
An EDA Framework for Large Scale Hybrid
Neuromorphic Computing Systems

1 Wei Wen, 2 Chi-Ruo Wu, 3 Xiaofang Hu, 1 Beiye Liu, 4 Tsung-Yi Ho, 5 Xin Li, 1 Yiran Chen

 1 University of Pittsburgh, Pittsburgh, PA, USA; 2 National Cheng Kung University, Tainan, Taiwan; 3 City University of Hong Kong, Hong Kong;
 4 National Chiao Tung University, Hsinchu, Taiwan; 5 Carnegie Mellon University, Pittsburgh, PA, USA

1{wew57, bel34, yic52}@pitt.edu, 2 gtrw@eda.csie.ncku.edu.tw, 3 xiaofanhu2-c@my.cityu.edu.hk, 4 tyho@cs.nctu.edu.tw, 5 xinli@cmu.edu

ABSTRACT

In implementations of neuromorphic computing systems (NCS),

memristor and its crossbar topology have been widely used to

realize fully connected neural networks. However, many neural

networks utilized in real applications often have a sparse connec-

tivity, which is hard to be efficiently mapped to a crossbar struc-

ture. Moreover, the scale of the neural networks is normally much

larger than that can be offered by the latest integration technology

of memristor crossbars. In this work, we propose AutoNCS – an

EDA framework that can automate the NCS designs that combine

memristor crossbars and discrete synapse modules. The connec-

tions of the neural networks are clustered to improve the utiliza-

tion of the memristor elements in crossbar structures by taking

into account the physical design cost of the NCS. Our results

show that AutoNCS can substantially enhance the utilization effi-

ciency of memristor crossbars while reducing the wirelength, area

and delay of the physical designs of the NCS.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design

(CAD)

General Terms
Algorithms, Design

Keywords
Neuromorphic Computing Systems; Neural Networks; Spectral

Clustering; Memristor Crossbar; Sparsity

1. INTRODUCTION
The word “neuromorphic computing” was originally created to

denote VLSI realization of neuro-biological architecture and then

extended to various types of systems that accelerate the computa-

tion of neural network and machine learning algorithms [1]. The

structure that mixes data storage and computing in neuromorphic

systems eliminates the well-known von Neumann bottleneck in

conventional microarchitecture, which refers to the increasing gap

between the computing capacity and memory bandwidth of mi-

croprocessors [2].

Directly emulating a neuromorphic algorithm on von Neumann

computers often incurs high memory and computation costs due

to the complexity of connections in the distributed networks and

the frequent updates on the weights of the connections [3]. Thus,

FPGA and VLSI designs of neural circuits and synapse networks

have been implemented with conventional CMOS technology to

accelerate many specific algorithms [4][5]. In addition, the dis-

covery of the emerging memristor device inspires the approaches

of using memristors to build synapse circuit due to the similarity

between the memristive and synaptic behaviors [2]. The low pro-

gramming energy, small footprint, and non-volatility make the

nanoscale memristor device become a promising candidate for the

implementations of large-scale neuromorphic systems.

In designs of memristor-based neuromorphic systems, the

weights of the connections are represented by the resistance of the

memristor devices. From topological point of view, there are two

approaches of constructing a neural network: using discrete syn-

apses [2] and using memristor crossbars [1]: A discrete synapse

makes a point-to-point connection between two neurons while a

crossbar structure connects all its input neurons to all its output

neurons. In fact, crossbar structure offers the highest connection

density that can be obtained in two-dimensional VLSI circuit.

Although memristor crossbar is believed to be a game changing

technology for neuromorphic system realization, how to efficient-

ly design such a system with minimized (or even practical) hard-

ware cost is still an important research topic barely touched. For

example, once the application is given, how to partition the appli-

cation into a set of memristor crossbars will significantly affect

the implementation cost. This fact is extremely important when

the mapped neural network model is sparse so that the utilization

rate of some mapped memristor crossbars can be low. In such a

case, directly mapping some weight connections to discrete syn-

apses could be more efficient than mapping them to a (fully con-

nected) memristor crossbar in terms of the area cost and delay.

In this work, we propose AutoNCS – an electronic design Au-

tomation (EDA) framework for large-scale hybrid Neuromorphic

Computing Systems. In particular, AutoNCS can perform the

following functions to improve the implementation efficiency of

NCS: 1) Given a neural network model, AutoNCS is able to parti-

tion the connections into a set of fixed-size memristor crossbars

from a predefined library and discrete synapses; 2) AutoNCS can

iteratively cluster the connections and map them to crossbars to

minimize routing complexity in the corresponding physical de-

signs, under realistic design constraints such as crossbar size limit

etc.; 3) Based on clustering, AutoNCS also includes a customized

placement & routing process to achieve a minimum area and wire-

length of the designed neuromorphic system.

To the best knowledge of the authors, AutoNCS is the first

EDA flow that aims the design automation of ASIC-like memris-

tor-based neuromorphic systems, which are designated to specific

neural network models. Simulation shows that compared to the

brute-force implementation using the maximum-size crossbars,

AutoNCS achieves on average 47.80%, 31.97%, and 47.18%

reductions in wirelength, area and delay, respectively, over the

three simulated test benches.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, or repub-

lish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permis-
sions@acm.org.

DAC '15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06…$15.00
http://dx.doi.org/10.1145/2744769.2744795

2. PRELIMINARY

2.1 Memristor based Neural Networks
In a neural network, a set of synapses connect the input neurons

F and the output neurons T. The relationship between the inputs

and outputs of the synapse network can be expressed as T = AF.

An element ai,j in the connection matrix A denotes the synaptic

strength (weight) of the synapse connecting the ith neuron in F

and the jth neuron in T (As the topology of neural networks is

represented by a connection matrix, “connection matrix” and

“network” are interchangeable in this paper). Since a memristor’s

resistance can be programmed by carefully adjusting the duration

and amplitude of the applied voltage or current, we may use

memristors to implement the synapses in a neural network. Figure

1(a) illustrates an example of a memristor-based synapse design

including an output neuron. The weight of the synapse is stored as

the resistance of the memristor. Here the output neuron is realized

by an integrate-and-fire circuit built on a capacitor [2].

If a neural network is nearly fully connected, the number of the

synapses in the network increases quadratically following the

increase in the number of the connected neurons. Directly imple-

menting such a network using discrete synapses becomes very

costly because of the high routing overhead of the connections. To

solve this issue, memristor crossbar is proposed [1], as shown in

Figure 1(b). Every input neuron is connected to all output neurons

via a memristor that is sandwiched between a horizontal wire and

a vertical wire. Peripheral circuits are also required to perform

additional functions including memristor training etc. As the size

of a crossbar raises, IR-drop, device defect, and process variation

introduce increasing impacts on the reliability of memristor cross-

bar programming and computing. A recent study shows that, con-

sidering the process variations and IR-drop, the current technolo-

gy can only supply reliable memristor crossbars with a size no

larger than 64×64 [6].

2.2 Sparse Neural Network Realization
The size of neural networks used in realistic applications is of-

ten very large. For instance, the deep neural network adopted in [7]

for image classification has more than 4000 input nodes. Similar

scale is also required by the neural network designed for LDPC

coding in IEEE 802.11 [8]. If such a large network is implement-

ed with the smaller-size memristor crossbars, the network inputs

and outputs shall be partitioned and grouped into the inputs and

outputs of different crossbars.

Large neural networks are often very sparse. In LDPC coding

based on message passing algorithm, for example, the network

sparsity is higher than 99% [8]. Here the sparsity of a network is

defined as one minus the ratio between the number of actual con-

nections and all possible connections in the network. In fact, such

a high sparsity is also close to the biological facts that in neocor-

tex, neurons are typically connected to only 10-9 to 10-7 of all the

neurons and these connections are limited in the neighborhood of

1cm2 of the tissue [9]. However, when the sparsity of a network is

high, using memristor crossbars to implement such a network

becomes inefficient because the utilization rate of the connections

in the crossbars could be low. It may be more efficient to realize

these sparse connections using smaller-size crossbars or even

discrete synapses. The tradeoffs between the selection of the

crossbars with different sizes, the crossbar utilization rates and the

impacts on physical design cost inspire this work.

3. AutoNCS FRAMEWORK
In this work, we developed an efficient EDA flow to design a

custom memristor-based analog NCS for specific neural networks

with fixed connection topology. We note that our design main-

tains the topology of the original NCS by mapping connections

into crossbars and discrete synapses. Note that ADC/DAC are not

included in the implementation because they are normally de-

ployed outside of the NCS and shared with external devices [19].

As discussed in Section 2.2, memristor crossbars are suitable

for implementing dense synapse connections while discrete syn-

apses are more efficient for realizing sparse synapse connections.

In a neural network, however, synapse connections are often scat-

tered over the whole network. Directly mapping the network to

the memristor crossbars generally causes low utilization of the

crossbars. In this work, we propose an iterative process based on

spectral clustering algorithm to consolidate synapse connections

into clusters and map them to memristor crossbars for high utiliza-

tion rate of the connections in the crossbars.

The proposed AutoNCS framework consists of the following

four components: 1) Modified spectral clustering (MSC) that

groups the connections in a network into dense clusters that can

be efficiently mapped to memristor crossbars; 2) Greedy cluster

size prediction (GCP) that constrains the largest cluster size with-

in the maximum available crossbar scale; 3) Iterative spectral

clustering (ISC) that repeatedly performs clustering on the net-

works to group the connections into the clusters, and minimize the

outliers that need to be mapped to the discrete synapses; and 4) a

customized physical design method to realize the neuromorphic

systems based on the clustering result. The overview of AutoNCS

is depicted in Figure 2.

3.1 Definition of Terminologies and Variables
For ease of explanation, we define the following terminologies

and variables that are frequently referred in this paper:

 Outliers – the connections that are not included in any cross-

bars/clusters in the implementation.

 Crossbar size (s) – the dimension of a crossbar. For simplicity,

only crossbars with square shape are utilized in this work. A

crossbar with a size of s offers s2 connections.

 Crossbar utilized connections (m) – the number of the connec-

tions used for the network implementation in a crossbar.

 Crossbar utilization (u) – the ratio between the utilized connec-

tions in the network implementation and the total available

connections in a crossbar, such as u = m/s2.

 Crossbar preference (CP) – a criterion used to estimate the

relative circuit cost reduction resulted from replacing discrete

synapses with a crossbar. For a crossbar with a size s, utilized

connections m, and an utilization rate u, its CP should satisfy

the following criteria: (a) given a fixed s, CP monotonically in-

creases with m or u because a larger m or u implies more dis-

crete synapses can be replaced by crossbars, leading to a small-

...Output: T

Array: A

(a) (b)

Figure 1. (a) Single memristor based synapse design [2]. (b) Syn-

apse network based on memristor crossbar [1].

Vout1

+/-
c

Vin1
Vin2

Vout2

Vin2

Neuro

n
R

R

M

M
VC

Neural

Networks MSC : Modified

Spectral Clustering

GCP : Greedy Cluster
Size Prediction

Stop
Decision

N

Y
Customized

Physical Design

ISC : Iterative Spectral Clustering AutoNCS

Figure 2. Overview of AutoNCS.

er routing cost; (b) given a fixed m, CP monotonically decreas-

es with s as a larger s causing a higher area cost. Based on the

above criteria, we propose a definition of / .CP m s u s

3.2 Modified Spectral Clustering (MSC)
Spectral clustering algorithm is generally adopted to partition

an undirected graph to different clusters in order to minimize the

between-cluster similarity and maximize the within-cluster simi-

larities [10]. Implication of “similarity” varies with specific appli-

cations in practice. In this work, we leverage spectral cluster algo-

rithm to group the connections between the input and output neu-

rons and fit them into the crossbars as many as possible. Hence,

we redefine the similarity in spectral clustering algorithm as the

number of connections. The goal in our modified spectral cluster-

ing (MSC) becomes minimizing the (between-cluster) connections

that need to be mapped to discrete synapses and maximizing the

(within-cluster) connections that fit into the crossbars. Note that

the elements in the given connection matrix are binary where ‘1’

represents a connection linking two neurons and ‘0’ indicates the

two neurons are not connected. The process of MSC is shown in

Algorithm 1 where k-means is also a traditional clustering algo-

rithm to partition a data set to k clusters [10][11].

Figure 3(a) and (b) respectively shows the connection matrix of

a real 400×400 neural network before and after applying MSC.

Empty spaces show no connections between the neurons while red

squares are the formed clusters. It can be clearly observed that

after MSC, the connections in the network are effectively grouped

into several clusters. The connections in the clusters can be effi-

ciently mapped to memristor crossbars with a high utilization.

In the design of neuromorphic systems based on memristor

crossbars, there are at least two realistic challenges that need to be

solved in the clustering:

(1) Cluster size limitation: the sizes of the clusters are limited by

the maximum size of the available crossbars. Classic spectral

clustering algorithm, however, does not consider this limit;

(2) High outlier ratio: It is almost impossible to group the major-

ity of the connections into clusters by performing MSC only

once, especially for the neural networks with randomly dis-

tributed connections. For instance, the outliers in Figure 3(b)

still count for 57% of total connections in the network.

Two techniques, greedy cluster size prediction (GCP) and itera-

tive spectral clustering (ISC) are proposed in Section 3.3 and 3.4,

respectively, to conquer the above two challenges.

3.3 Greedy Cluster Size Prediction (GCP)
The limit of crossbar size can be passively imposed by exhaust-

ively increasing the value of k in MSC until the size of the largest

crossbar is below the size limit. We refer to this method as trav-

ersing algorithm. However, such a method could be very time

consuming when the network is large. Rather than scanning the

number of total clusters k, we propose to directly limit the largest

cluster size obtained in the k-means algorithm: if the size of the

obtained cluster is beyond the limit, the cluster will be automati-

cally broken into two smaller sub-clusters. The centroids of these

two sub-clusters are updated accordingly and k is incremented by

1. Algorithm 2 gives the details of this proposed greedy cluster

size prediction (GCP).

We applied GCP to the test case in Figure 3 by setting the max-

imum cluster size to 64. The result is shown in Figure 4(a). It can

be observed that the maximum cluster size is constrained below

the preset limit, demonstrating the effectiveness of GCP.

Figure 4(b) illustrates the clustering result from traversing algo-

rithm, which is very close to the GCP result in Figure 4(a). How-

ever, the computation time of traversing algorithm (190ms) is

almost double of the one of GCP (106ms). These results clearly

demonstrate the effectiveness and efficiency of GCP in limiting

the cluster size during the clustering process.

3.4 Iterative Spectral Clustering (ISC)
To minimize the outliers in the clustering process, we propose

an iterative spectral clustering (ISC) scheme to recursively group

the connections into the clusters.

(a) Original (b) Clustered (a) GCP (b) Traversing (a) Outliers (b) Clustered outliers

Figure 3. Clustering results of applying MSC. Figure 4. GCP and Traversing. Figure 5. Iteration based on MSC+GCP.

Algorithm 2: Greedy Cluster Size Prediction (GCP)

Input: connection matrix 𝑊 ∈ ℝ𝑛×𝑛 and limited max cluster size s.
1: Initialization: compute all generalized eigenvectors u1, . . . , un of

the generalized eigenproblem Lu = λDu. Let 𝑈 ∈ ℝ𝑛×𝑛 be the matrix
whose columns are an ascending sequence of u1, . . . ,un sorted by
their eigenvalues;

2: Predict cluster number k=n/s, initialize k cluster centroids B as zeros;

3: do

4: for i=1, . . .,n, let 𝑦𝑖 ∈ ℝ𝑘 be vector corresponding to the i-th

row of Uk, Uk is the first k columns of U; flagOuter=0;

5: do

6: under B, cluster the points 𝑦𝑖 (i=1, . . .,n) with k-means
 algorithm into clusters C1, . . . , Ck and update B;

7: flagInner=0;

8: for all j=1, . . .,k
9: if size of Cj > s

10: cluster Cj to 2 sub-clusters by k-means;

11: k=k+1; flagInner=1; flagOuter=1;
12: update B[j] and B[k] to centroids of those 2 sub-

 clusters;

13: end if

14: end for

15: while flagInner==1

16: while flagOuter ==1

Output: clusters A1, . . ., Ak with Ai = {j |𝑦𝑗 ∈ 𝐶𝑖 }.

Algorithm 1: Modified Spectral Clustering (MSC)

Input: connection matrix 𝑊 ∈ ℝ𝑛×𝑛 with elements 𝑤𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤

𝑛),
 and number k of clusters to construct.

1: Compute the degree matrix D: for each element on the diagonal

 𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 , for other elements 𝑑𝑖𝑗 = 0 (𝑖 ≠ 𝑗);

2: Compute unnormalized Laplacian matrix: 𝐿 = (𝐷 − 𝑊);
3: Compute k generalized eigenvectors u1, . . . , uk of the generalized

 eigenproblem Lu = λDu corresponding to the k-smallest

eigenvalues;

4: Let 𝑈 ∈ ℝ𝑛×𝑘 be the matrix containing the columns u1, . . . , uk;

5: For i=1 to n, let 𝑦𝑖 ∈ ℝ𝑘 be the i-th row of U;

6: Cluster the points 𝑦𝑖 (i=1, . . .,n) with the k-means algorithm
 into clusters C1, . . . , Ck;

Output: clusters A1, . . ., Ak with Ai = {j |𝑦𝑗 ∈ 𝐶𝑖 }.

As shown in Figure 4(a), after the first clustering operation, the

within-cluster connections are concentrated along the diagonal of

the connection matrix. Applying MSC+GCP on the already-

clustered network may not result in further large reduction of the

outliers as it will break the clusters that were already grouped. We

name this phenomenon as cluster concealing. To eliminate the

disturbance of the existing clusters, we propose to remove all the

connection clusters from the already-clustered connection network,

and create a “remaining” network that is composed of only the

outliers. We then apply MSC+GCP to the remaining network for

clustering the outliers. This procedure is repeated until there are

no enough connections can be efficiently clustered, say, the cross-

bar utilization (u) is below a predefined threshold. Figure 5(a)

shows the remaining network obtained by removing the within-

cluster connections in Figure 4(a). Applying another round of

MSC+GCP produces a new connection matrix in Figure 5(b)

where the outliers become sparser than that in Figure 5(a).

However, if a formed cluster is sparse, i.e., its crossbar prefer-

ence (CP) is low, it might not be worth implementing this cluster

on a crossbar. In the iterations of ISC, we only remove the clusters

with a high CP (and map them to the crossbars) and leave the rest

clusters in the remaining network. This strategy can effectively

prevent the occurrence of the crossbars with low utilization in the

implementation. It can also result in globally enhanced CPs for all

the crossbars by combining the outside-cluster connections with

the remaining within-cluster connections for further re-clustering.

We refer to this scheme as “partial selection strategy”. The details

of ISC are summarized in Algorithm 3.

The ISC result of the same test case is shown in Figure 6. Red

squares mark the clusters with high CPs that will be removed by

the end of the current iteration; Yellow squares mark the clusters

to be kept in the remaining network due to the low CPs. After the

11th iteration, most of the connections are clustered, leaving an

almost empty remaining network, i.e., < 5% outlier ratio. Here we

empirically remove only the top 25% clusters with the high CPs

among all the clusters in each iteration.

3.5 Physical Implementation and Cost Evaluation
We estimate the NCS hardware cost based on the placement ar-

ea and wirelength [12]. Compared to discrete synapses, memristor

crossbars have higher connection density and more flexible routa-

bility. However, the highly congested placement around the

crossbars may result in undesired routing detours due to the lim-

ited routing resources, incurring the increase in hardware cost.

To measure the total area and wirelength, a physical design im-

plementation including the placement of crossbars and neurons as

well as the wiring routing shall be performed. Unfortunately, we

cannot directly apply the existing circuit placement algorithms to

our problem because of the following differences in problem for-

mulations: (1) various wire weights between memristors and

crossbars, (2) mixed-size cells including neurons, memristors, and

crossbars, and (3) cells are not required to align into rows. Hence,

we propose an analytical model to solve the above challenges by

combining some existing models [13-17].

In the phase of placement and routing, the crossbars and neu-

rons are considered as cells. Let X = {x1,…, xn} and Y = {y1,…, yn}

be the x and y-coordinates set of n cells, C = {c1,…, cn} be the set

of cells, E = {e1,…, em} and W = {w1,…, wm} be the set of m wires

and the set of m wire weightings, respectively. We adopt an ana-

lytical method to conduct the placement with gradient-based op-

timization method. To minimize the wirelength with density con-

straint, the placement problem can be formulated as a penalty

function given by),(),(min yxDyxWL , where WL(x,y) is the

wirelength cost function, 𝜆 is the penalty parameter, and D(x,y) is

the cell density function.

Since the half-perimeter wirelength (HPWL) is nonconvex and

difficult to minimize, the weighted-average (WA) wirelength

model [13] was adopted to approximate the HPWL. Furthermore,

user-defined various wire weights between memristors and cross-

bars are included in our wirelength computation to shorten some

wires that have high weights and hence, are critical to the system

performance. The RC delay is used to estimate the wire weights in

this paper in the WA wirelength model given by:

,

exp exp exp exp

(1)
exp exp exp exp

i i i i

i i i i

i i i i i i i i

v e v e v e v e

i

e E i i i i

v e v e v e v e

WL x y

x x x x y y y y

w
x x y y

Here 𝛾 is a user-defined parameter to control the smoothness.

Hence, the cell density model can be applied to place the cells by

reducing the cell overlap given by:

Ccc

jiyjix

ji

ccOccOyxD

,

),(),(),(. (2)

Here Ox(ci,cj) is the sigmoid based density model [14] that repre-

(a) The 1st iteration (b) The 2nd iteration (c) The 11th iteration

Figure 6. Results of ISC iterations.

Algorithm 3: Iterative Spectral Clustering Algorithm (ISC)

Input: connection matrix 𝑊 ∈ ℝ𝑛×𝑛 with elements 𝑤𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛),

crossbar size set S in specification, and utilization threshold t

1: Initialization: remaining connection matrix R=W, average crossbar
utilization u=1; iteration number m=1;

2: do
3: cluster R into clusters A1, . . ., Ak by Algorithm 2 with

limited size max(S);

4: compute CPi for cluster Ai (i=1,2,…,k);

5: set q to the quartile of CPi (i=1,2,…,k);

6: if the size of the crossbar with CP=q is smaller than min(S)

7: break;

8: end if

9: for i=1,2,…,k

10: if CPi ≥ q

11: realize connections within Ai by a minimum
 satisfiable crossbar in S;

12: delete connections within Ai from R;

13: end if

14: end for

15: set u average utilization of crossbars placed in iteration m;

16: m=m+1;

17: while 𝑢 ≥ 𝑡

18: realize connections remained in R by discrete memristors

Output: circuit implementation topology.

Algorithm 4: Placement

Input: the locations of cells and wires with wire weighting

1: Initialization: cells location, 𝝀𝟎 =
∑|𝝏𝑾(𝒙,𝒚)|

∑|𝝏𝑫(𝒙,𝒚)|
 and m = 0

2: do

3: solve 𝐦𝐢𝐧 𝑾𝑳(𝒙, 𝒚) + 𝝀𝒎𝑫(𝒙, 𝒚);

4: 𝐦 = 𝐦 + 𝟏;

5: 𝝀𝐦 = 𝟐𝝀𝐦+𝟏;

6: while the sum of overlap is larger than user defined threshold

7: Process the remaining overlap between cells;

Output: optimized locations of cells.

sents the overlap function between cell ci and cj along the x direc-

tion. Similarly, Oy(ci,cj) is the overlap function along the y direc

tion. To reserve the space for routing, we consider the virtual

width as the product between ω and the cell width. Here ω is a

user-defined parameter to determine the routing resources. The

pseudo code of our placement algorithm is shown in Algorithm 4.

Line 1 initializes the cell placement with regular location. Line 3-

7 increases the importance of cell density function iteratively to

optimize the cell placement. The conjugate gradient algorithm [15]

is used to solve the penalty function at line 4. Line 8 pushes away

the cells to legalize the remaining overlap between cells.

To estimate the wirelength, we modify the maze routing [16]

with the virtual capacity [17]. A grid graph model [18] is con-

structed with bin width θ, which is a user-defined parameter as the

input of the routing phase. The virtual capacity is used to estimate

the number of wires in each edge in grid graph. The routing order

is determined by the distance from the center of gravity of all cells

to its closest pin of wires. If the distance is the same for more than

two wires, we will use wire weighting as the tie breaker. During

maze routing, certain wires may fail to be routed by this routing

order. In that case, the virtual capacity will be relaxed for rerout-

ing failed wires until all wires are routed. After the placement and

routing, the layout is derived and the physical cost is evaluated by:

TALCost . (3)

Here α, β, and 𝛿 are user-defined parameters to determine the

importance of total wirelength (L), chip area (A), and average wire

delay (T).

4. EXPERIMENTS

4.1 Testbenches
Three testbenches of random quick response code patterns are

used in our experiments. We use M and N to denote the amount of

patterns in the training set and the dimension of each pattern, re-

spectively. The patterns in each testbench are stored in a sparse

Hopfiled network with a size of N. The (M, N) factors of the three

testbenches 1-3 are (15, 300), (20, 400) and (30, 500), respective-

ly. The corresponding sparsities of the three networks are 94.47%,

93.59% and 94.39%, respectively. All testbenches offer a recogni-

tion rate above 90%.

4.2 The Iterative Spectral Clustering
In our experiments, the allowable crossbar sizes range from 16

to 64 at a step of 4. We define the baseline design as a full cross-

bar design (denoted as “FullCro”) that uses only crossbars with a

size of 64 to implement the neural network. Obviously, FullCro

has low crossbar utilization. We also define “fanin+fanout” of a

neuron to denote the total number of fanins and fanouts of it. The

value of fanin+fanout roughly measures the congestions around

the neurons. The iteration of ISC stops when the average crossbar

utilization is below that of the baseline design, implying no bene-

fit to continue performing clustering.

Figure 7-9 summarize the detailed analysis on the efficacy of

ISC in testbenches 1-3, respectively. As shown in Figure 9(a), the

outlier ratio of testbench 3 drops quickly over the iterations: after

14 iterations, 95% of connections are clustered and ready to be

mapped to the crossbars. Figure 9(b) presents the average crossbar

utilization normalized to our baseline and the average crossbar

preference over the iterations. Both of them keep decreasing dur-

ing the process of ISC. It implies that connection clustering gen-

erally becomes more and more difficult over the iterations. How-

ever, the slight rises of the normalized crossbar utilization at some

iterations can be observed, showing the effectiveness of partial

selection strategy. When the number of iterations reaches 14, the

normalized crossbar utilization becomes less than 1 and the ISC

stops. Figure 9(c) shows the distribution of the utilized crossbars

in the final implementation. The sizes of most of crossbars are

between 32 and 64. In Figure 9(d), we depict the distributions of

the fanin+fanout’s of all the neurons from/to only the crossbars

(‘Crossbar”) and from/or only the discrete synapses (“Synapsis”),

and the x-axis are the N neurons in order of their fanin+fanout.

After ISC, the fanouts and fanins of the majority of the neurons

come from the crossbars and many of them do not even connect to

any discrete synapses. Figure 9(d) also show the distribution of

the total fanin+fanout of all the neurons from/to both the crossbars

and the discrete synapses (“Sum”). The average total fanin+fanout

of all the neurons after ISC (“Avg. sum”) is only 80% of the one

in the baseline design. Note that all the results in Figure 9(d) have

been normalized to the baseline design. Similar results are ob-

served in testbench 1 and 2.

4.3 Hardware Cost Evaluation
To evaluate the hardware cost, we implemented our proposed

placement and routing method using C/C++ on a 64-bit Linux

machine and a 3.4 GHz processor with 32GB RAM. In the physi-

cal cost function, α, β, and 𝛿 are all set to 1. The delays and areas

of the memristor crossbars with different sizes, discrete synapses,

and neurons are extracted from [15] and [2], and carefully scaled

to 45nm technology node.

The total wirelength, the placement area, and the wire delay be-

tween FullCro and AutoNCS for all three testbenches are summa-

rized in Table 1. Compared to FullCro, AutoNCS on average re-

duces the total wirelength by 47.80%, the placement area by

31.97%, and the wire delay by 47.18%, respectively, over all the

testbenches.

Figure 10(a)-(d) show the optimal placement and routing results

of the testbench 3 in FullCro and AutoNCS, respectively. In Fig-

ure 10, the unit of both x- and y-axis is the pitch of a memristor

cell in the crossbar; in (a) and (c), the squares with different sizes

denote crossbars and memristors with different scales; in (b) and

(d), routing information is expressed by a wire congestion map

with difference colors showing the numbers of wires. In optimal

Figure 7. ISC Exp. Result of Testbench 1. Figure 8. ISC Exp. Result of Testbench 2. Figure 9. ISC Exp. Result of Testbench 3.

FullCro, crossbars with the maximum size are uniformly placed,

resulting in heavy wire congestion in the center as Figure 10 (b)

illustrates. However, in AutoNCS, large crossbars on the periph-

ery realized the majority of connections, leaving only sparse con-

nections implemented by small crossbars and discrete synapses in

the inner place. This topology reduces wirelength, area and aver-

age delay substantially. Table 1 also shows that wirelength and

area reductions increase with the scale of NCS, which implies the

scalability and adapability of our AutoNCS to large-scale NCS.

The delay keeps steady because it is determined by the crossbar

size distribution, which is similar under different scales of NCS.

5. CONCLUSION
In this work, we proposed an EDA framework, namely, Au-

toNCS, to automate the implementation of large-scale neuromor-

phic systems. AutoNCS iteratively clusters the connections in

neural networks into memristor crossbars for routability en-

hancement and optimizes the physical design process for place-

ment area and routing wirelength reductions. Our experiments on

three testbenches with different sizes show that AutoNCS can

reduce the wirelength, area, and delay by on average 47.80%,

31.97%, and 47.18%, respectively, compared with the brute-force

implementations using only the maximum-size crossbars.

6. Acknowledgement
This work was supported in part by AFRL FA8750-15-2-0048,

DARPA D13AP00042, NSF XPS-1337198, and ECCS-1202225.

Any opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the authors and do not neces-

sarily reflect the views of AFRL, DARPA, NSF, or their contrac-

tors.

7. REFERENCES
[1] M. Hu, H. Li, Q. Wu, and G. S. Rose, "Hardware realization of BSB

recall function using memristor crossbar arrays," Design Automation

Conference, 2012, pp. 498-503.

[2] B. Liu, Y. Chen, B. Wysocki, and T. Huang, "The circuit realization
of a neuromorphic computing system with memristor-based synapse

design," in Neural Information Processing, 2012, pp. 357-365.

[3] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser,
et al., "Compass: A scalable simulator for an architecture for

cognitive computing," in Proceedings of the International

Conference on High Performance Computing, Networking, Storage
and Analysis, 2012, p. 54.

[4] S. L. Bade and B. L. Hutchings, "FPGA-based stochastic neural

networks-implementation," in FPGAs for Custom Computing
Machines, 1994. Proceedings. IEEE Workshop on, 1994, pp. 189-

198.

[5] K. Wawryn and B. Strzeszewski, "Low power VLSI neuron cells for
artificial neural networks," IEEE International Symposium on

Circuits and Systems, 1996, pp. 372-375.

[6] J. Liang and H. S. Wong, "Cross-point memory array without cell
selectors—device characteristics and data storage pattern dependen-

cies," IEEE Transactions on Electron Devices, vol. 57, pp. 2531-

2538, 2010.
[7] D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep

neural networks for image classification," IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2012, 2012, pp.
3642-3649.

[8] "IEEE Standard for Information technology--Telecommunications

and information exchange between systems Local and metropolitan
area networks--Specific requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications," IEEE Std 802.11-2012 (Revision of IEEE Std
802.11-2007), pp. 1-2793 , 2012.

[9] C. D'Este, M. Towsey, and J. Diederich, "Sparsely-connected recur-

rent neural networks for natural language learning," in First Work-
shop on Natural Language Processing and Neural Networks. Beijing,

China, 1999, pp. 64-69.

[10] U. Von Luxburg, "A tutorial on spectral clustering," Statistics and
computing, vol. 17, pp. 395-416, 2007.

[11] J. Shi and J. Malik, "Normalized cuts and image segmentation,"

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 888-905, 2000.

[12] A. Kahng and Q. Wang, “Implementation and Extensibility of an

Analytic Placer,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 734–747, 2005.

[13] M.-K. Hsu et al., “TSV-Aware Analytical Placement for 3D IC

Designs,” Proc. ACM Design Autom. Conf., pp. 664–669, 2011.
[14] S. Chou et al., “Structure-Aware Placement for Datapath-Intensive

Circuit Designs,” Design Automation Conference, 2012, pp. 762–
767.

[15] S. Chou et al., “NTUplace3: An Analytical Placer for Large-Scale

Mixed-Size DesignsWith Preplaced Blocks and Density Constraints,”
IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pp. 1228–1240, 2008.

[16] C. Lee and N. J. Whippany, “An Algorithm for Path Connections

and Its Applications,” IRE Transactions on Elctronic Computers, pp.

346–365, 2009.

[17] Y. Zhang et al., “FastRoute3.0: A Fast and High Quality Global
Router Based on Virtual Capacity,” International Conference on

Computer‑ Aided Design, pp. 344–349, 2008.

[18] M. Pan and C. Chu, “FastRoute: A Step to Integrate Global Routing

into Placement,” International Conference on Computer‑ Aided

Design, pp. 464–471, 2006.
[19] X. Liu, M. Mao, H. Li, Y. Chen, H. Jiang, J. J. Yang, Q. Wu, M.

Barnell, "A Heterogeneous Computing System with Memristor-

Based Neuromorphic Accelerators.", High Performance Extreme
Computing Conference (HPEC), 2014, pp. 1-6.

Figure 10. The placement and routing results of testbench 3 with-

out clustering are shown in (a) and (b). The results with AutoNCS

are shown in (c) and (d). Scale bar: 140 𝛍m.

Table 1. The Physical Design Cost Evaluation.

Test

bench
 Total

wirelength (𝝁𝒎)

Area

(𝝁𝒎𝟐)

Delay

(ns)

1

AutoNCS 131,934.3 7,608.80 1.05

FullCro 233,080.0 9,667.20 1.95

Reduc. (%) 43.40% 21.29% 46.15%

2

AutoNCS 380,549.6 14,211.54 1.05

FullCro 676,416.0 20,168.60 1.95

Reduc. (%) 43.74% 29.54% 46.15%

3

AutoNCS 575,760.9 20,943.93 0.99

FullCro 1,316,590.0 38,136.23 1.95

Reduc. (%) 56.27% 45.08% 49.23%

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20150413091728
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

