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Abstract—With the increasing penetration of renewable energy
sources into the electric power grid, a heightened amount of
attention is being given to the topic of energy storage, a popular
solution to account for the variability of these sources. Energy
storage systems (ESS) can also be beneficial for load-levelling
and peak-shaving, as well as reducing the ramping of generators.
However, the optimal energy and power ratings for these devices
is not immediately obvious. In this paper, the energy capacity and
power rating of the ESS is optimized using two-stage stochastic
optimization. In order to capture the wind and load variations
in the different days throughout the year, it is advantageous to
use a large number of scenarios. Optimizing generator outputs
and storage decisions at the intra-hour level with a high number
of scenarios will result in a very large optimization problem, and
thus scenario reduction is employed.
A relationship between the variance of the system price for

each scenario and the optimal storage size determined for that
scenario is shown. The correlation between these parameters
allows for a natural clustering of similar scenarios. Scenario
reduction is performed by exploiting this relationship in conjunc-
tion with centroid-linkage clustering, and stochastic optimization
with the reduced number of scenarios is used to determine the
optimal ESS size.

I. INTRODUCTION

MULTIPLE benefits can be achieved by the use of energy
storage systems (ESS) in the power grid. The variability

from intermittent energy sources can be balanced with the use
of storage; daily peaks of high electricity usage can be shifted
to off-peak hours, and the ramping and capacity requirements
for conventional generators may be reduced.
Depending on the application, certain storage technolo-

gies may be more appropriate for certain purposes. The
performance of each of these technologies differ by their
charge/discharge rate and maximum energy capacity. Storage
technologies include, but are not limited to: pumped hydro,
compressed air, flywheels, double-layer or super/ultra capaci-
tors, and batteries (lead-acid, lithium-ion, sodium/sulfur) [1].
In this paper, the focus is on intra-hour generation dispatch
to balance out fluctuations in the net load, i.e., demand minus
wind generation, of the system. In the considered problem
formulation, the storage device is characterized by a maxi-
mum energy capacity, maximum power rating and a roundtrip
efficiency.
Much of the literature regarding the problem of optimal ESS

sizing is based on determining an optimal operating strategy
for the storage device [2]- [5], but stochastic optimization
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techniques are not employed in these papers. Stochastic opti-
mization is used in papers [6]- [8], which focus on an hourly
dispatch scale. In [6], wind and load correlation probabilities
are used for scenario generation. Scenarios with similar net
load shapes and levels are grouped together in [7], and fuzzy
clustering is used for scenario generation. In [8], uncertainties
in wind and electricity prices are taken into account and a
sample average approximation method is used to reduce the
dimensionality of the scenarios.
The objective in our paper is to optimally size storage

while minimizing generation costs and maximizing the use
of renewable energy fluctuations on an intra-hourly scale. We
show that there is a relationship between optimal storage size
and variance in system price for this application, allowing
scenarios which are similar with respect to storage needs to
be clustered together and represented by a single scenario.
Hence, the clustering operates on the similarities in optimal
storage size rather than on similarities on the inputs of the
scenarios. This reduced set of scenarios, each weighted with an
appropriate probability, is then taken into account in the two-
stage stochastic optimization problem, significantly reducing
the overall problem size. Hence, two-stage stochastic optimiza-
tion becomes feasible even for a large number of considered
scenarios.
The outline of this paper is as follows: Section II gives

the model of the system components and the formulation
of the objective function and the constraints. Section III
provides insights into the correlation between storage sizing
and variance in marginal cost and how this is used to design the
clusters to enable scenario reduction. In Section IV, simulation
results are shown for a 10-generator system. Finally, in Section
V, conclusions and a discussion are given.

II. MODELING
In this section, the optimization formulation and ESS model

are provided, along with the notation used for the variables that
appear in the paper.
1) Storage Model: The model for the ESS used in this

paper is the following:

E(t+Δt) = E(t) + ηcΔtPin(t)−
Δt

ηd
Pout(t), (1)

0 ≤ E(t+Δt) ≤ Ess, (2)
0 ≤ Pin(t) ≤ Pss, (3)
0 ≤ Pout(t) ≤ Pss, (4)

where E(t) is the energy level in the storage at time instant
t. The model incorporates separate variables for charging
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and discharging power, Pin and Pout, as well as separate
constants for the charging and discharging efficiencies, ηc and
ηd. Variables Ess and Pss correspond to the energy capacity
and the power rating of the storage device. The variable Δt
is the time between control decisions. Since the focus in this
paper is on intra-hourly economic dispatch, Δt will be set to
10 minutes in the simulations.
2) Cost Function and Constraints: Each scenario corre-

sponds to a 24-hour period of net load, i.e., load minus wind
generation. It is assumed that the generators have quadratic
cost curves defined by cost parameters ai, bi, and ci, upper and
lower limits Pmin

Gi and Pmax
Gi , and ramping limitations RGi.

The economic dispatch optimization problem to be solved for
one scenario if storage size and charging and discharging limits
are given is as follows:

min
PGi(t)

NT∑
t=1

(
NG∑
i=1

aiP
2
Gi(t) + biPGi(t) + ci

)
(5)

s.t. Pmin
Gi ≤ PGi(t) ≤ Pmax

Gi , (6)
|PGi(t+Δt)− PGi(t)| ≤ RGi, (7)
NG∑
i=1

PGi(t)− PL(t) + PW (t)

+ Pout(t)− Pin(t) = 0, (8)

0 ≤ Pout(t) ≤ Pss, (9)
0 ≤ Pin(t) ≤ Pss, (10)
0 ≤ E(t) ≤ Ess, (11)
E(NT ) = E0, (12)

E(t+Δt) = E(t) + ηcΔtPin(t)−
Δt

ηd
Pout(t), (13)

with t = 1, ..., NT for all constraints and i = 1, ..., NG, where
NT is the number of steps in the optimization horizon and
NG is the number of generators in the system. The generation
output for generator i at time step t is given by PGi(t),
total wind generation by PW (t) and total load by PL(t).
The initial energy level in the storage device is set to E0.
As described in Section III-A, Pss, Ess and E0 all become
variables in the two-stage stochastic optimization problem and
problem formulation (5) - (13) corresponds to the second stage
problem.

III. METHODS
This section discusses the methods used in the proposed

approach to determine the optimal size of a storage device.

A. Two-Stage Stochastic Optimization
Stochastic optimization is a technique which minimizes the

total cost over a chosen number of scenarios while account-
ing for uncertainties in the problem. In two-stage stochastic
optimization [9], there are first stage variables, common to
all scenarios, and second stage variables, specific to each

scenario and dependent on the first-stage variables. A set of
scenarios are generated and a probability is assigned to each
of these scenarios. The stochastic optimization problem is then
formulated to find the optimal solution for all variables while
taking into account the probabilities for each of the scenarios.
With regards to the storage sizing problem, the first-stage

variables are the storage parameters Ess, Pss, and E0, and
the second-stage variables are the generation values, charg-
ing/discharging rate of the storage, and the energy level of the
storage. This concept is illustrated in Figure 1.
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s s s s
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Fig. 1. Two-stage stochastic optimization concept for the storage sizing
problem

The overall problem formulation for the two-stage stochastic
problem is given by:

min
PGi(s,t)

NS∑
s=1

(
ws · TL ·

NT∑
t=1

(
NG∑
i=1

aiP
2
Gi(s, t) + biPGi(s, t) + ci

))

+ dEss + ePss (14)

s.t. Pmin
Gi ≤ PGi(s, t) ≤ Pmax

Gi , (15)
|PGi(s, t+Δt)− PGi(s, t)| ≤ RGi, (16)
NG∑
i=1

PGi(s, t)− PL(s, t) + PW (s, t)

+ Pout(s, t)− Pin(s, t) = 0, (17)
0 ≤ Pout(s, t) ≤ Pss, (18)
0 ≤ Pin(s, t) ≤ Pss, (19)
0 ≤ E(s, t) ≤ Ess, (20)
E0 = E(s,NT ), (21)

E(s, t+Δt) = E(s, t) + ηcΔtPin(s, t)−
Δt

ηd
Pout(s, t).

(22)

Hence, constraints of this optimization problem are equivalent
to those given in (6)-(13), but now with distinct variables
PGi, Pout, Pin, and E as well as values PL and PW for
each scenario s = 1...Ns. Variables Ess, Pss, and E0 are
not dependent on t or s. These variables are common to all
scenarios; their optimal values are calculated while taking into
account all of the considered scenarios simultaneously. The
constant values ws correspond to the probability of occurrence
of scenario s. The constants d and e correspond to the cost
parameters of the storage device with respect to the capacity



and charging speed, respectively, and TL is the expected
lifetime of the storage in number of days.
It is advantageous to determine what factors directly impact

the optimal solution for the storage sizing problem, so indi-
vidual scenarios which result in a similar optimal storage size
may be grouped together and a new representative scenario for
that cluster is chosen and weighted accordingly. It is obvious
that the more scenarios that are considered in the problem,
the more accurate the frequency of certain cases of wind and
load in the system will be represented. Thus, it is desirable
to utilize as many scenarios as possible. However, the number
of variables and constraints increases tremendously with in-
creasing number of scenarios rendering stochastic optimization
computationally very intensive.

B. Relationship Between Optimal Capacity and Variance in
System Price
The price of electricity is determined by the marginal cost

of generation, i.e. the cost to generate one additional unit
of power in the system. As the Lagrange Multiplier of the
power balance equation (8) corresponds to the sensitivity of
the objective function, in this case the overall generation cost,
with respect to a change in this equation, i.e. a change in load,
the incremental cost is equal to the value of this Lagrange
Multiplier. In the following, we refer to this as the system
price and denote it by λp.
Due to the fact that load and infeeds from renewable

generation vary significantly throughout the course of the day,
the system price also varies over the day. The variance of the
system price, measured over the time period of one day, is
defined as:

var(λp) =
1

NT

NT∑
t=1

(λp(t)−mean(λp))
2. (23)

For illustration purposes, we show the correlation between
the system price variance and the optimal storage size for
a small system with three conventional generators and two
wind generators. First, the economic dispatch problem without
storage is solved for a range of different scenarios. This
corresponds to optimizing for (5) and including constraints
(6) and (7) and the power balance equation (8) but without
the charging/discharging from the storage for each of these
scenarios. The resulting variance in system price for each of
the scenarios is stored. Next, the optimization problem with
storage as a variable, i.e. (14)-(22) is solved for each scenario
separately. Hence, only one single scenario is taken into
account in the optimization problem each time and the optimal
storage size and charging/discharging rate are determined as
if this is the only occurring scenario. The resulting variances
in system price and the optimal storage sizes are plotted in
Figure 2.
It is clear from the figure that the optimal capacity of the

storage is positively correlated with the variance in system
price for that scenario. That is, the bigger the variance in price
over that scenario, the more beneficial it is to use storage.
This can be attributed to a great extent to the quadratic cost
functions of the generators. Changes in the level of generation
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Fig. 2. Correlation between marginal price and optimal storage size for
system with three conventional generators and two wind generators.

and therefore ramping are implicitly penalized because of
this quadratic cost. Storage helps to alleviate the ramping of
these generators, thus lowering the overall cost of generation.
In the presence of an increased penetration of intermittent
sources such as wind, the required ramping increases thereby
increasing the value of storage. However, no direct correlation
was found between the optimal storage capacity and variance
in wind or load. The variance in system price was found to
be the strongest indicator with respect to optimal storage size
for the considered problem formulation with quadratic cost
functions.
This dependency has important implications on how to

cluster scenarios. To show how this is different from clustering
scenarios based on similarities in net load, we show the
optimal storage sizes for five scenarios and their respective
net load curves in Figures 3 and 4 for a system of 8
conventional generators and two wind generators. The two
scenarios with the closest optimal capacity/variance in system
price are scenarios 2 and 3. It is interesting to note that the
net load for scenarios 2 and 3 have a very large difference
in magnitude. Scenario generation by methods which assume
that scenarios with similar net load values produce similar
optimal storage capacities may therefore lead to suboptimal
storage sizes for the considered problem formulation and cost
function. Consequently, we propose to use the correlation
between system price and optimal storage size as a means
to cluster scenarios.
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Fig. 3. Optimal storage sizes for the 10 generator system and five different
scenarios.
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Fig. 4. Net load of five scenarios in the 10 generator system.

C. Scenario Reduction Using Centroid-Linkage Clustering
As the number of scenarios considered in the optimization

increases, the more accurately the distribution of possible
realizations of net load are represented. However, this also
increases the problem size to unmanageable levels, especially
on a 10-minute dispatch scale. Scenario reduction techniques
have been employed for the energy storage sizing problem, e.g.
in [6] and [7]. However, as described earlier, these techniques
focus on load/wind correlations and net load analysis to
determine similarity between scenarios.
Here, scenario reduction is performed by utilizing the

discovered relationship between the optimal storage capacity
and variance in system price. We use a hierarchical centroid-
linkage clustering method [10] to form clusters of similar
scenarios. In this clustering technique, each scenario is first
considered to be a separate cluster, and clusters are subse-
quently combined into larger clusters until the desired number
of clusters is obtained. Hierarchical clustering is chosen over
other conventional clustering methods because other methods
may group outlier clusters with other clusters instead of
keeping them distinct, which is desirable in our application.
At each iteration of the process, centroids, which correspond
to the mean of all data points in their respective cluster, are
calculated. The centroid ci for cluster i is therefore defined
as:

ci =
1

Ni

∑
k∈Ωi

xk, (24)

where Ωi includes the set of points xi = [var(λp); Ess]
included in cluster i andNi is the number of points in cluster i.
Next, the Euclidean distances between all possible cluster pairs
(i, j) where i �= j, are determined and compared. The pair that
minimizes ‖ci − cj‖2 is combined into a new cluster m where
the data points xm = xi∪xj. This process is repeated until the
desired number of clusters is achieved. Next, a representative
scenario is chosen for each cluster. This scenario x̂i, for each
cluster i, is chosen to be the one that is closest to the mean
of that cluster; i.e.,

x̂i = argmin
xk∈Ωi

‖xk − ci‖2 . (25)

For the considered application, each scenario corresponds
to a specific realization of load and wind generation for one
day. Each of these scenarios results in one data point in

the correlation between storage size and variance in marginal
cost. The clustering technique is then used to cluster this two
dimensional data into a pre-defined number of clusters.
As an example, 150 scenarios were run on the 8-generator,

2-wind plant system and these scenarios were grouped into 10
clusters. In Figure 5, the result of the clustering is shown. The
number of scenarios in each cluster determines the probability
of the resulting representative scenario of that cluster, as shown
in Figure 6.
The scattering is related to the fact that different sets of

generators reach their limits for different levels of net load, and
therefore a different generator is setting the system price. I.e.,
in one case with a large amount of wind, a coal plant that was
usually producing at capacity for most of the other scenarios
was not at capacity. However, even with the scattering multiple
linear trends can be observed.
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Fig. 5. Correlation and clustering for the 10 generator system, 150 scenarios
and 10 clusters.
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Fig. 6. Representative clusters weighted by probabilities for the 10 generator
system.

D. Overall Proposed Approach
An overview over the proposed approach to determine the

optimal sizing of the storage device is given in Figure 7. First,
the economic dispatch problem in (5) - (13) is solved without
any storage device in the system for every single scenario
separately in order to determine the variance in marginal
generation cost before the deployment of storage. Then, the
problem in (14) - (22) is solved separately for each scenario
with storage as a variable, determining the optimal Ess, Pss,
and E0 for that scenario. Next, the scenarios are clustered into



groups and representative scenarios are chosen for each cluster.
This reduced set of scenarios is used in the stochastic problem
formulation (14) - (22) to determine the overall optimal storage
size.

Simulate all scenarios

separately with storage

variables included. Store

The optimal storage sizes

 for each scenario.

Simulate all scenarios

separately without storage

in the system.

Store the resulting system 

price for each scenario.

Form a 2D vector X that is

composed of the previous

two values and cluster the 

values in X into groups.

Choose representative scenarios for 

each cluster by choosing the scenario 

closest to the centroid. Weight these 

scenarios by the number of scenarios in 

their represented cluster divided by the 

total number of scenarios.

Perform two-stage stochastic optimization 

using the new weighted representative 

scenarios.

Fig. 7. Flowchart of the overall algorithm.

IV. SIMULATION RESULTS
In this section, we first give an overview over the simulation

setup and then discuss the simulation results.

A. Simulation Setup
Simulations were performed on a power system with eight

conventional generators and two wind power plants. The 10-
minute demand data for 150 days was taken from ISO New
England [11] and the data for the wind outputs was taken from
the Eastern Wind Integration Transmission Study (EWITS)
[12]. Results are given for various levels of wind energy
penetration. The chosen cost function data and capacities for
the generators are given in Table I. The storage technology
used in these simulations has a roundtrip efficiency of 95% and
capital costs of the energy capacity and power converter size
as $10, 000/kWh and $500/kW , respectively. Reasonable
parameters were taken from the list of costs and efficiencies for
various storage technologies described in [1]. The storage is
assumed to be operating without degradation for the assumed
time period TL and generation costs are minimized over a
period of 20 years; i.e., TL = 20 · 365.

B. Simulation Results
Taking into account the full set of 150 scenarios each

corresponding to a day’s worth of data already results in over
237, 600 variables for the considered formulation. Hence, clus-
tering of scenarios is indispensable and we use the proposed
clustering technique to reduce the number of scenarios to 70,
50, 30 and 10 clusters and compare the results to the “full”
case of 150 scenarios. The optimal solution for the storage
size with the above parameters and a 20% penetration of

TABLE I
GENERATOR PARAMETERS.

Generator a ($/MW/MWh) b ($/MWh) c ($/h) Capacity
Gas 0.76 15 370 250 MW
Coal 0.0079 18 772 330 MW
Nuclear 0.00059 5 240 350 MW
Gas 0.76 13 370 250 MW
Coal 0.0133 18 440 340 MW
Nuclear 0.00059 5.2 240 350 MW
Coal 0.014 18 772 330 MW
Coal 0.0078 17.7 440 330 MW

TABLE II
SIMULATION RESULTS FOR VARYING CLUSTER SIZES.

No. Clusters Optimal Ess Pss E0 Time
10 7.1749 1.4822 1.0914 133s
30 8.281 1.726 0.2313 159s
50 8.258 1.837 0.3347 239s
70 8.1601 1.8373 0.3884 353s
100 8.1254 1.8024 0.4133 646s
150 8.0685 1.7911 0.4377 1342s

wind energy for each number of clusters is given in Table
II. The computations were performed using the IBM ILOG
CPLEX Optimizer [13] throughMATLAB 2012a on an Intel i7
processor with 32 GB of RAM. The main purpose of showing
the computation time is not to give an indication of how fast
the solution can be computed in absolute values but to provide
a way to demonstrate the effectiveness in reducing the problem
size by the means of scenario reduction. As seen from the
results, as the number of clusters decreases, the deviation from
the presumably optimal solution given by the 150 scenarios
case increases. However, even with a reduction to 30 clusters,
the solution is very close to that optimal solution and it only
takes a fraction of the time to compute the solution.
The value of using stochastic optimization can be analyzed

in comparison with other methods. In Table III, the stochastic
solutions for various numbers of clusters are compared with
using a simple weighted average of representative scenarios.
The “weighted average” of clusters as shown in the third
column of the table refers to the average of optimal Ess

sizes from the representative scenarios weighted by their
probability as calculated from scenario reduction. In the case
of 150 scenarios, the “weighted average” does not include
representative scenarios, but rather refers to the average of
the optimal solution of the original 150 scenarios, each with
equal probability. It can be seen that performing stochastic
optimization with a reduced set of scenarios results in a storage
size which is significantly closer to the solution of the overall
stochastic optimization than if just averaging is used.

TABLE III
OPTIMALEss SIZE USING VARIOUS CLUSTER SIZES AND TECHNIQUES.

No. Clusters Stochastic Solution Weighted Average
10 7.1749 11.02
30 8.281 9.869
50 8.258 9.5817
70 8.1601 9.9234
100 8.1254 9.806
150 8.0685 13.35



The optimal amount of storage in the system can be
analyzed for various levels of wind penetration. In Figure
8, the optimal amount of storage capacity for 100 scenarios
is shown for varying levels of wind penetration. Here, wind
energy penetration level is defined as the percentage of demand
in terms of energy that is supplied by wind energy on average
over all considered scenarios. Table IV lists the results of
stochastic optimization with increasing number of clusters for
0%, 10%, and 20% of wind energy penetration. As seen from
the figure and table, the optimal amount of storage increases
with the level of penetration. This can be attributed to the
fact that a higher penetration of wind results in more variation
in the net load, making it more beneficial to deploy a larger
storage device.

TABLE IV
OPTIMALEss SIZE FOR DIFFERENT LEVELS OF WIND PENETRATION.

No. Clusters 0% Wind 10% Wind 20% Wind
10 3.285 4.675 7.818
30 3.049 4.650 7.942
50 3.103 4.656 7.612
70 3.068 4.635 7.287
100 3.054 4.636 7.546
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Fig. 8. Optimal storage capacity for various levels of wind penetration.

V. CONCLUSION
In this paper we presented a method for determining the

optimal storage size in a power system focusing on a 10
minute economic dispatch. A correlation between optimal
storage capacity and variance in the system price is found for
the case in which generation costs are modeled as quadratic
functions. Based on this relationship, a scenario reduction
method was derived which accurately captures the similarities
in storage needs across scenarios. It uses centroid linkage
clustering to group scenarios with similar needs in storage into
a reduced number of clusters. This set of clusters is then taken
into account in the two-stage stochastic optimization problem
significantly reducing the overall problem size. The problem

structure was defined in a way which allows for an integration
of various storage technologies on different time scales.
Future work will not only address the question of how

much storage, but also where the storage should be placed. By
incorporating line constraints, the value of storage increase as
it allows for the alleviation of congestions. For that purpose,
the relationship between the optimal storage location and
variance in locational marginal price at particular buses will
be examined.
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