-learning techniques.  
 There have been many publications focused on using 
hardware to speedup various learning approaches (neural 
networks, decision trees, etc.) [5] [6] [7] [8] [9] [10]. It cannot 
be overly emphasized however, that SLIC does not fall into 
that category. Our objective instead is to integrate a 
comprehensive learning capability that applies to all levels 
(circuit, platform and application) within an integrated system.  

III. LEARNING BACKGROUND 
SLIC will have the flexibility to implement several specific 
learning algorithms but all will implement the forward model 
illustrated in Figure 2.  

 The conventional forward model accepts training data in 
the form of previous parameter settings and the resulting 
performances. It builds a model that predicts what 
performance will be achieved by a hypothetical, new 
parameter selection.  A key element of these predictions is that 
they come with uncertainty estimates derived from the 
variance in the training data and the amount of relevant 
training data for each prediction.  A trivial example of learning 
is a simple linear regression.  In this case, learning is simply 
the process of fitting the regression parameters, and the 
“training data” is just the data used to perform the fit.  
“Testing data” refers to any data used later to query the fitted 
model for checking how well its predictions perform relative 
to the true values in the data.  As described next, we propose 
more sophisticated methods that can fit non-linear and discrete 
models, but the basic concepts are the same.  
 The parameter-selection method uses the forward model to 
select parameters for the next learning cycle. Selection 
typically involves addressing an exploration/exploitation 
problem where a tradeoff has to be made by selecting 
parameters that are expected to perform well versus those that 
have uncertainty, and thus could provide useful data for 
improving the forward model.  The selected parameters are 
then applied in the target system and new data is collected on 
the resulting performance that is used to update the forward 
model (i.e., included in the training data for the model). The 
algorithms developed for SLIC depend on features of the 
target application.  Here we outline some scenarios.  The 
highest-level distinction between scenarios is whether the 

 
 

Figure 1: A self-evolving system. 
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Figure 3: A forward model for four 

alternative policies. 

 
 

Figure 4: A hypothetical forward model with two 
continuous parameters. 

 

parameters represent a continuous-valued space of possible 
policies, or if they are a discrete set of alternative policies. 
 
Discrete Policy Choices. Figure 3 shows the performance of a 
hypothetical forward model where there are four alternative 
policies the system can choose. This model does not attempt to 
generalize what it learns between policies.  The mean and 
confidence intervals for the performance of each policy are 
simply tabulated based on the data collected when the 
corresponding policy is employed.  In this form, the problem 
is a classic multi-armed bandit [11]. Each alternative is treated 
independently, and we want to learn the performance of each 
while concentrating most of the trials on the best performers. 
For instance, when dealing with memory accesses, policy 
choices include first-come first-serve (FCFS), round-robin, or 
row-buffer hit-first strategies to optimize the overall system 
performance. There are two common methods for parameter 
selection.  The first is the UCB1 (Upper Confidence Bounds) 
algorithm [12].  It provides regret bounds for arbitrary reward 
distributions and can be computed quickly based on the means 
and numbers of samples from each policy.  The second is 
Gittins indices [13].  These have the benefit of yielding 
optimal (in expectation) choices for the time-discounted case 
when the distributional assumptions on reward are correct. 
These two algorithms are ideal for SLIC since they both 
require little overhead for implementation. 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 

Continuous Parameters. Figure 4 is a second hypothetical 
forward model where there are two parameters that control a 
policy.  The circles represent data points collected by choosing 
specific parameter settings and observing the resulting 
performance.  The surface is a current estimate of the function 

that maps parameter values to performance.  While there are 
many possible function approximators that could produce this 
estimate, Gaussian processes are quite interesting [14] since 
they provide the ability to model nonlinear functions and also 
yield confidence intervals (not shown in the figure) on their 
estimates. For example, we could use these and similar 
approaches to tune the transistor back-bias voltage to balance 
performance and leakage of an arithmetic-logic unit (ALU) or 
SRAM (static random access memory). Or in a system that 
implements dynamic voltage frequency scaling (DVFS), we 
can use this approach to identify the optimal voltage and 
frequency combination for a time segment of the specific 
application workload [15]. For a BCI application, these 
techniques can be used to deal with neuroplasticity. 
 It has been shown that good empirical performance can be 
achieved by modifying bandit selection algorithms for the 
continuous case even when the theoretical assumptions are 
violated [16].  With that in mind, the UCB1 and Gittins 
methods can be extended from the discrete alternatives case 
for use with continuous parameters.  One approach simply 
evaluates a point in the continuous space as if it were a 
discrete alternative by retrieving its mean, variance, and 
effective number of supporting data points from the function 
approximator.  Then a set of candidate points are evaluated as 
discrete alternatives. Generalization happens through the 
function approximator, but is not explicitly considered during 
selection. In higher-dimensional parameter spaces, it may be 
difficult to explicitly build or search the forward model 
described here.  This is especially true in non-stationarity 
systems where the performance data becomes stale long 
before sufficient data has been collected to build a reasonable 
model.  For these scenarios, a “model free” approach can be 
implemented based on gradient ascent [17].  The only 
information stored by the forward model will be an estimate of 
the gradient derived from the most recent data points.  The 
policy selection method will simply choose gradient steps.  
This method however is subject to being trapped in local 
minima, but is simpler and faster than the methods based on a 
full forward model. 
 
Reinforcement Learning.  The examples presented so far 
have assumed that the credit assignment between a newly 
chosen set of parameters and newly observed performance 
data is immediate.  When time delays in the system mean that 
performance is the cumulative result of earlier choices, 
reinforcement learning will be used to deal with the credit-
assignment problem.  The forward modeling described above 
may be used to learn value functions and the parameter-
selection algorithms may be adapted for Q-learning [18]. 

IV. SLIC PROJECTS 
To demonstrate the viability of SLIC, several projects have 
been initiated [19-32]. A brief overview of some of these 
projects, which span from applications, architectures, and 
circuits, are presented here in this section. 
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Core Power. While historically the major goal of processor 
designers was to gain better performance by continuously 
shrinking device size or speeding up the clock speed, the 
power wall was eventually reached and energy has become the 
main design constraint. As a result, improving performance 
under the Thermal Design Power (TDP) constraint becomes 
one of the main directions in power/performance optimization. 
Many algorithms have been proposed to find near-optimal 
DVFS control solutions in polynomial time; however they 
suffer from unawareness of future machine state and excessive 
budget overshoot, and may only be efficient for small-scale 
multi-core systems, rather than systems with hundreds of 
cores. By exploiting both spatial and temporal hierarchies, we 
propose an On-line Distributed Reinforcement Learning (OD-
RL) method [29] that is able to improve the performance with 
much less TDP overshoot, higher relative performance 
improvement, and smaller runtime overhead. 
 
Figure 5 shows the hierarchical structure of OD-RL. At the 
finer grain, a per-core reinforcement learning method is used 
to learn the optimal control policy of the voltage/frequency 
levels in a system model-free manner. At the coarser grain, an 
efficient global power budget reallocation algorithm is used to 
maximize the overall performance. Experiments demonstrate 
that compared to the state-of-the-art algorithms: 1) OD-RL 
produces up to 98% less budget overshoot, 2) up to 44.3x 
better throughput per over-the-budget energy and up to 23% 
higher energy efficiency, and 3) two orders of magnitude 
speedup over state-of-the-art techniques for systems with 
hundreds of cores.  

 
 
JTAG Protection. IEEE 1149.1, commonly known as JTAG 
(joint test action group), is the standard for implementing a 
serial test access port for ICs. JTAG is primarily utilized at the 
time of IC fabrication but is also employed in the field, giving 
access to internal sub-systems of the IC during operation, or 
for failure analysis and debugging. Because JTAG is left intact 
for post-fabrication use, it inevitably provides a “backdoor” 
that can be exploited to undermine the security of the chip. 
Potential attackers can therefore use JTAG to dump critical 

data or reverse engineer intellectual-property cores. Because 
an attacker uses JTAG differently from a legitimate user, it is 
possible to detect an unauthorized access using customized 
machine-learning algorithms. Specifically, a JTAG protection 
scheme, termed SLIC-J, is proposed to monitor JTAG activity, 
detect malicious accesses, and ultimately protect the JTAG 
from being misused [31]. SLIC-J characterizes user behavior 
with respect to a set of specially-defined features, and makes 
online prediction using a classifier implemented in hardware. 
Further, due to the variance that naturally occurs within both 
legitimate uses and attacks of the JTAG, we have developed a 
feature-revision mechanism, which delays the labeling of the 
JTAG operation until ample evidence is gathered. 
 
SLIC-J is implemented within the JTAG of the OpenSPARC 
T2 which is a 64-bit 8-core microprocessor (Figure 6). To 
validate the effectiveness of SLIC-J, both legitimate uses and 
attacks of the JTAG, consisting of a 110 programs in total, are 
emulated. By using the feature-revision mechanism, the 
overall accuracy of detecting malicious accesses is 99.2%, 
while the overall escape rate (i.e., the percentage of attacks 
that escape detection) of 0.8%. 

 
 
On-Chip Classifier. In this project, we consider a case study 
of linear discriminant analysis (LDA) for binary classification 
[23]. We found that rounding error incurred from fixed-point 
arithmetic can significantly distort the classification output. 
We therefore propose a new LDA algorithm for fixed-point 
computation (LDA-FP). LDA-FP is formulated as a mixed 
integer programming problem with consideration of the non-
idealities (i.e., rounding and overflow) posed by fixed-point 
arithmetic. Furthermore, a branch-and-bound method with 
several efficient heuristics is developed to find the globally 
optimal classification boundary of LDA-FP. With our re-
designed training algorithm, LDA-FP can be efficiently 
implemented with extremely small word length for on-chip 
low-power operation. Experiment results show that LDA-FP is 
able to reduce the word length by up to 3x (i.e., equivalent to 
9x power reduction) compared to the conventional LDA 
algorithm, without surrendering any classification accuracy. 

 
Figure 5: Hierarchical structure of OD-RL [29]. 

 
 

 
 

Figure 6: SLIC-J is integrated with the JTAG of the OpenSPARC 
T2. The JTAG, equipped with SLIC-J, adds only 2% to the original 
chip area [31]. 
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Receiver Calibration. The use of mm-wave frequencies is 
emerging as a viable solution to the extreme paucity of 
bandwidth available for wireless communication at low 
gigahertz frequencies. Compared to low-GHz transceivers, 
millimeter-wave transceivers must incorporate vastly greater 
functionality and complexity spanning the system, signal 
processing and circuit levels. In order to meet this goal at low 
cost with low power consumption, SLIC-based approaches are 
being investigated. In particular:  

• Spatial-domain signal processing becomes imperative 
due to the high directionality of millimeter-wave 
links, over and above temporal (or frequency-
domain) signal processing. Such processing is 
accomplished through the use of multi-antenna 
transmitters and receivers. Current mm-wave 
transceivers perform algorithmically rudimentary 
spatial signal processing (i.e., non-adaptive phased 
arrays). More sophisticated spatial signal processing 
algorithms such as adaptive beam-steering are 
essential in mm-wave cellular links. These algorithms 
are based on learning and adaptation, but the power 
consumption of simple-minded digital-domain 
realizations are prohibitively expensive, thus 
mandating the development of architectures that 
partition the requisite signal processing optimally 
across the analog, digital and RF (mm-wave) 
domains.  

• The aforementioned challenges are exacerbated by 
two other factors: (1) the wide bandwidth of mm-
wave signals leads to high power consumption in the 
temporal signal processing circuits (such as the DSP, 
the ADC/DAC interfaces and frequency synthesis 
circuits), and (2) the quest for high performance in 
the underlying wide bandwidth and high carrier 
frequency degrades circuit robustness in the face of 

process, voltage, temperature and aging-related 
variations. 

SLIC concepts and circuits are being “sprinkled” throughout 
the system to incorporate algorithmically sophisticated spatial-
temporal signal processing while reducing energy 
consumption and cost, and increasing robustness. In Figure 6, 
several instances of SLIC-assisted and SLIC-enhanced 
functionalities are identified. 

V. SUMMARY 
Statistical learning in chip (SLIC) applied to the design and 
on-line operation of an integrated system has great potential to 
have significant impact on a number of areas: 
• Design – It is challenging to design an integrated system 

so that all of its possible personalities can be seamlessly 
handled. With SLIC, the burden on the designer is eased 
since the ever-changing personality of the system can 
instead be learned and adapted to.  

• Yield – Currently, an integrated system that does not meet 
specifications is discarded. With SLIC, it will be possible 
to increase yield since some flaws in the system 
personality will be compensated based on learning. 

• Test –With SLIC, stress testing can be mitigated since 
changes in operation due to a subtle flaw can be detected 
and compensated for by learning a model of 
normal/expected operation. 

• Performance – SLIC allows the performance 
optimization across the system stack, allowing the unique 
system personality to be exploited for maximum gain. 
This capability is not only critical for mobile integrated 
systems but will also be quite beneficial for server farms 
since power for such entities is also paramount. 

• Individualization – Since SLIC learns the habits of the 
user, applications that were before learning-agnostic can 
now be fine-tuned to enhance the overall experience of 
every individual user. For learning-inherent applications, 

LNA

LNA

+

SLIC-assisted 
Reconfigurable 
ADC – Mixed-

Signal Adaptive  
Equalizer

Decoder

SLIC-assisted 
Temporal 
Adaptation

SLIC-assisted 
Spatial 

Adaptation

Nj
Na e φ

1
1

ja e φ

Antenna
Array

I/Q Downconverters

SLIC-assisted 
Digital PLL

mmW 
VCO

SLIC-assisted Calibration

SLIC-assisted 
beamformer

 
 

Figure 7: A future mm-wave multi-antenna receiver that utilizes SLIC-based concepts, namely: Signal processing circuitry and adaptation paths 
in the spatial and temporal loops;  all-digital phase-locked loop frequency synthesizer with SLIC-enhancement for accurate time-to-digital 
conversion; SLIC-assisted calibration of mismatches in RF front-end and analog-digital interface circuits (for e.g., [30]); and built-in self-test of 
key sub-systems including the oscillator and mixed-domain beamformer. 
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especially from the medical field, SLIC promises to usher 
in a new field of personalized medical instrumentation.  
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