
A Statistical Methodology for Noise Sensor Placement and
Full-Chip Voltage Map Generation

Xiaochen Liu1, Shupeng Sun2, Pingqiang Zhou1, Xin Li2 and Haifeng Qian3

1School of Information Science and Technology, ShanghaiTech University, Shanghai, P. R. China
2ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA

3IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
{liuxch, zhoupq}@shanghaitech.edu.cn; {shupengs, xinli}@ece.cmu.edu; qianhaifeng@us.ibm.com

ABSTRACT
Noise margin violation, also known as voltage emergency in-
duced by continuously reducing noise margin and increasing
magnitude of current swings, is becoming a severe threat to
the correct execution of applications in processors. Noise
sensors can be placed in the non-function area of processors
to detect such emergencies by monitoring runtime voltage
fluctuations. In this work, we aim to accurately predict the
voltage droops using a small set of sensors. We achieve our
goal in two steps: We first propose a methodology via group
lasso approach to select the optimal set of noise sensors, then
build a practical model via ordinary least-squares fitting ap-
proach to predict the voltage in the function area of the chip,
using the selected sensors in non-function area. Experimen-
t results show that when compared to the full-chip voltage
transient simulation, the prediction error of our model is
much less than 0.01, and compared to prior work, our ap-
proach can achieve better error rates of voltage emergency
detection (less than half).

1. INTRODUCTION
Power supply noise has been a long-standing threat to

reliable power delivery in processor design, mainly in the
form of noise margin violation (also called voltage emergen-
cy) which happens when voltage fluctuates beyond safe op-
erating margin, causing an increase in the path delay and
eventually resulting in the intermittent faults in circuit oper-
ation. This problem has gained more and more importance
as the CMOS technology continues to scale: on one hand,
the mismatch between scaling levels of supply voltage and
threshold voltage has gradually reduced the safe operating
noise margin [1]; on the other hand, power reduction tech-
niques, such as power gating or clock gating, lead to large
current swings over a relatively small time scale when they
are applied in microprocessors to throttle power consump-
tion.
Recently several researchers and processor vendors have

proposed various approaches to handle this problem. Some
of them [2–5] allow voltage emergencies to occur. When
emergencies are detected, recovery mechanisms will be ap-
plied to roll back the architectural state, such as the registers
and memory state, to a guaranteed-correct state. Because
such rollback mechanisms can be prohibitively expensive,
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researchers have also developed voltage emergency predic-
tors [6–9], based on current/voltage profiles, microarchitec-
tural signatures etc., to identify impending emergencies and
prevent their occurrence by throttling mechanisms. These
throttling mechanisms try to reduce current variations by
either reducing the processor’s clock rate [10], or activating
idle functional units when there is a sudden reduction in
current draw [6], or controlling instruction issue and current
change in the pipelines [11,12].

All these emergency-handling mechanisms rely on sensors
to detect impending or occurred voltage or current margin
violations. For example, in Intel processors, error detection
circuits EDS and TRC [2] are used to achieve delay fault
detection; in IBM POWER7 server [7], a sensor-based throt-
tling approach called Critical Path Monitoring (CPM) has
been implemented to measure the available timing margin
in real time.

Our work is motivated by the following observations when
sensors are used to detect voltage emergencies on chip:

• The number of sensors that can be used in a chip is
limited due to the large hardware design overhead asso-
ciated with the application of voltage sensors. There-
fore, to build a practical noise monitoring system, we
should optimize the placement of the voltage sensors.

• The chip area where we can put voltage sensors are
restricted and they may not reside the function area,
so there exists mismatch between the voltage measured
by the voltage sensors and the voltage we would like
to monitor in the function area. Such mismatch can
potentially incur two types of errors: miss error, that
happens when there is no emergency in the locations
we put sensors, but the emergencies do occur in the
function area, and wrong alarm error, that happens
when the sensors alarm emergencies, but there is no
emergency in the monitored function area. To elim-
inate these two types of errors, we need to build an
accurate model to predict the voltage in the function
area, based on the voltage we obtain from the placed
sensors. Luckily this prediction is feasible because the
noise in the local area of a power grid is highly corre-
lated [13].

There has been very limited prior work in the literature to
solve the voltage sensor placement problem and to predict
the voltage in the function area. Wang et al. [13] proposed a
statistical framework, named Eagle-Eye, for voltage sensor
placement, with the objective of minimizing miss error only.
In our work, we propose a practical methodology to 1) solve
the sensor placement problem, and 2) to build the voltage
map of the full-chip area based on the measured voltage by
placed sensors. We exploit the strong correlations among the
voltage noises of nodes in a local power grid and build a mod-
el that captures the relationship between the voltages at the
sensor candidate locations and the voltages at the noise crit-
ical locations (whose voltages we would like to monitor) in



the function area. For building this model, we apply Group-
Lasso (GL) to fit the model coefficients, which are then used
to select the most important sensors out of the given sensor
candidate set. After solving the sensor placement problem,
we further build an accurate prediction model between the
voltages measured in the placed sensors and the voltages at
the noise critical locations in the function area, via ordinary
least squares (OLS) approach, to reduce both the miss errors
and wrong alarm errors.
The contributions of this paper are summarized below:

• we propose a novel method for sensor placement based
on GL, and then build an accurate model to predict
the voltage in the function area, using the voltages
measured by the placed sensors. Experiment results
show that the prediction accuracy of our model is high
even with a small number of placed sensors on chip.

• we compare our approach with prior work. Experiment
results show that our approach is superior in reducing
the emergency detection errors in the function area,
based on the information from the placed sensors in
non-function area.

The rest of the paper is organized as follows. In Section 2.1
we present the overview of our methodology. We describe
the approach to solve the sensor placement problem based
on GL in Section 2.2, and then present the OLS approach
to build an accurate prediction model in Section 2.3. The
effectiveness of our proposed methodology is verified by the
experimental results given in Section 3. Finally, conclusions
are made in Section 4.

2. OUR METHODOLOGY
2.1 Overview
Without loss of generality, we partition the chip into two

areas: function area (FA) and blank area (BA). Here, FA
refers to the area where we put the circuit blocks, and BA
refers to the remaining area on the chip. Though both the
supply voltages in FA and BA may have large variations, we
are more interested in the supply voltages in FA since they
directly affect the performance of the system. One simple
way to monitor the supply voltages in FA is to put sensors
inside it. If the sensor detects a voltage emergency, we know
that the corresponding circuit block in FA may malfunction.
Such idea, however, is extremely difficult to achieve due to
the fact that FA may not have enough space to put voltage
sensors.
Realizing this limitation, we propose a novel model-based

approach to accurately monitor the supply voltages in FA.
Our proposed approach is based on two important obser-
vations. First, though FA may not have enough space for
sensor allocation, we can put sensors in BA to obtain its
supply voltages. Second, the supply voltages in FA and BA
can be strongly correlated, which has been well known by
both industry and academia [13]. Having these observation-
s, the key idea of our proposed approach is to predict the
supply voltages in FA from the measured voltages in BA.
To this end, an important task is to build models to accu-

rately capture the mathematical mapping from the voltages
in BA to the voltages in FA. Without losing generality, we
suppose that there are M nodes in BA where we can put
voltage sensors, and the M -dimensional vector

x = [x1 x2 . . . xM ]T (1)

contains the voltages of these M sensor candidate locations,
where xm denotes the voltage at the m-th sensor candidate
location. We further suppose that there are K functional
circuit blocks in FA, and the K -dimensional vector

f = [f1 f2 . . . fK ]T (2)

contains the supply voltages of these K circuit blocks, where
fk denotes the worst supply voltage at the k -th circuit block.
Note that in our current work, we select one representative
node for each circuit block. However, it is easy for our model
to handle the case with more representative nodes per block.
Due to the fact that x and f can be modeled as random vari-
ables and they are strongly correlated, we can approximate
each of {fk; k = 1, 2, . . . ,K} as a linear function of x:

f1 ≈
M∑

m=1

α1,m · xm + c1

f2 ≈
M∑

m=1

α2,m · xm + c2

...

fK ≈
M∑

m=1

αK,m · xm + cK

⇒ f ≈ α · x+ c (3)

where

α =

⎡
⎢⎢⎣

α1,1 α1,2 . . . α1,M

α2,1 α2,2 . . . α2,M

...
...

. . .
...

αK,1 αK,2 . . . αK,M

⎤
⎥⎥⎦ (4)

denotes the model coefficients, and

c = [c1 c2 . . . cK ]T (5)

denotes the constant terms.
In Eq. (3), the supply voltage in each circuit block k is

predicted from the voltages at all the M sensor candidate
locations. Though the prediction error could be pretty s-
mall, the design overhead for deploying all the M candidate
sensors could be unacceptable. For instance, the power con-
sumed by these M sensors can be huge, which makes the
proposed methodology unattractive. To address this issue,
we aim to find a small number of (say, Q) sensors from all
the M candidates, and accurately predict the supply volt-
ages in FA based on these Q selected sensors. Towards this
goal, we need to answer two fundamental questions:

1. how to select these Q sensors, and
2. how to learn the model coefficients in Eq. (3) after

sensor selection.

In what follows, we will first introduce the group lasso
technique to help us select the most important sensors in
Section 2.2, and then discuss the mathematical details of
model construction via ordinary least squares fitting in Sec-
tion 2.3. Finally, we summarize our methodology in Sec-
tion 2.4.

2.2 Sensor Placement via Group Lasso
In this section, we aim to select a small number of (say,

Q) important sensors from all the M sensor candidates via
group lasso (GL) technique so that the supply voltages in
FA can be accurately predicted based on these Q selected
sensors. Intuitively speaking, if all the model coefficients in
a column of α are close to zero, it implies that the sensor
associated with this column has negligible contributions to
accurate model prediction and, hence, should not be select-
ed. From this point of view, selecting a small number of
important sensors is equivalent to finding a sparse solution
of α where most columns have close-to-zero model coeffi-
cients.

Without loss of generality, we assume that N sampling



data points are first collected

X = [x(1) x(2) . . . x(N)] =

⎡
⎢⎢⎢⎣

x
(1)
1 x

(2)
1 . . . x

(N)
1

x
(1)
2 x

(2)
2 . . . x

(N)
2

...
...

. . .
...

x
(1)
M x

(2)
M . . . x

(N)
M

⎤
⎥⎥⎥⎦

F = [f (1) f (2) . . . f (N)] =

⎡
⎢⎢⎢⎣

f
(1)
1 f

(2)
1 . . . f

(N)
1

f
(1)
2 f

(2)
2 . . . f

(N)
2

...
...

. . .
...

f
(1)
K f

(2)
K . . . f

(N)
K

⎤
⎥⎥⎥⎦

(6)

where x(n) and f (n) denote the sensor voltages x and supply
voltages f for the n-th data point respectively. A simple way
to solve the model coefficients α in (4) is to apply the tra-
ditional ordinary least squares (OLS) fitting approach [14]:

min
α,c

‖F −α ·X −C‖F (7)

where

C = [c c . . . c]K×N (8)

and ‖ · ‖F denotes the Frobenius norm of a matrix, i.e., the
square root of the summation of the absolute squares of all
the elements in the matrix. Intuitively, OLS intends to find
a solution that can minimize the mean squared modeling
error.
As mentioned at the beginning of this section, we aim to

find a sparse solution of α where most columns have close-
to-zero model coefficients. However, the OLS formulation
in (7) poses no constraint on the sparsity of α. To select
important sensors, one intuitive idea is to select the sen-
sors with large components in α, assuming that the impor-
tance of a sensor is directly correlated to the value of its
corresponding elements in α. Unfortunately, this idea may
not always work because of the complexity in feature selec-
tion [15]. Therefore, the unconstrained optimization in (7)
used by OLS cannot fit our need of sensor selection.
Realizing this limitation of OLS, we adopt group lasso

(GL) technique from the statistics community to help us
select a small number of important sensors [16,17]. To apply
GL, x and f need to be normalized to have zero mean and
unit variance. Denote z and g as the normalized x and f
respectively. Eq. (3) can be rewritten as

g1 ≈
M∑

m=1

β1,m · zm

g2 ≈
M∑

m=1

β2,m · zm

...

gK ≈
M∑

m=1

βK,m · zm

⇒ g ≈ β · z (9)

where

β =

⎡
⎢⎢⎣

β1,1 β1,2 . . . β1,M

β2,1 β2,2 . . . β2,M

...
...

. . .
...

βK,1 βK,2 . . . βK,M

⎤
⎥⎥⎦ (10)

denotes the model coefficients of the linear models shown
in (9). After normalization of X and F , we have

Z = [z(1) z(2) . . . z(N)]

G = [g(1) g(2) . . . g(N)]
(11)

where z(n) and g(n) denote the normalized x(n) and f (n)

in (6) respectively. Based on (9) and (11), GL formulates
the following optimization problem

min
β

‖G− β ·Z‖F
s.t. ‖β1‖2 + ‖β2‖2 + · · ·+ ‖βM‖2 ≤ λ

(12)

where βm denotes the m-th column in β, ‖ · ‖2 denotes the
l2-norm of a vector and λ is a user-defined hyper-parameter.

From (12), we have several important observations. First,
βm where m ∈ {1, 2, . . . ,M}, includes all the model coef-
ficients related with the m-th sensor. If the p-th sensor is
more important than the q-th sensor, ‖βp‖2 should be larger
than ‖βq‖2, where p, q ∈ {1, 2, . . . ,M}. When λ is sufficient-
ly small, it is very likely that ‖βq‖2 is close to zero given the
constraint in (12). In other words, the unimportant sensors
are likely to have extremely small model coefficients after
solving (12). Hence, we can identify the set of important
sensors based on the values of ‖βm‖2. To this end, we can
define a threshold value (say, T ) which should be a very s-
mall value. If ‖βm‖2 > T , the m-th sensor is considered as
important. Otherwise, the m-th sensor is not selected.

Another important observation is that the hyper-parameter
λ plays an extremely important role in sensor selection. In-
tuitively speaking, if λ is small, most of ‖βm‖2 are close
to zero and, therefore, a very small number of sensors are
considered as important. Due to the page limit, detailed
discussions about the relation between the value of λ and
the number of selected sensors are omitted in this paper,
but can be found in the literature [16]. To reduce the de-
sign overhead, we should set λ to be a relatively small value.
However, if the number of selected sensors is too small, the
linear models in Eq. (3) may not be sufficiently accurate.
How to determine the value of λ depends both on the de-
sign overhead that we can afford and the prediction accuracy
that we require. In Section 2.4, we will discuss how to choose
an appropriate value of λ.

Eq. (12) can be re-formulated as a second-order cone pro-
gramming problem, and then efficiently solved by interior
point method [18]. Once (12) is solved, we can identify a
small number of (say, Q) important sensors based on the
values of ‖βm‖2, as previously discussed. Here, we denote
the indexes of Q selected sensor as

S = {S1, S2, . . . , SQ} (13)

where Sq represents the index of the qth selected sensor. For
instance, assume that we have 100 (i.e., M = 100) sensor
candidates in total, and the 2nd sensor and the 17th sensor
are identified as important sensors. Then S = {2, 17}. In
the next section, we will discuss how to accurately predict
the supply voltages f in FA via these Q sensors.

2.3 Prediction Model Construction via OLS
Fitting

A straightforward way to predict the supply voltages in
FA is to apply the linear models learned from (12). Namely,

g∗k = βk,S1 · zS1 + βk,S2 · zS2 + · · ·+ βk,SQ · zSQ (14)

where k = 1, 2, . . . ,K, q = 1, 2, . . . , Q, βk,Sq denotes the
model coefficient learned from the GL optimization in (12),
zSq denotes the normalized measured voltage of the q-th
selected sensor, and g∗k denotes the predicted value of gk.
Once g∗k is available, we can recover fk by applying inverse
normalization.

The linear models in (14), however, may not result in an
accurate prediction. To clearly understand this, let us con-
sider a simple example where we have two sensor candidates
(i.e., z = [z1 z2]

T ) and two circuit blocks (i.e., g = [g1 g2]
T ).



For illustration purposes, we assume that

g1 = g2 = z1 (15)

As mentioned in Section 2.2, to select a small number of
important sensors, λ should be set to a relatively small val-
ue. In this simple example, we assume λ is set to 1, and
it is easy to see that only the first sensor will be selected
after solving the GL optimization problem in (12). Even
though we successfully select the most important sensor in
this simple example, the model coefficients {βk,1; k = 1, 2}
solved from (12) can be quite different from their optimal
value {1,1} since {βk,1; k = 1, 2} need to satisfy the following
constraint √

β2
1,1 + β2

2,1 ≤ λ = 1. (16)

Intuitively speaking, the model coefficients solved from (12)
for the selected sensors can be highly biased due to the con-
straint posed on the model coefficients. As such, the linear
models in (14) do not fit our need of accurate model predic-
tion.
To address this issue, we apply OLS to solve the following

unconstrained optimization problem

min
αS ,c

‖F −αS ·XS −C‖F (17)

where

XS =

⎡
⎢⎢⎢⎢⎣

x
(1)
S1

x
(2)
S1

. . . x
(N)
S1

x
(1)
S2

x
(2)
S2

. . . x
(N)
S2

...
...

. . .
...

x
(1)
SQ

x
(2)
SQ

. . . x
(N)
SQ

⎤
⎥⎥⎥⎥⎦

(18)

αS =

⎡
⎢⎢⎣

α1,S1 α1,S2 . . . α1,SQ

α2,S1 α2,S2 . . . α2,SQ

...
...

. . .
...

αK,S1 αK,S2 . . . αK,SQ

⎤
⎥⎥⎦ , (19)

F is defined in (6), and C is defined in (8). Once αS and
c are determined, we can predict the supply voltages in FA
based on the following linear models

f∗
k = αk,S1 · xS1 + αk,S2 · xS2 + · · ·+ αk,SQ · xSQ (20)

where αk,Sq (k = 1, 2, . . . ,K, q = 1, 2, . . . , Q) denotes the
model coefficient learned from the OLS optimization in (17),
{xSq} (q = 1, 2, . . . , Q) denote the measured voltages of Q
selected sensors, and f∗

k (k ∈ {1, 2, . . . ,K}) denotes the pre-
dicted value of fk.

2.4 Summary
Our proposed sensor selection and model construction tech-

nique can be summarized as follows:

• Step 0: Start from a pre-defined λ, a threshold value
T, M sensor candidates, and K circuit blocks.

• Step 1: Collect N sampling data points {x(n)} and

{f (n)} where n = 1, 2, . . . , N .

• Step 2: FormX = [x(1) · · ·x(N)] and F = [f (1) · · ·f (N)]
in (6).

• Step 3: Form Z and G in (11) by normalizing X and
F .

• Step 4: Solve the GL optimization problem in (12),
and then calculate {‖βm‖2;m = 1, 2, . . . ,M}.

• Step 5: If ‖βm‖2 > T where m ∈ {1, 2, · · · ,M}, the
m-th sensor is selected. Otherwise, the m-th sensor is
not selected. Assume Q sensors are selected, and their
indexes are {Sq; q = 1, 2, · · · , Q}.

• Step 6: Form XS in (18) based on X and {Sq; q =
1, 2, · · · , Q}.

• Step 7: Learn the model coefficients αS in (19) by
solving the OLS optimization problem in (17).

• Step 8: Form the prediction models in (20) using αS .

There are two clarifications we need to make for the above
steps. First, different λ values result in different number of
(i.e., Q) selected sensors. To choose an appropriate λ so that
a small number of sensors are selected and the prediction
models in (20) are satisfactorily accurate, we typically sweep
the value of λ in a large range. Namely we start from a
small λ, run steps 1–8, resulting in very compact prediction
models in (20). Next, we increase λ, and repeat Steps 4–
8. The prediction model will become more accurate at the
expense of utilizing more sensors. The aforementioned flow
proceeds until λ reaches the maximal value in the sweeping
range. As long as the sweeping range is large enough, we
should be able to find an appropriate λ so that the prediction
models in (20) are sufficiently accurate by using a relatively
small number of sensors. Second, the values of ‖βm‖2 for
selected sensors are much larger than those for un-selected
sensors, which is demonstrated by our experimental results
in Section 3.1. Hence, it is easy to determine the threshold
value T so that important sensors and unimportant sensors
are appropriately classified.

Note that although we perform steps 0 – 8 to generate the
prediction model at design time, we only need to evaluate
the prediction model in (20) for dynamic noise management
at runtime, which is computationally cheap due to the fact
that only a small set of sensors are used in most chips.

3. EXPERIMENTAL RESULTS
In this section, we introduce how to obtain the voltage

samples of the sensor candidate locations in BA and the
noise critical nodes in FA of a given chip, which are used to
train our sensor placement approach (see Section 2.2) and
voltage prediction model (see Section 2.3).

In our experiments, we consider a 22nm homogenous 8-
core Intel Xeon E5-like multiprocessor (2.5GHz) with 30
function blocks in each core. We divide the whole chip into
two areas: FA, that is the area covered by all the function
blocks, and BA, the remaining area in the chip. We select
one noise critical node within each function block which has
the worst noise during a sampling simulation period, and
assume all the nodes in the BA to be candidate nodes for
sensors. The following steps are then used to obtain the volt-
age samples for the noise critical nodes and sensor candidate
nodes:

1. We use a full system multicore simulator GEM5 [19]
to run the PARSEC 2.1 benchmarks [20] to generate
the runtime statistics of all the function blocks.

2. We then use McPAT [21] with power gating enabled
to analyze these runtime statistics and generate the
power profiles of the function blocks.

3. After that, we perform transient simulation of the pow-
er grid for the whole chip, to find the voltage traces of
all the power grid nodes, including those noise critical
nodes and sensor candidate nodes. In our experiments,
the supply voltage VDD is set to be 1.0V.

4. At a certain sampling time point, the voltages of all
the nodes on chip form a complete voltage map. So
we can generate the full-chip voltage map at a certain
time point from the voltage traces of the power grid
nodes. In our experiments, we randomly select 10,000
voltage maps out of 19 benchmarks as our training
samples.

3.1 Sensor selection and model accuracy
In this section, we present the results for our methodology

to sensor placement in BA and voltage prediction in FA.



As stated in Section 2.2, the user-defined hyper-parameter
λ places a direct constraint on the coefficient of each sensor
candidate, ‖βm‖2, and further affects the number of sensors
we can select for a given chip. Fig. 1 shows the values of
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Figure 1: ‖βm‖2 for sensor candidates in one core.

coefficient ‖βm‖2 for each sensor candidate m when λ = 10
and λ = 30. Obviously, most ‖βm‖2s are around 10−5 to
10−10. Therefore, we use a pre-defined threshold T to decide
whether a sensor candidate can be selected in the placement:
If ‖βm‖2 > T , we consider the voltage of candidate m has a
strong impact on the prediction of the voltage at the noise
critical nodes, thus candidate m is selected; otherwise, can-
didate m is excluded in the placement. In our experiments,
T is set to be 10−3.

Table 1: λ vs. the number of sensors in each core
and the aggregated relative prediction error

λ 10 20 30 40 50 60
# of selected sensors 2 4 7 10 13 16
relative error(%) 0.51 0.25 0.11 0.06 0.05 0.04

Table 1 clearly shows that the number of chosen sensors
for one core in the placement increases as λ goes up. This
is because a larger λ gives a looser constraint on ‖βm‖2,
and therefore those candidates that are slightly less impor-
tant are also included in the placement. After selecting the
voltage sensors, we predict the voltages of the noise critical
nodes in the FA using our model presented in Section 2.3.
Fig. 2 shows part of the voltage traces at one noise critical
node respectively predicted by our model with two and sev-
en selected sensors per core. We can see that compared to
the real voltage trace obtained by transient simulation, the
error of the predicted voltage is quite small, and the predic-
tion error can be further reduced by increasing the number
of selected sensors in the model.
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Figure 2: Predicted voltage vs. real voltage of one
noise critical node in one core.
Table 1 also shows how the aggregated relative prediction

error (for all function blocks and all benchmarks) changes
as we increase the parameter λ. As we increase λ from 10
to 40, the relative error decreases very fast, which means
that increasing the number of sensors used in the chip can
significantly increase the accuracy of our prediction model.
To achieve better prediction results, we should use more

sensors for a chip. However, if we consider the area and man-
ufacturing cost of the sensors, we should control the number

of used sensors. Luckily, our results show that even when
λ = 10, which means there are only two or three sensors in
one core, the relative prediction error is lower than 10−2.
In the real design, the designer can use the parameter λ to
explore the tradeoff between the chip design cost and the
voltage prediction performance.

EagleEye with 7 sensors Proposed with 7 sensors

Figure 3: Selected sensors by Eagle-eye and the pro-
posed approach.

Fig. 3 shows the locations of sensors respectively select-
ed by our approach and Eagle-Eye when only seven sensors
are available. Blocks that are functionally relative or similar
are grouped into one unit as denoted by one color. We can
see that Eagle-eye places six of seven sensors around or in
the blue-colored unit (the execution unit) because it tends
to select the sensor candidates with worst voltage noise. In
contrast, our approach selects only four sensors within the
blue-colored unit, and spare three sensors for other function
units. This is because our approach seeks to find the sen-
sor candidates that have the strongest correlation with the
voltages at the circuit blocks, and such candidates may not
necessarily have the worst voltage noise.

3.2 Error rate analysis
In this section, we present results to show the effectiveness

of our methodology to maximizing the effect of voltage emer-
gency detection. In particular, we compare our methodology
with one recent work Eagle-Eye [13], in terms of three error
rates related to emergency detection:

• Miss error (ME) rate: This is the probability that the
emergencies occurred in the FA are not detected by the
voltage sensors in Eagle-Eye, or the prediction model
in our work.

• Wrong alarm error (WAE) rate: This is the probabil-
ity that there are no emergencies occurred in the FA,
but the voltage sensors alarm as in Eagle-Eye, or the
prediction model alarms in our work.

• Total error (TE) rate: This is the probability that the
voltage sensors in Eagle-Eye or the prediction models
in our work report a wrong state of the noise critical
nodes in the FA. It equals to dividing the number of
samples in which wrong states reported by the number
of total samples.

Our work differs with Eagle-Eye in that we use a different
approach to select the voltage sensors, and we further build
a prediction model based on these selected sensors for the
noise critical nodes in the FA. For fair comparison, we use
the same benchmarks/voltage samples and chip layout for
Eagle-Eye and our methodology. In the experiments, we
assume voltage emergency occurs when the supply voltage
falls below 0.85V, when VDD is set to be 1.0V.

We compare these two approaches on 19 benchmarks. Due
to limited space, we only show part of the results. Compared
to Eagle-Eye, our approach can reduce both the miss error
rate and total error rate by about half for all the benchmark-
s (see Table. 2). As for the wrong alarm error rate, when
the total number of allocated sensors for the whole chip is
large (more than 50), our approach is always superior to
Eagle-Eye. However, when the total number of allocated



Table 2: The error results with 2 sensors per core

Benchmark Eagle-Eye Proposed
ME WAE TE ME WAE TE

BM1 0.0976 0.0003 0.0330 0.0420 0.0006 0.0145
BM2 0.0822 0.0004 0.0270 0.0351 0.0004 0.0116
BM3 0.1152 0.0001 0.0208 0.0507 0.0007 0.0097
BM4 0.0889 0.0002 0.0307 0.0368 0.0001 0.0127
BM5 0.0976 0.0001 0.0386 0.0385 0.0002 0.0153
BM6 0.2162 0.0001 0.0386 0.0385 0.0002 0.0153
BM7 0.1431 0.0007 0.0362 0.0659 0.0003 0.0167
BM8 0.1130 0.0003 0.0287 0.0494 0.0002 0.0126
BM9 0.0888 0.0003 0.0294 0.0362 0.0002 0.0120
BM10 0.1256 0.0001 0.0281 0.0565 0.0001 0.0126
BM11 0.1256 0 0.0301 0.0490 0.0006 0.0122
BM12 0.0612 0.0003 0.0246 0.0270 0.0001 0.0109
BM13 0.1159 0.0001 0.0362 0.0410 0 0.0128
BM14 0.0905 0.0009 0.0332 0.0425 0.0001 0.0154
BM15 0.1118 0.0002 0.0384 0.0400 0.0005 0.0140
BM16 0.0977 0.0007 0.0267 0.0436 0.0006 0.0121
BM17 0.1231 0.0002 0.0434 0.0489 0.0002 0.0173
BM18 0.1395 0 0.0400 0.0506 0.0001 0.0145
BM19 0.1289 0.0002 0.0437 0.0493 0.0001 0.0167

sensors is small (for example, less than 30), our approach
achieves better results on 11 benchmarks (see Fig. 4 for one
such case), while Eagle-Eye does a little better on the oth-
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Figure 4: The error rate results of BM4.

er 8 benchmarks. This is because 1) in sensor placement,
Eagle-Eye tends to select the candidate locations with worst
voltage noise, and therefore have less probability to alarm
wrong emergencies; our approach prefers to select candidate
locations whose voltages have strong correlation with the
voltages at the noise critical nodes, but such candidate lo-
cations may not have worst voltage noise, 2) the prediction
accuracy of our model is not high enough when the number
of allocated sensors is small. Fortunately, as we can from Ta-
ble. 2, wrong alarm error rate is generally small (less than
10−3), and miss error rate dominates the total error rate.
Furthermore, in our work, we assume that the sensors can
only be placed in blank area. In fact, it is possible for the
designers to place the sensors inside the function area, to
further improve the prediction accuracy of our model and
therefore achieve smaller error rates.

4. CONCLUSION
We propose a novel methodology to allocate the noise sen-

sors in a given chip via group lasso approach, and then build
an ideal model via ordinary least-squares fitting approach to
predict the voltage in the function area of the chip, using the
voltages measured by the placed sensors in blank area. Re-
sults show that compared to prior work, our approach can

achieve superior results in terms of the emergency detection
errors, and the prediction error of our model can be pretty
high (less than 10−2) even with a small set of sensors.
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