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Abstract—In this paper, we adopt a novel numerical 
algorithm, referred to as dual augmented Lagrangian method 
(DALM), for efficient test cost reduction based on spatial 
variation modeling. The key idea of DALM is to derive the dual 
formulation of the L1-regularized least-squares problem posed by 
Virtual Probe (VP), which can be efficiently solved with 
substantially lower computational cost than its primal 
formulation. In addition, a number of unique properties 
associated with discrete cosine transform (DCT) are exploited to 
further reduce the computational cost of DALM. Our 
experimental results of an industrial RF transceiver demonstrate 
that the proposed DALM solver achieves up to 38  runtime 
speed-up over the conventional interior-point solver without 
sacrificing any performance on escape rate and yield loss for test 
applications. 

I. INTRODUCTION 
As the integrated circuit (IC) technology moves to the 

nanoscale era, large-scale parametric variations have made 
analog/RF circuits increasingly difficult to design and test. 
The performance of an analog/RF circuit can substantially 
vary from lot to lot, from wafer to wafer, and from die to die. 
For this reason, analog/RF circuit testing has contributed to a 
large, or even dominant, portion of the overall test cost for 
today’s complex systems on chip (SOCs) [1]-[2]. 

To reduce the test cost and, consequently, the 
manufacturing cost of analog/RF circuits, a large number of 
algorithms and methodologies have been extensively studied 
over the past decade [3]-[8]. Among them, spatial variation 
modeling has emerged as a promising technique in recent 
years [9]-[18]. The key idea is to accurately capture the spatial 
variation pattern over all dies on the same wafer by using 
advanced statistical algorithms such as Virtual Probe (VP) [9]-
[14] and Gaussian process (GP) [15]-[18]. As such, we only 
need to measure a small number of dies of the wafer, while the 
performance metrics, referred to as test items, of other dies are 
accurately predicted without physical measurement. It, in turn, 
substantially reduces the test cost. 

In particular, the VP method is derived from the theory of 
sparse approximation where the spatial variation pattern of a 
test item is assumed to carry a sparse structure in frequency 
domain. Namely, the spatial variation pattern can be 
accurately represented by a small number of spatial frequency 
components based on discrete cosine transform (DCT) [9]-
[14]. These DCT coefficients can be determined by solving a 
L1-regularized least-squares problem. Such a L1-regularized 

problem can be cast to a convex optimization and robustly 
solved by the interior-point method with guaranteed global 
optimum. However, even though efficient interior-point 
methods have been developed for large-scale sparse 
approximation in the literature [19], its computational cost 
remains prohibitively high for the application of test cost 
reduction where we must run VP in real time during the 
testing process. For instance, when applying the interior-point 
method to solve VP, it may take a few minutes to process the 
measurement data and reconstruct the wafer-level spatial 
variation pattern, thereby posing an important limitation of the 
test cost reduction method based on VP. 

In this paper we propose an efficient numerical solver that 
is particularly tuned for VP. Our proposed solver is derived 
from the dual augmented Lagrangian method (DALM) [20]-
[22]. It exploits three unique properties of VP to reduce its 
runtime. First, VP often measures very few dies for spatial 
variation modeling and, hence, the number of measurements is 
substantially less than the number of unknown DCT 
coefficients (i.e., the optimization variables). In this case, we 
can mathematically map the original L1-regularized 
optimization to its dual formulation where the number of 
optimization variables of the dual problem is significantly 
reduced. Second, since VP relies on DCT to model the spatial 
variations, we can exploit the orthogonal property of DCT 
basis functions to simplify the computation of DALM. Finally, 
we apply a fast DCT transform to efficiently calculate matrix-
vector multiplications within the iteration loop of DALM to 
further reduce the computational cost. 

To validate the efficacy of our proposed DALM solver for 
test cost reduction, a set of wafer probe measurement data of 
an industrial RF transceiver is used. The data set is collected 
from approximately 1.2M dies distributed over 176 wafers and 
9 lots where each wafer contains over 6,000 dies. For each die, 
more than 50 test items are considered in our experiment. 
Since VP was previously compared with other algorithms 
[13], our numerical experiments in this paper mainly focus on 
the prediction accuracy and computational cost for VP. For 
testing and comparison purposes, two different solvers are 
implemented for VP and applied to the same test flow: (i) the 
conventional interior-point solver for large-scale L1-
regularized least-squares [19], and (ii) the proposed DALM 
solver. Our preliminary results demonstrate that DALM 
achieves up to 38  runtime speed-up without sacrificing any 
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performance on escape rate and yield loss. 
The remainder of this paper is organized as follows. In 

Section II, we review the background of VP, and then describe 
the proposed DALM solver in Section III. Several 
implementation issues are further discussed in Section IV to 
make DALM of practical utility. The efficiency of DALM is 
demonstrated by our experimental results in Section V. 
Finally, we conclude in Section VI. 

II. BACKGROUND 
In this section, we briefly summarize the background of 

VP [9]-[14]. Without loss of generality, we consider T test 
items {gt; t = 1, 2, , T} over M wafers. Each test item 
represents a performance metric (e.g., power consumption, bit 
error rate, etc.) of a given analog/RF circuit. We use a two-
dimensional function gt,m(x, y) to model the spatial variation 
for the t-th test item of the m-th wafer, where the coordinate 
(x, y) denotes the spatial location of a die on the wafer. The 
spatial variation gt,m(x, y) can be further expressed as the linear 
combination of a set of DCT basis functions: 
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K

t m t m k k
k

g x y b x y , (1) 

where {bk(x, y); k = 1, 2, , K} denotes the DCT basis 
functions, { t,m,k; k = 1, 2, , K} stands for the DCT 
coefficients, and K is the total number of DCT basis functions. 

The key idea of VP is to measure a small number of dies 
{(x(n), y(n), gt,m

(n)); n = 1, , N} for the t-th test item from the 
m-th wafer, where (x(n), y(n)) and gt,m

(n) denote the spatial 
location and the measured value of the n-th die respectively 
and N (N << K) represents the total number of measured dies. 
Based on the measurement data, VP formulates the following 
linear equation: 
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We need to solve the DCT coefficient vector t,m from (2). 
Once t,m is known, the spatial variation gt,m(x, y) can be 
recovered by applying the inverse discrete cosine transform 
(IDCT), which is equivalent to (1). 

Note that the linear equation in (2) is underdetermined, 
since the number of measured dies (i.e., N) is substantially less 
than the number of unknown DCT coefficients (i.e., K). To 
find the unique solution of (2), VP further assumes that the 
solution t,m is sparse (i.e., containing a small number of non-
zeros). Given this assumption on sparsity, the following 
optimization problem can be formulated to solve (2): 

6 2

2 0
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t.m t.m t.mB g , (6) 

where || ||0 stands for the L0-norm of a vector (i.e., the number 
of non-zeros in the vector) and || ||2 denotes the L2-norm of a 
vector (i.e., the square root of the summation of the squares of 
all elements in the vector). In (6),  is a parameter that 
explores the trade-off between the least-squares error and the 
sparsity of the solution. The optimal value of  can be 
determined by cross-validation. 

The optimization in (6) is NP hard and, hence, difficult to 
solve exactly. To make the problem tractable, VP further 
relaxes the L0-norm to L1-norm, resulting in the following 
optimization problem: 

7 2

2 1

1min
2t.m

t.m t.m t.mB g , (7) 

where || ||1 denotes the L1-norm of a vector (i.e., the 
summation of the absolute values of all elements in the vector). 
The optimization problem in (7) is convex and can be robustly 
solved by the interior-point method with guaranteed global 
optimum. However, most conventional interior-point solvers 
are computationally expensive, especially if the problem size 
(i.e., the number of unknown DCT coefficients) is large. As 
will be demonstrated by the experimental results in Section V, 
the state-of-the-art interior-point solver may take a few 
minutes to recover the spatial variation gt,m(x, y) for a single 
test item of a single wafer. It, in turn, substantially slows down 
the testing process and poses a major limitation of the VP-
based method for test cost reduction. To address this issue, we 
will use an efficient dual augmented Lagrangian method 
(DALM) to solve (7) so that the computational cost can be 
significantly reduced. In what follows, the mathematical 
formulation of DALM will be discussed in detail. 

III. PROPOSED APPROACH 
A. Dual Formulation 

Instead of directly solve the L1-norm problem in (7), our 
proposed DALM algorithm attempts to solve an equivalent 
dual problem so that the number of unknowns is substantially 
reduced. To derive the dual formulation, we first add an 
auxiliary variable t,m = B t,m, and re-write (7) as: 
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The Lagrangian of (8) is expressed as [23]: 
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where dt,m  N is the dual variable of (8). 
Based on (9), we derive the Lagrange dual function by 

minimizing the Lagrangian over t,m and t,m [23]: 

10
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T
t m t m t m t m t m t mg d B . (10) 

After a number of mathematical manipulations, we can derive 
the minimum of (10) as a function of dt,m: 
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In (12), || ||  stands for the infinite norm of a vector (i.e., the 
maximum of the absolute values of all elements in the vector). 
According to the duality theorem [23], the dual problem is to 
maximize the Lagrange dual function in (11): 
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It can be further proven that the strong duality holds for the 
primal problem in (7) and the dual problem in (13) [20]-[21]. 
Namely, the minimum of (7) is exactly equal to the maximum 
of (13). Hence, we can find the solution of the primal problem 
in (7) by solving its dual problem in (13). 

Note that the solution vector t,m in (7) contains K unknown 
DCT coefficients, while the solution vector dt,m in (13) contains 
N unknown dual variables. For our application of test cost 
reduction, the linear equation in (2) is under-determined, and 
the number of measurements (i.e., N) is substantially less than 
the number of DCT coefficients. In this case, the dual problem 
in (13) has significantly less unknowns and, hence, is 
computationally less expensive to solve than the primal 
problem in (7). In the next sub-section, we further describe an 
efficient augmented Lagrangian method to solve the dual 
problem with low computational cost. 

B. Augmented Lagrangian Method 
The box constraint defined by (BT dt,m) makes it non-

trivial to solve (13), since updating dt,m with BT dt,m inside the 
feasible space is not easy. One way to overcome this issue is 
to replace BT dt,m by an auxiliary variable zt,m and add the 
corresponding equality constraint to (13): 

14 , ,

2 2
, , , ,2 2,

, ,

1 1max
2 2

S.T.
t m t m

t m t m t m t m

T
t m t m

d z
d g g z

z B d
. (14) 

This problem is now adequate to be solved by the Augmented 
Lagrangian Method (ALM) [20]-[21]. The method builds on 
top of the Augmented Lagrangian formulation of (14): 
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where  is a penalty parameter and t,m is the Lagrange 
multiplier of the equality constraint. 

Incidentally, the duality theory is circular, in the sense that 
the Lagrange multiplier of the dual problem is in fact the 
primal variable. Therefore, the reason of applying ALM is to 
keep track of t,m while solving the dual problem. ALM 
iteratively maximizes (15) jointly w.r.t. dt,m and zt,m and then 
updates t,m with a proximal gradient descent. However, the 
joint maximization is again complicated by the box constraint 

(zt,m). A simple alternative is to update dt,m while keeping 

zt,m fixed and vice-versa. This approach, known as Alternating 
Direction Method [22], makes each maximization step easy to 
solve. 

When solving for zt,m, Eq. (15) is reduced to: 
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Its solution can be expressed as: 
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where 
18 min , signP x x x  (18) 
is an element-wise operator and the superscript (k) denotes a 
variable at the k-th iteration. When solving for dt,m, Eq. (15) is 
reduced to: 
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Its solution can be expressed as: 
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where I denotes the identity matrix. Finally, the update of the 
Lagrange multiplier is obtained by solving the proximal 
operator: 

21 
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Its solution follows the closed-form expression: 
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Algorithm 1 summarizes the major steps of DALM where we 
iteratively solve the sub-optimizations (17), (20) and (22) until 
reaching convergence. 

Algorithm 1: Dual Augmented Lagrangian Method 
1. Start from the L1-norm optimization problem in (7) and its 

augmented Lagrangian formulation in (15). 
2. Initialize , dt,m

(0) and t,m
(0). Set k = 0. 

3. Update zt,m
(k+1) by using (17). 

4. Update dt,m
(k+1) by using (20). 

5. Update t,m
(k+1) by using (22). 

6. Update k = k + 1. 
7. Repeat Step 3~6 until reaching convergence. 

IV. IMPLEMENTATION DETAILS 
To make the proposed DALM method efficient for 

practical applications, a number of implementation issues must 
be taken into account. In this section, we discuss these 
implementation details and highlight the novelty. 

A. Fast Matrix Inverse 
Studying Algorithm 1 reveals an important fact that the 

overall computational cost is dominated in general by Step 4 
where we need to solve a linear equation in (20). Here, the 
matrix B is generated by DCT basis functions, as shown in (3). 
Hence, its rows are orthonormal [24] and the matrix 
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multiplication BBT in (20) is simply equal to an identity matrix. 
For this reason, Eq. (20) can be simplified as: 

23 ( 1) ( ) ( 1)
, , , ,

1
1

k k k
t m t m t m t md g B z . (23) 

Note that computing (23) is substantially less expensive than 
(20), since there is no need to solve any linear equation in (23). 

B. Fast Matrix-Vector Multiplication 
Given (17), (22) and (23), the computational cost is now 

dominated by the matrix-vector multiplications involving B 
and BT. Since the matrix B in (3) is defined by the DCT basis 
functions, we can use the fast DCT and IDCT algorithms to 
perform these operations, instead of explicitly calculating the 
matrix-vector multiplications. However, since B does not 
represent the full DCT or IDCT matrix, we must carefully 
process the data when applying the fast DCT or IDCT 
transform. 

Let us denote v = B(u) as the fast 2-D IDCT transform, u = 
B 1(v) as the fast 2-D DCT transform, and  as the set of 
spatial locations corresponding to the measured dies. As 
explained in Section II, the vector t,m contains the 2-D DCT 
coefficients and the vector gt,m contains the measurement data 
at the spatial locations belonging to . The matrix B in (3), 
where B t,m  gt,m, is created by down-sampling the full 2-D 
IDCT matrix where only the rows corresponding to the spatial 
locations in  are chosen. Likewise, the matrix BT is created by 
down-sampling the full 2-D DCT matrix where only the 
columns corresponding to the spatial locations in  are 
selected. 

To compute the matrix-vector multiplication w = B u, we 
can first compute v  = B(u) by the fast 2-D IDCT transform and 
then select the corresponding rows of v to form the vector w: 
24 w v , (24) 
where v  represents the elements {vi; i  }. On the other 
hand, to compute the matrix-vector multiplication u = BT w, 
we need to first create a vector v: 
25 v w  (25) 
26 v 0% , (26) 
where v  represents the elements {vi; i  }. Namely, for the 
indices belonging to the set , the corresponding elements of v 
are equal to the vector w. For the other indices, we simply fill 
in zeros for v. Next, we apply the fast 2-D DCT transform u = 
B 1(v) to calculate the matrix-vector multiplication u = BT w. 

C. Test Flow 
To apply VP with DALM for test cost reduction, we adopt 

the test flow that was proposed in [25]. It consists of two 
major steps: (i) pre-test analysis, and (ii) test application. 
During pre-test analysis, we physically measure all test items 
of all dies on one wafer. Based on the measurement data, our 
goal is to determine whether a test item is spatially correlated 
at the wafer level. The test item is considered to be 
“predictable”, if a strong spatial correlation is observed. In this 
case, we further decide the number of dies that should be 
measured on a wafer to accurately predict the spatial wafer 
map associated with the test item by using VP. As such, the 

test item will only be physically measured at selected spatial 
locations and its values at other unmeasured locations are 
estimated by VP with sufficiently small escape rate and yield 
loss. In practice, we may repeat the pre-test analysis, if the 
spatial wafer maps vary due to wafer-to-wafer variations.  

During test application, we first measure all test items at a 
subset of dies that are determined by pre-test analysis. Next, 
for the predictable test items, we apply VP to estimate their 
values for other unmeasured dies on the same wafer. Escape 
rate and yield loss are closely monitored during the prediction 
process. If the escape rate or the yield loss exceeds a pre-
defined target for a specific test item, the test item is 
temporarily labelled as “unpredictable” for the current wafer. 

Finally, the unpredictable test items are physically 
measured for the remaining dies on the wafer. Here, a test 
item is considered to be unpredictable, if it is classified as an 
unpredictable item during pre-test analysis or its escape rate or 
yield loss is not sufficiently small for the current wafer. In 
either case, the unpredictable test item must be measured for 
all dies on the current wafer. Algorithm 2 summarizes the 
major steps of the test flow. More details can be found in [25]. 

Algorithm 2: Test Cost Reduction by VP with DALM 
1. Start from M wafers for a given circuit design. 
2. Physically measure all dies from the first wafer. Perform 

pre-test analysis to determine the set of predictable test 
items {gt; t  } and the optimal number of measured dies 
(say, N). 

3. For m = 2, 3, , M 
4. Initialize the set  = {}. 
5. Physically measure all test items from N randomly 

selected dies on the m-th wafer. 
6. For each test item gt where t  , apply VP with DALM 

to predict the spatial variation gt,m(x, y) of the m-th wafer. 
Estimate the escape rate ERt,m and the yield loss YLt,m. If 
ERt,m or YLt,m exceeds the pre-defined target, set  =   
{t}. 

7. Physically measure the test items {gt; t   or t  } for 
all other dies on the m-th wafer. 

8. Determine “pass” or “fail” for each die on the m-th 
wafer. 

9. End For 

V. EXPERIMENTAL RESULTS 
In this section, we demonstrate the efficiency of the 

proposed DALM method by using the wafer probe 
measurement data of an industrial RF transceiver. In total, 
nearly 1.2M dies are measured from 176 wafers of 9 lots where 
each wafer contains more than 6,000 dies. There are 
approximately 50 test items (e.g., bit error rate, power 
consumption, standby current, etc.) for this transceiver 
example. 

For testing and comparison purposes, two different 
numerical solvers are implemented for spatial variation 
modeling: (i) the conventional interior-point method (IPM) 
[19], and (ii) the proposed DALM method (DALM). All 
numerical experiments are performed on a Linux server with 
3.4 GHz CPU and 16 GB memory. 
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A. Spatial Variation Modeling 
Fig. 1 shows the spatial variations for two different test 

items. Studying Fig. 1 reveals an important observation that a 
number of test items may not be spatially correlated (e.g., test 
item #1), while the other test items carry strong spatial 
correlations (e.g., test item #48). It, in turn, demonstrates the 
importance of our proposed pre-test analysis in Section IV.C 
where the objective is to identify the set of spatially correlated 
test items for test cost reduction. 

 
                                (a)                                                       (b) 
Fig. 1. Spatial variations (normalized) are shown for (a) test item #1 that is 
spatially uncorrelated, and (b) test item #48 that is spatially correlated. 

 
                                  (a)                                                       (b) 
Fig. 2. Modeling error is compared between IPM and DALM for (a) all test 
items where 2000 dies are physically measured on a wafer, and (b) test item 
#48 where the number of physically measured dies varies from 100 to 4000. 

 
                                (a)                                                       (b) 
Fig. 3. Spatial variations (normalized) are predicted by (a) IPM and (b) 
DALM for test item #48 where 2000 dies are physically measured on a wafer. 

TABLE I 
COMPUTATIONAL TIME FOR IPM AND DALM TO MODEL THE SPATIAL 

VARIATION OF A SINGLE TEST ITEM FOR A GIVEN WAFER 
Number of 

Measured Dies (N) 
IPM DALM 

Runtime (Sec.) Runtime (Sec.) # of Iterations 
100 48.3 12.2 7027 
250 62.7 10.3 5664 
500 84.7 8.9 5083 

1000 119.9 8.1 4504 
2000 171.2 7.3 3922 
4000 255.2 6.7 3580 

 
Fig. 2 compares the modeling error for IPM and DALM. In 

our experiment, the modeling error is defined as: 

27 
2 2

, , , ,
n n n

t m t m t m t m
n n

Error g g g% , (27) 

where gt,m
(n) and gt,m

(n) denote the actual and predicted values of 
the t-th test item for the n-th die respectively, and the 
summation in (27) is calculated over all dies on the wafer. 
Fig. 3 further shows the spatial variations predicted by IPM 
and DALM. Note that the results in Fig. 2 and Fig. 3 are almost 
identical for both solvers, implying that the proposed DALM 
solver is as accurate as the conventional IPM. 

Table I compares the computational time for IPM and 
DALM. Based on the results in Table I, two important 
observations can be made. First, DALM achieves up to 38  
runtime speed-up over IPM. Hence, DALM is the preferred 
method for our test application where the spatial variations 
must be accurately estimated in real time during the testing 
process. 

Second, and more interestingly, the computational time of 
DALM decreases with the number of measured dies (i.e., N). 
As N becomes larger, the underdetermined linear equation in 
(2) is better constrained and, hence, the DALM algorithm 
requires less number of iterations to converge, as shown in 
Table I. As a result, the computational time is reduced. 

B. Test Application 
TABLE II 

PRE-TEST ANALYSIS RESULTS FOR IPM/DALM 
Pre-defined Target for Escape Rate 5 10 3 
Pre-defined Target for Yield Loss 5 10 3 
Number of Measured Dies (N) per Wafer 2000 
Number of Predictable Test Items 38 

TABLE III 
TEST COST REDUCTION BY IPM/DALM 

 Full IPM/DALM 
Overall Test Cost 6.0 107 3.2 107 
Escape Rate  1.2 10 3 
Yield Loss  2.0 10 3 
 

By applying DALM to test cost reduction, Table II 
summarizes the setup for our pre-test analysis and the 
corresponding results. Since both IPM and DALM give the 
same results in this example, we do not explicitly distinguish 
these two solvers in Table II. 

Two important clarifications should be made here. First, a 
relatively large escape rate is allowed, because we focus on the 
application of wafer probe test and the “escaped” dies can be 
further captured during the final test after packaging. Second, 
most of the test items (i.e., 38 items) are considered to be 
predictable during our pre-test analysis. During test 
application, we will further monitor the escape rate and the 
yield loss for these 38 test items that are predictable. If the 
escape rate or the yield loss of a test item exceeds the pre-
defined target in Table II for a specific wafer, the test item will 
be temporarily set as unpredictable for that wafer. 

The proposed test flow (i.e., Algorithm 2) is applied to all 
wafers. Fig. 4 shows the total number of measured dies for 
each test item across all wafers. Here, two different cases are 
studied: (i) without test cost reduction (Full) and (ii) with test 
cost reduction (IPM/DALM). Note that IPM/DALM achieves 
significant cost reduction for most test items in this example. 
Table III summarizes the overall test cost, the escape rate and 
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the yield loss. In this example, since the test time of each test 
item is not disclosed by our industrial collaborator, we simply 
use the total number of measurements to assess the test cost. 
Based on Table III, IPM/DALM achieves 1.875  reduction in 
test cost for this example. 

VI. CONCLUSIONS 
In this paper, a fast DALM method is described to 

efficiently solve the L1-regularized least-squares regression 
problem for spatial variation modeling. DALM derives and 
then solves the dual formulation of the regression problem. 
Hence, it is computationally more efficient than directly 
solving the primal formulation by an interior-point method. 
Moreover, a number of fast numerical enhancements are 
further used to reduce the computational cost of DALM. Based 
on an industrial RF transceiver example where approximately 
1.2M dies are measured from 176 wafers and 9 lots, DALM 
achieves up to 38  runtime speed-up over the conventional 
interior-point solver. In addition, the proposed test flow with 
DALM is able to reduce the test cost by 1.875 , while 
maintaining sufficiently small escape rate and yield loss. The 
proposed DALM method can be further applied to many other 
CAD problems (e.g., analog performance modeling) that 
involves L1-regularized least-squares regression. 
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Fig. 4. The total number of measured dies across all wafers is shown for each test item without test cost reduction (Full) and with test cost reduction
(IPM/DALM). 
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