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ABSTRACT 

In implementations of neuromorphic computing systems (NCS), 

memristor and its crossbar topology have been widely used to 

realize fully connected neural networks. However, many neural 

networks utilized in real applications often have a sparse connec-

tivity, which is hard to be efficiently mapped to a crossbar struc-

ture. Moreover, the scale of the neural networks is normally much 

larger than that can be offered by the latest integration technology 

of memristor crossbars. In this work, we propose AutoNCS – an 

EDA framework that can automate the NCS designs that combine 

memristor crossbars and discrete synapse modules. The connec-

tions of the neural networks are clustered to improve the utiliza-

tion of the memristor elements in crossbar structures by taking 

into account the physical design cost of the NCS. Our results 

show that AutoNCS can substantially enhance the utilization effi-

ciency of memristor crossbars while reducing the wirelength, area 

and delay of the physical designs of the NCS.  

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: Computer-aided design 

(CAD) 

General Terms 
Algorithms, Design 

Keywords 
Neuromorphic Computing Systems; Neural Networks; Spectral 

Clustering; Memristor Crossbar; Sparsity 

1. INTRODUCTION 
The word “neuromorphic computing” was originally created to 

denote VLSI realization of neuro-biological architecture and then 

extended to various types of systems that accelerate the computa-

tion of neural network and machine learning algorithms [1]. The 

structure that mixes data storage and computing in neuromorphic 

systems eliminates the well-known von Neumann bottleneck in 

conventional microarchitecture, which refers to the increasing gap 

between the computing capacity and memory bandwidth of mi-

croprocessors [2].  

Directly emulating a neuromorphic algorithm on von Neumann 

computers often incurs high memory and computation costs due 

to the complexity of connections in the distributed networks and 

the frequent updates on the weights of the connections [3]. Thus, 

FPGA and VLSI designs of neural circuits and synapse networks 

have been implemented with conventional CMOS technology to 

accelerate many specific algorithms [4][5]. In addition, the dis-

covery of the emerging memristor device inspires the approaches 

of using memristors to build synapse circuit due to the similarity 

between the memristive and synaptic behaviors [2]. The low pro-

gramming energy, small footprint, and non-volatility make the 

nanoscale memristor device become a promising candidate for the 

implementations of large-scale neuromorphic systems. 

In designs of memristor-based neuromorphic systems, the 

weights of the connections are represented by the resistance of the 

memristor devices. From topological point of view, there are two 

approaches of constructing a neural network: using discrete syn-

apses [2] and using memristor crossbars [1]: A discrete synapse 

makes a point-to-point connection between two neurons while a 

crossbar structure connects all its input neurons to all its output 

neurons. In fact, crossbar structure offers the highest connection 

density that can be obtained in two-dimensional VLSI circuit.  

Although memristor crossbar is believed to be a game changing 

technology for neuromorphic system realization, how to efficient-

ly design such a system with minimized (or even practical) hard-

ware cost is still an important research topic barely touched. For 

example, once the application is given, how to partition the appli-

cation into a set of memristor crossbars will significantly affect 

the implementation cost. This fact is extremely important when 

the mapped neural network model is sparse so that the utilization 

rate of some mapped memristor crossbars can be low. In such a 

case, directly mapping some weight connections to discrete syn-

apses could be more efficient than mapping them to a (fully con-

nected) memristor crossbar in terms of the area cost and delay. 

In this work, we propose AutoNCS – an electronic design Au-

tomation (EDA) framework for large-scale hybrid Neuromorphic 

Computing Systems. In particular, AutoNCS can perform the 

following functions to improve the implementation efficiency of 

NCS: 1) Given a neural network model, AutoNCS is able to parti-

tion the connections into a set of fixed-size memristor crossbars 

from a predefined library and discrete synapses; 2) AutoNCS can 

iteratively cluster the connections and map them to crossbars to 

minimize routing complexity in the corresponding physical de-

signs, under realistic design constraints such as crossbar size limit 

etc.; 3) Based on clustering, AutoNCS also includes a customized 

placement & routing process to achieve a minimum area and wire-

length of the designed neuromorphic system. 

To the best knowledge of the authors, AutoNCS is the first 

EDA flow that aims the design automation of ASIC-like memris-

tor-based neuromorphic systems, which are designated to specific 

neural network models. Simulation shows that compared to the 

brute-force implementation using the maximum-size crossbars, 

AutoNCS achieves on average 47.80%, 31.97%, and 47.18% 

reductions in wirelength, area and delay, respectively, over the 

three simulated test benches. 
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2. PRELIMINARY 

2.1 Memristor based Neural Networks 
In a neural network, a set of synapses connect the input neurons 

F and the output neurons T. The relationship between the inputs 

and outputs of the synapse network can be expressed as T = AF. 

An element ai,j in the connection matrix A denotes the synaptic 

strength (weight) of the synapse connecting the ith neuron in F 

and the jth neuron in T (As the topology of neural networks is 

represented by a connection matrix, “connection matrix” and 

“network” are interchangeable in this paper). Since a memristor’s 

resistance can be programmed by carefully adjusting the duration 

and amplitude of the applied voltage or current, we may use 

memristors to implement the synapses in a neural network. Figure 

1(a) illustrates an example of a memristor-based synapse design 

including an output neuron. The weight of the synapse is stored as 

the resistance of the memristor. Here the output neuron is realized 

by an integrate-and-fire circuit built on a capacitor [2].  

If a neural network is nearly fully connected, the number of the 

synapses in the network increases quadratically following the 

increase in the number of the connected neurons. Directly imple-

menting such a network using discrete synapses becomes very 

costly because of the high routing overhead of the connections. To 

solve this issue, memristor crossbar is proposed [1], as shown in 

Figure 1(b). Every input neuron is connected to all output neurons 

via a memristor that is sandwiched between a horizontal wire and 

a vertical wire. Peripheral circuits are also required to perform 

additional functions including memristor training etc. As the size 

of a crossbar raises, IR-drop, device defect, and process variation 

introduce increasing impacts on the reliability of memristor cross-

bar programming and computing. A recent study shows that, con-

sidering the process variations and IR-drop, the current technolo-

gy can only supply reliable memristor crossbars with a size no 

larger than 64×64 [6]. 

2.2 Sparse Neural Network Realization 
The size of neural networks used in realistic applications is of-

ten very large. For instance, the deep neural network adopted in [7] 

for image classification has more than 4000 input nodes. Similar 

scale is also required by the neural network designed for LDPC 

coding in IEEE 802.11 [8]. If such a large network is implement-

ed with the smaller-size memristor crossbars, the network inputs 

and outputs shall be partitioned and grouped into the inputs and 

outputs of different crossbars.  

Large neural networks are often very sparse. In LDPC coding 

based on message passing algorithm, for example, the network 

sparsity is higher than 99% [8]. Here the sparsity of a network is 

defined as one minus the ratio between the number of actual con-

nections and all possible connections in the network. In fact, such 

a high sparsity is also close to the biological facts that in neocor-

tex, neurons are typically connected to only 10-9 to 10-7 of all the 

neurons and these connections are limited in the neighborhood of 

1cm2 of the tissue [9]. However, when the sparsity of a network is 

high, using memristor crossbars to implement such a network 

becomes inefficient because the utilization rate of the connections 

in the crossbars could be low. It may be more efficient to realize 

these sparse connections using smaller-size crossbars or even 

discrete synapses. The tradeoffs between the selection of the 

crossbars with different sizes, the crossbar utilization rates and the 

impacts on physical design cost inspire this work. 

3. AutoNCS FRAMEWORK  
In this work, we developed an efficient EDA flow to design a 

custom memristor-based analog NCS for specific neural networks 

with fixed connection topology. We note that our design main-

tains the topology of the original NCS by mapping connections 

into crossbars and discrete synapses. Note that ADC/DAC are not 

included in the implementation because they are normally de-

ployed outside of the NCS and shared with external devices [19].  

As discussed in Section 2.2, memristor crossbars are suitable 

for implementing dense synapse connections while discrete syn-

apses are more efficient for realizing sparse synapse connections. 

In a neural network, however, synapse connections are often scat-

tered over the whole network. Directly mapping the network to 

the memristor crossbars generally causes low utilization of the 

crossbars. In this work, we propose an iterative process based on 

spectral clustering algorithm to consolidate synapse connections 

into clusters and map them to memristor crossbars for high utiliza-

tion rate of the connections in the crossbars. 

The proposed AutoNCS framework consists of the following 

four components: 1) Modified spectral clustering (MSC) that 

groups the connections in a network into dense clusters that can 

be efficiently mapped to memristor crossbars; 2) Greedy cluster 

size prediction (GCP) that constrains the largest cluster size with-

in the maximum available crossbar scale; 3) Iterative spectral 

clustering (ISC) that repeatedly performs clustering on the net-

works to group the connections into the clusters, and minimize the 

outliers that need to be mapped to the discrete synapses; and 4) a 

customized physical design method to realize the neuromorphic 

systems based on the clustering result. The overview of AutoNCS 

is depicted in Figure 2. 

3.1 Definition of Terminologies and Variables 
For ease of explanation, we define the following terminologies 

and variables that are frequently referred in this paper: 

 Outliers – the connections that are not included in any cross-

bars/clusters in the implementation. 

 Crossbar size (s) – the dimension of a crossbar. For simplicity, 

only crossbars with square shape are utilized in this work. A 

crossbar with a size of s offers s2 connections.  

 Crossbar utilized connections (m) – the number of the connec-

tions used for the network implementation in a crossbar.  

 Crossbar utilization (u) – the ratio between the utilized connec-

tions in the network implementation and the total available 

connections in a crossbar, such as u = m/s2.  

 Crossbar preference (CP) – a criterion used to estimate the 

relative circuit cost reduction resulted from replacing discrete 

synapses with a crossbar. For a crossbar with a size s, utilized 

connections m, and an utilization rate u, its CP should satisfy 

the following criteria: (a) given a fixed s, CP monotonically in-

creases with m or u because a larger m or u implies more dis-

crete synapses can be replaced by crossbars, leading to a small-
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Figure 1. (a) Single memristor based synapse design [2]. (b) Syn-

apse network based on memristor crossbar [1]. 
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er routing cost; (b) given a fixed m, CP monotonically decreas-

es with s as a larger s causing a higher area cost. Based on the 

above criteria, we propose a definition of / .CP m s u s    

3.2 Modified Spectral Clustering (MSC) 
Spectral clustering algorithm is generally adopted to partition 

an undirected graph to different clusters in order to minimize the 

between-cluster similarity and maximize the within-cluster simi-

larities [10]. Implication of “similarity” varies with specific appli-

cations in practice. In this work, we leverage spectral cluster algo-

rithm to group the connections between the input and output neu-

rons and fit them into the crossbars as many as possible. Hence, 

we redefine the similarity in spectral clustering algorithm as the 

number of connections. The goal in our modified spectral cluster-

ing (MSC) becomes minimizing the (between-cluster) connections 

that need to be mapped to discrete synapses and maximizing the 

(within-cluster) connections that fit into the crossbars. Note that 

the elements in the given connection matrix are binary where ‘1’ 

represents a connection linking two neurons and ‘0’ indicates the 

two neurons are not connected. The process of MSC is shown in 

Algorithm 1 where k-means is also a traditional clustering algo-

rithm to partition a data set to k clusters [10][11]. 

Figure 3(a) and (b) respectively shows the connection matrix of 

a real 400×400 neural network before and after applying MSC. 

Empty spaces show no connections between the neurons while red 

squares are the formed clusters. It can be clearly observed that 

after MSC, the connections in the network are effectively grouped 

into several clusters. The connections in the clusters can be effi-

ciently mapped to memristor crossbars with a high utilization.  

In the design of neuromorphic systems based on memristor 

crossbars, there are at least two realistic challenges that need to be 

solved in the clustering: 

(1) Cluster size limitation: the sizes of the clusters are limited by 

the maximum size of the available crossbars. Classic spectral 

clustering algorithm, however, does not consider this limit; 

(2) High outlier ratio: It is almost impossible to group the major-

ity of the connections into clusters by performing MSC only 

once, especially for the neural networks with randomly dis-

tributed connections. For instance, the outliers in Figure 3(b) 

still count for 57% of total connections in the network. 

Two techniques, greedy cluster size prediction (GCP) and itera-

tive spectral clustering (ISC) are proposed in Section 3.3 and 3.4, 

respectively, to conquer the above two challenges. 

3.3 Greedy Cluster Size Prediction (GCP) 
The limit of crossbar size can be passively imposed by exhaust-

ively increasing the value of k in MSC until the size of the largest 

crossbar is below the size limit. We refer to this method as trav-

ersing algorithm. However, such a method could be very time 

consuming when the network is large. Rather than scanning the 

number of total clusters k, we propose to directly limit the largest 

cluster size obtained in the k-means algorithm: if the size of the 

obtained cluster is beyond the limit, the cluster will be automati-

cally broken into two smaller sub-clusters. The centroids of these 

two sub-clusters are updated accordingly and k is incremented by 

1. Algorithm 2 gives the details of this proposed greedy cluster 

size prediction (GCP). 

We applied GCP to the test case in Figure 3 by setting the max-

imum cluster size to 64. The result is shown in Figure 4(a). It can 

be observed that the maximum cluster size is constrained below 

the preset limit, demonstrating the effectiveness of GCP.   

Figure 4(b) illustrates the clustering result from traversing algo-

rithm, which is very close to the GCP result in Figure 4(a). How-

ever, the computation time of traversing algorithm (190ms) is 

almost double of the one of GCP (106ms). These results clearly 

demonstrate the effectiveness and efficiency of GCP in limiting 

the cluster size during the clustering process. 

3.4 Iterative Spectral Clustering (ISC) 
To minimize the outliers in the clustering process, we propose 

an iterative spectral clustering (ISC) scheme to recursively group 

the connections into the clusters. 

      

(a) Original (b) Clustered (a) GCP (b) Traversing (a) Outliers (b) Clustered outliers 

Figure 3. Clustering results of applying MSC. Figure 4. GCP and Traversing. Figure 5. Iteration based on MSC+GCP. 

 

Algorithm 2: Greedy Cluster Size  Prediction (GCP) 

Input:  connection matrix 𝑊 ∈ ℝ𝑛×𝑛 and limited max cluster size s. 
1: Initialization: compute all generalized eigenvectors u1, . . . , un of 

the generalized eigenproblem Lu = λDu. Let 𝑈 ∈ ℝ𝑛×𝑛 be the matrix 
whose columns are an ascending sequence of u1, . . . ,un sorted by 
their eigenvalues; 

2: Predict cluster number k=n/s, initialize k cluster centroids B as zeros; 

3: do  

4:          for i=1, . . .,n, let 𝑦𝑖 ∈ ℝ𝑘 be vector corresponding to the i-th 

row of Uk, Uk is the first k columns of U; flagOuter=0; 

5:           do 

6:     under B, cluster the points 𝑦𝑖 (i=1, . . .,n) with k-means 
     algorithm into clusters C1, . . . , Ck and update B; 

7:     flagInner=0; 

8:      for all j=1, . . .,k 
9:            if size of Cj > s 

10:                    cluster Cj to 2 sub-clusters by k-means; 

11:                 k=k+1; flagInner=1; flagOuter=1; 
12:                 update B[j] and B[k] to centroids of those 2 sub- 

                                  clusters; 

13:           end if 

14:      end for 

15:         while flagInner==1 

16: while flagOuter ==1 

Output: clusters A1, . . ., Ak with Ai = {j |𝑦𝑗 ∈ 𝐶𝑖 }. 

 

Algorithm 1: Modified Spectral Clustering (MSC) 

Input: connection matrix 𝑊 ∈ ℝ𝑛×𝑛 with elements 𝑤𝑖𝑗  (1 ≤ 𝑖, 𝑗 ≤

𝑛),  
    and number k of clusters to construct. 

1: Compute the degree matrix D: for each element on the diagonal  

    𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 , for other elements 𝑑𝑖𝑗 = 0 (𝑖 ≠ 𝑗); 

2: Compute unnormalized Laplacian matrix: 𝐿 = (𝐷 − 𝑊); 
3: Compute k generalized eigenvectors u1, . . . , uk of the generalized  

    eigenproblem Lu = λDu corresponding to the k-smallest 

eigenvalues; 

4: Let 𝑈 ∈ ℝ𝑛×𝑘 be the matrix containing the columns u1, . . . , uk; 

5: For i=1 to n, let 𝑦𝑖 ∈ ℝ𝑘 be the i-th row of U; 

6: Cluster the points 𝑦𝑖 (i=1, . . .,n) with the k-means algorithm  
    into clusters C1, . . . , Ck; 

Output: clusters A1, . . ., Ak with Ai = {j |𝑦𝑗 ∈ 𝐶𝑖 }. 

 



As shown in Figure 4(a), after the first clustering operation, the 

within-cluster connections are concentrated along the diagonal of 

the connection matrix. Applying MSC+GCP on the already-

clustered network may not result in further large reduction of the 

outliers as it will break the clusters that were already grouped. We 

name this phenomenon as cluster concealing. To eliminate the 

disturbance of the existing clusters, we propose to remove all the 

connection clusters from the already-clustered connection network, 

and create a “remaining” network that is composed of only the 

outliers. We then apply MSC+GCP to the remaining network for 

clustering the outliers. This procedure is repeated until there are 

no enough connections can be efficiently clustered, say, the cross-

bar utilization (u) is below a predefined threshold. Figure 5(a) 

shows the remaining network obtained by removing the within-

cluster connections in Figure 4(a). Applying another round of 

MSC+GCP produces a new connection matrix in Figure 5(b) 

where the outliers become sparser than that in Figure 5(a). 

However, if a formed cluster is sparse, i.e., its crossbar prefer-

ence (CP) is low, it might not be worth implementing this cluster 

on a crossbar. In the iterations of ISC, we only remove the clusters 

with a high CP (and map them to the crossbars) and leave the rest 

clusters in the remaining network. This strategy can effectively 

prevent the occurrence of the crossbars with low utilization in the 

implementation. It can also result in globally enhanced CPs for all 

the crossbars by combining the outside-cluster connections with 

the remaining within-cluster connections for further re-clustering. 

We refer to this scheme as “partial selection strategy”. The details 

of ISC are summarized in Algorithm 3. 

The ISC result of the same test case is shown in Figure 6. Red 

squares mark the clusters with high CPs that will be removed by 

the end of the current iteration; Yellow squares mark the clusters 

to be kept in the remaining network due to the low CPs. After the 

11th iteration, most of the connections are clustered, leaving an 

almost empty remaining network, i.e., < 5% outlier ratio. Here we 

empirically remove only the top 25% clusters with the high CPs 

among all the clusters in each iteration. 

3.5 Physical Implementation and Cost Evaluation 
We estimate the NCS hardware cost based on the placement ar-

ea and wirelength [12]. Compared to discrete synapses, memristor 

crossbars have higher connection density and more flexible routa-

bility. However, the highly congested placement around the 

crossbars may result in undesired routing detours due to the lim-

ited routing resources, incurring the increase in hardware cost. 

To measure the total area and wirelength, a physical design im-

plementation including the placement of crossbars and neurons as 

well as the wiring routing shall be performed. Unfortunately, we 

cannot directly apply the existing circuit placement algorithms to 

our problem because of the following differences in problem for-

mulations: (1) various wire weights between memristors and 

crossbars, (2) mixed-size cells including neurons, memristors, and 

crossbars, and (3) cells are not required to align into rows. Hence, 

we propose an analytical model to solve the above challenges by 

combining some existing models [13-17]. 

In the phase of placement and routing, the crossbars and neu-

rons are considered as cells. Let X = {x1,…, xn} and Y = {y1,…, yn} 

be the x and y-coordinates set of n cells, C = {c1,…, cn} be the set 

of cells, E = {e1,…, em} and W = {w1,…, wm} be the set of m wires 

and the set of m wire weightings, respectively. We adopt an ana-

lytical method to conduct the placement with gradient-based op-

timization method. To minimize the wirelength with density con-

straint, the placement problem can be formulated as a penalty 

function given by ),(),(min yxDyxWL  , where WL(x,y) is the 

wirelength cost function, 𝜆 is the penalty parameter, and D(x,y) is 

the cell density function.  

Since the half-perimeter wirelength (HPWL) is nonconvex and 

difficult to minimize, the weighted-average (WA) wirelength 

model [13] was adopted to approximate the HPWL. Furthermore, 

user-defined various wire weights between memristors and cross-

bars are included in our wirelength computation to shorten some 

wires that have high weights and hence, are critical to the system 

performance. The RC delay is used to estimate the wire weights in 

this paper in the WA wirelength model given by: 
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Here 𝛾 is a user-defined parameter to control the smoothness. 

Hence, the cell density model can be applied to place the cells by 

reducing the cell overlap given by: 
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Here Ox(ci,cj) is the sigmoid based density model [14] that repre-

   
(a) The 1st iteration (b) The 2nd iteration (c) The 11th iteration 

Figure 6. Results of ISC iterations. 
 

Algorithm 3: Iterative Spectral Clustering Algorithm (ISC) 

Input: connection matrix 𝑊 ∈ ℝ𝑛×𝑛 with elements 𝑤𝑖𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑛), 

crossbar size set S in specification, and utilization threshold t 

1:  Initialization: remaining connection matrix R=W, average crossbar 
utilization u=1; iteration number m=1; 

2:  do 
3:               cluster R into clusters A1, . . ., Ak by Algorithm 2 with 

limited size max(S); 

4: compute CPi for cluster Ai (i=1,2,…,k); 

5: set q to the quartile of CPi (i=1,2,…,k); 

6: if the size of the crossbar with CP=q is smaller than min(S) 

7:         break; 

8: end if 

9: for i=1,2,…,k 

10:         if CPi ≥ q 

11:                 realize connections within Ai by a minimum 
                                  satisfiable crossbar in S; 

12:                 delete connections within Ai from R; 

13:         end if 

14: end for 

15: set u average utilization of crossbars placed in iteration m; 

16: m=m+1; 

17: while 𝑢 ≥ 𝑡 

18: realize connections remained in R by discrete memristors 

Output: circuit implementation topology. 

 

Algorithm 4: Placement 

Input: the locations of cells and wires with wire weighting 

1: Initialization: cells location, 𝝀𝟎 =  
∑|𝝏𝑾(𝒙,𝒚)|

∑|𝝏𝑫(𝒙,𝒚)|
  and m = 0 

2: do  

3:             solve 𝐦𝐢𝐧 𝑾𝑳(𝒙, 𝒚) + 𝝀𝒎𝑫(𝒙, 𝒚); 

4:             𝐦 = 𝐦 + 𝟏; 

5:             𝝀𝐦 = 𝟐𝝀𝐦+𝟏; 

6: while the sum of overlap is larger than user defined threshold 

7: Process the remaining overlap between cells; 

Output: optimized locations of cells. 

 



sents the overlap function between cell ci and cj along the x direc-

tion. Similarly, Oy(ci,cj) is the overlap function along the y direc 

tion. To reserve the space for routing, we consider the virtual 

width as the product between ω and the cell width. Here ω is a 

user-defined parameter to determine the routing resources. The 

pseudo code of our placement algorithm is shown in Algorithm 4. 

Line 1 initializes the cell placement with regular location. Line 3-

7 increases the importance of cell density function iteratively to 

optimize the cell placement. The conjugate gradient algorithm [15] 

is used to solve the penalty function at line 4. Line 8 pushes away 

the cells to legalize the remaining overlap between cells. 

To estimate the wirelength, we modify the maze routing [16] 

with the virtual capacity [17]. A grid graph model [18] is con-

structed with bin width θ, which is a user-defined parameter as the 

input of the routing phase. The virtual capacity is used to estimate 

the number of wires in each edge in grid graph. The routing order 

is determined by the distance from the center of gravity of all cells 

to its closest pin of wires. If the distance is the same for more than 

two wires, we will use wire weighting as the tie breaker. During 

maze routing, certain wires may fail to be routed by this routing 

order. In that case, the virtual capacity will be relaxed for rerout-

ing failed wires until all wires are routed. After the placement and 

routing, the layout is derived and the physical cost is evaluated by: 

TALCost   .  (3) 

Here α, β, and 𝛿  are user-defined parameters to determine the 

importance of total wirelength (L), chip area (A), and average wire 

delay (T).  

4. EXPERIMENTS 

4.1 Testbenches  
Three testbenches of random quick response code patterns are 

used in our experiments. We use M and N to denote the amount of 

patterns in the training set and the dimension of each pattern, re-

spectively. The patterns in each testbench are stored in a sparse 

Hopfiled network with a size of N. The (M, N) factors of the three 

testbenches 1-3 are (15, 300), (20, 400) and (30, 500), respective-

ly. The corresponding sparsities of the three networks are 94.47%, 

93.59% and 94.39%, respectively. All testbenches offer a recogni-

tion rate above 90%.    

4.2 The Iterative Spectral Clustering 
In our experiments, the allowable crossbar sizes range from 16 

to 64 at a step of 4. We define the baseline design as a full cross-

bar design (denoted as “FullCro”) that uses only crossbars with a 

size of 64 to implement the neural network. Obviously, FullCro 

has low crossbar utilization. We also define “fanin+fanout” of a 

neuron to denote the total number of fanins and fanouts of it. The 

value of fanin+fanout roughly measures the congestions around 

the neurons. The iteration of ISC stops when the average crossbar 

utilization is below that of the baseline design, implying no bene-

fit to continue performing clustering.  

Figure 7-9 summarize the detailed analysis on the efficacy of 

ISC in testbenches 1-3, respectively. As shown in Figure 9(a), the 

outlier ratio of testbench 3 drops quickly over the iterations: after 

14 iterations, 95% of connections are clustered and ready to be 

mapped to the crossbars. Figure 9(b) presents the average crossbar 

utilization normalized to our baseline and the average crossbar 

preference over the iterations. Both of them keep decreasing dur-

ing the process of ISC. It implies that connection clustering gen-

erally becomes more and more difficult over the iterations. How-

ever, the slight rises of the normalized crossbar utilization at some 

iterations can be observed, showing the effectiveness of partial 

selection strategy. When the number of iterations reaches 14, the 

normalized crossbar utilization becomes less than 1 and the ISC 

stops. Figure 9(c) shows the distribution of the utilized crossbars 

in the final implementation. The sizes of most of crossbars are 

between 32 and 64. In Figure 9(d), we depict the distributions of 

the fanin+fanout’s of all the neurons from/to only the crossbars 

(‘Crossbar”) and from/or only the discrete synapses (“Synapsis”), 

and the x-axis are the N neurons in order of their fanin+fanout. 

After ISC, the fanouts and fanins of the majority of the neurons 

come from the crossbars and many of them do not even connect to 

any discrete synapses. Figure 9(d) also show the distribution of 

the total fanin+fanout of all the neurons from/to both the crossbars 

and the discrete synapses (“Sum”). The average total fanin+fanout 

of all the neurons after ISC (“Avg. sum”) is only 80% of the one 

in the baseline design. Note that all the results in Figure 9(d) have 

been normalized to the baseline design. Similar results are ob-

served in testbench 1 and 2. 

4.3 Hardware Cost Evaluation 
To evaluate the hardware cost, we implemented our proposed 

placement and routing method using C/C++ on a 64-bit Linux 

machine and a 3.4 GHz processor with 32GB RAM. In the physi-

cal cost function, α, β, and 𝛿 are all set to 1. The delays and areas 

of the memristor crossbars with different sizes, discrete synapses, 

and neurons are extracted from [15] and [2], and carefully scaled 

to 45nm technology node. 

The total wirelength, the placement area, and the wire delay be-

tween FullCro and AutoNCS for all three testbenches are summa-

rized in Table 1. Compared to FullCro, AutoNCS on average re-

duces the total wirelength by 47.80%, the placement area by 

31.97%, and the wire delay by 47.18%, respectively, over all the 

testbenches.  

Figure 10(a)-(d) show the optimal placement and routing results 

of the testbench 3 in FullCro and AutoNCS, respectively. In Fig-

ure 10, the unit of both x- and y-axis is the pitch of a memristor 

cell in the crossbar; in (a) and (c), the squares with different sizes 

denote crossbars and memristors with different scales; in (b) and 

(d), routing information is expressed by a wire congestion map 

with difference colors showing the numbers of wires. In optimal 

 

Figure 7. ISC Exp. Result of Testbench 1. Figure 8. ISC Exp. Result of Testbench 2. Figure 9. ISC Exp. Result of Testbench 3. 

 



FullCro, crossbars with the maximum size are uniformly placed, 

resulting in heavy wire congestion in the center as Figure 10 (b) 

illustrates. However, in AutoNCS, large crossbars on the periph-

ery realized the majority of connections, leaving only sparse con-

nections implemented by small crossbars and discrete synapses in 

the inner place. This topology reduces wirelength, area and aver-

age delay substantially. Table 1 also shows that wirelength and 

area reductions increase with the scale of NCS, which implies the 

scalability and adapability of our AutoNCS to large-scale NCS. 

The delay keeps steady because it is determined by the crossbar 

size distribution, which is similar under different scales of NCS. 

5. CONCLUSION 
In this work, we proposed an EDA framework, namely, Au-

toNCS, to automate the implementation of large-scale neuromor-

phic systems. AutoNCS iteratively clusters the connections in 

neural networks into memristor crossbars for routability en-

hancement and optimizes the physical design process for place-

ment area and routing wirelength reductions. Our experiments on 

three testbenches with different sizes show that AutoNCS can 

reduce the wirelength, area, and delay by on average 47.80%, 

31.97%, and 47.18%, respectively, compared with the brute-force 

implementations using only the maximum-size crossbars. 
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Figure 10. The placement and routing results of testbench 3 with-

out clustering are shown in (a) and (b). The results with AutoNCS 

are shown in (c) and (d). Scale bar: 140 𝛍m. 

 

Table 1. The Physical Design Cost Evaluation. 

Test 

bench 
 Total 

wirelength (𝝁𝒎) 

Area 

(𝝁𝒎𝟐) 

Delay 

(ns) 

1 

AutoNCS 131,934.3 7,608.80 1.05 

FullCro 233,080.0 9,667.20 1.95 

Reduc. (%) 43.40% 21.29% 46.15% 

2 

AutoNCS 380,549.6 14,211.54 1.05 

FullCro 676,416.0 20,168.60 1.95 

Reduc. (%) 43.74% 29.54% 46.15% 

3 

AutoNCS 575,760.9 20,943.93 0.99 

FullCro 1,316,590.0 38,136.23 1.95 

Reduc. (%) 56.27% 45.08% 49.23% 
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