

Fast Statistical Analysis of Rare Circuit Failure Events via
Subset Simulation in High-Dimensional Variation Space

Shupeng Sun and Xin Li
Electrical & Computer Engineering Department, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA
{shupengs, xinli}@ece.cmu.edu

ABSTRACT
In this paper, we propose a novel subset simulation (SUS)
technique to efficiently estimate the rare failure rate for nanoscale
circuit blocks (e.g., SRAM, DFF, etc.) in high-dimensional
variation space. The key idea of SUS is to express the rare failure
probability of a given circuit as the product of several large
conditional probabilities by introducing a number of intermediate
failure events. These conditional probabilities can be efficiently
estimated with a set of Markov chain Monte Carlo samples
generated by a modified Metropolis algorithm, and then used to
calculate the rare failure rate of the circuit. To quantitatively
assess the accuracy of SUS, a statistical methodology is further
proposed to accurately estimate the confidence interval of SUS
based on the theory of Markov chain Monte Carlo simulation. Our
experimental results of two nanoscale circuit examples
demonstrate that SUS achieves significantly enhanced accuracy
over other traditional techniques when the dimensionality of the
variation space is more than a few hundred.

1. INTRODUCTION

As deep sub-micron technology advances, the ever increasing
process variation has become a growing concern for today’s
integrated circuits (ICs) [1]. A complex IC, containing numerous
circuit components (e.g., millions of SRAM bit-cells integrated in
an advanced microprocessor), is required to meet the design
specification not only at the nominal process corner, but also
under large-scale process variations. To achieve sufficiently high
yield, each component must be designed to be extremely robust.
For instance, the failure rate of an SRAM bit-cell must be smaller
than 10−8~10−6 for a typical SRAM design [2]-[3]. For this reason,
efficiently analyzing the rare failure events for individual circuit
components is an important task for the IC design community.

To address this issue, a large number of methods have been
proposed in the literature [4]-[14]. Most of these traditional
methods focus on failure rate estimation for SRAM bit-cells, and
only a small number of (e.g., 10~50) independent random
variables are used to model process variations. Hence, the
corresponding variation space is low-dimensional. It has been
demonstrated in [15] that estimating the rare failure probability in
a high-dimensional space (e.g., hundreds of independent random
variables to model the device-level variations for a DFF) becomes
increasingly important. Unfortunately, such a high-dimensional
problem cannot be efficiently handled by most traditional methods
[4]-[14]. To address this challenge, the scaled-sigma sampling
(SSS) method has been proposed in [15]. Though no
dimensionality curse is observed for SSS, the estimated failure
rate may not be highly accurate since SSS is based on
extrapolation. In a word, how to efficiently and accurately
estimate the rare failure probability in a high-dimensional
variation space remains an open question.

In this paper, a novel subset simulation (SUS) technique is

proposed to address this technical challenge. The key idea of SUS,
borrowed from the statistics community [16]-[18], is to express
the rare failure probability as the product of several large
conditional probabilities by introducing a number of intermediate
failure events. As such, the original problem of rare failure
probability estimation is cast to an equivalent problem of
estimating a sequence of conditional probabilities via multiple
phases. Since these conditional probabilities are relatively large,
they are substantially easier to estimate than the original rare
failure rate.

When implementing the proposed SUS method, it is difficult,
if not impossible, to directly draw random samples from the
conditional probability density functions (PDFs) and estimate the
conditional probabilities, since these conditional PDFs are
unknown in advance. To address this issue, a modified Metropolis
(MM) algorithm is adopted from [16] to generate random samples
by constructing a number of Markov chains. The conditional
probabilities of interest are then estimated from these random
samples. Unlike most traditional techniques [4]-[14] that suffer
from the dimensionality issue, SUS can be efficiently applied to
high-dimensional problems, as will be explained in the technical
sections of this paper.

In addition, a statistical methodology is further developed to
accurately estimate the confidence interval of SUS based on the
theory of Markov chain Monte Carlo (MCMC) simulation [19].
As will be demonstrated by the numerical experiments in Section
5, SUS can achieve substantially better accuracy than the
traditional methods when hundreds of independent random
variables are used to model process variations.

The remainder of this paper is organized as follows. We
briefly review the background of rare failure probability
estimation in Section 2, and then describe the proposed SUS
approach in Section 3. Several implementation issues, including (i)
how to define the intermediate failure events, and (ii) how to
quantitatively assess the accuracy of the proposed SUS estimator,
are discussed in Section 4. Two circuit examples are presented to
demonstrate the efficacy of SUS in Section 5. Finally, we
conclude in Section 6.

2. BACKGROUND

Suppose that the vector
1 []1 2 Mx x x=x (1)
is an M-dimensional random variable modeling the device-level
process variations and its joint PDF is p(x). Without loss of
generality, we further assume that the random variables {xm; m =
1, 2, ···, M} in the vector x are mutually independent [4]-[15]

2 () ()
1

M

m m
m

p p x
=

= ∏x , (2)

where pm(xm) is the 1-D PDF for xm.
Consider a circuit-level performance of interest (PoI) and it

978-1-4799-6278-5/14/$31.00 ©2014 IEEE 324

can be expressed as a function of the device-level variations: y(x).
The failure rate PF can be expressed as
3 ()PrFP y F= ⎡ ∈ ⎤⎣ ⎦x , (3)
where Pr(•) denotes the probability that an event occurs, and F
stands for the failure region in the performance space (i.e., the
subset of the performance space where the PoI does not meet the
specification).

In theory, the failure rate PF can be estimated by brute-force
Monte Carlo (MC) analysis. The key idea of MC is to draw N
random samples {x(n); n = 1, 2, ···, N} from p(x), and perform
transistor-level simulations to evaluate their PoI values {y(x(n)); n
= 1, 2, ···, N}. The failure rate PF is then estimated by

4 ()()
1

1 N
nMC

F F
n

P I y
N =

⎡ ⎤= ⋅ ⎣ ⎦∑ x , (4)

where IF[y(x)] represents the indicator function

5 () ()
()

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (5)

When MC is applied, around 1/PF random samples are
required on average to obtain a single random sample whose PoI
falls into the failure region F. Evaluating the PoI for each random
sample requires an expensive transistor-level simulation and,
hence, a large number of (e.g., 107~109) simulations are needed by
MC when the failure rate PF is extremely small (e.g., 10−8~10−6).
From this point of view, MC cannot be efficiently applied to the
problem of rare failure rate estimation in practice.

3. SUBSET SIMULATION

Instead of directly estimating the rare failure probability, SUS
expresses the rare failure probability as the product of several
large conditional probabilities by introducing several intermediate
failure events. Without loss of generality, we assume that the
performance function y(x) is continuous. Define K intermediate
failure events {Fk; k = 1, 2, ···, K} as the subsets of the
performance space
6 1 2 1K KF F F F F−= ⊂ ⊂ ⊂ ⊂ . (6)
Based on (6), we can express PF in (3) as
7 () () () () 1Pr Pr Pr ,F K K KP y F y F y F y F −= ⎡ ∈ ⎤= ⎡ ∈ ⎤= ⎡ ∈ ∈ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x x x . (7)

In (7), if y(x) belongs to FK, it will undoubtedly belong to FK−1
because FK is a subset of FK−1 as shown in (6). Eq. (7) can be re-
written as [20]
8 () () ()1 1Pr PrF K K KP y F y F y F− −⎡ ⎤= ∈ ∈ ⋅ ⎡ ∈ ⎤⎣ ⎦⎣ ⎦x x x . (8)

Here, the conditional probability Pr[y(x) ∈ FK | y(x) ∈ FK−1]
represents the probability of y(x) ∈ FK given y(x) ∈ FK−1.
Similarly, we can express Pr[y(x) ∈ FK−1] as
9 () () () ()1 1 2 2Pr Pr PrK K K Ky F y F y F y F− − − −⎡ ⎤⎡ ∈ ⎤= ∈ ∈ ⋅ ⎡ ∈ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦x x x x . (9)

From (6), (8) and (9), we can easily derive

10 () () ()1 1
2 1

Pr Pr
K K

F k k k
k k

P y F y F y F P−
= =

⎡ ⎤= ⎡ ∈ ⎤⋅ ∈ ∈ =⎣ ⎦ ⎣ ⎦∏ ∏x x x , (10)

where
11 ()1 1PrP y F= ⎡ ∈ ⎤⎣ ⎦x (11)

12 () () ()1Pr 2,3, ,k k kP y F y F k K−⎡ ⎤= ∈ ∈ =⎣ ⎦x x . (12)

If the failure events {Fk; k = 1, 2, ···, K} are properly chosen,
all the probabilities {Pk; k = 1, 2, ···, K} are large and can be
efficiently estimated. Once {Pk; k = 1, 2, ···, K} are known, the

rare failure probability PF can be easily calculated by (10). In
what follows, we will first use a simple 2-D example to intuitively
illustrate the basic flow of SUS in Section 3.1, and then further
generalize SUS to high dimension in Section 3.2.

3.1 A Simple 2-D Example

Figure 1 shows a simple 2-D example with two random
variables x = [x1 x2] to model the device-level process variations.
In Figure 1, the failure regions Ω1 and Ω2 denote the subsets of the
variation space where the PoI y(x) belongs to F1 and F2
respectively, i.e., Ω1 = {x | y(x) ∈ F1} and Ω2 = {x | y(x) ∈ F2}.
Note that Ω1 and Ω2 are depicted for illustration purposes in this
example. In practice, we do not need to explicitly know Ω1 and Ω2.
Instead, we can run a transistor-level simulation to determine
whether a sample x belongs to Ω1 and/or Ω2.

0 x1

x2 Ω1

x1

x2 Ω1

0

Ω2

(a) (b)
Figure 1. A two-dimensional example is used to illustrate the procedure
of probability estimation via multiple phases by using SUS: (a) generating
MC samples and estimating P1 in the 1st phase, and (b) generating MCMC
samples and estimating P2 in the 2nd phase.

Our objective is to estimate the probabilities {Pk; k = 1, 2, ···,
K} via multiple phases. Starting from the 1st phase, we simply
draw L1 independent random samples {x(1, l); l = 1, 2, ···, L1} from
the PDF p(x) to estimate P1. Here, the superscript “1” of the
symbol x(1, l) refers to the 1st phase. Among these L1 samples, we
identify a subset of samples {xF

(1, t); t = 1, 2, ···, T1} that fall into
Ω1, where T1 denotes the total number of the samples in this
subset. As shown in Figure 1 (a), the red points represent the
samples that belong to Ω1 and the green points represent the
samples that are out of Ω1. In this case, P1 can be estimated as

13 ()()1

1

1, 1
1

11 1

1 L
lSUS

F
l

TP I y
L L=

⎡ ⎤= ⋅ =⎣ ⎦∑ x , (13)

where P1
SUS denotes the estimated value of P1, and IF1[y(x)]

represents the indicator function

14 () ()
()1

1

1

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (14)

If P1 is large, it can be accurately estimated by the aforementioned
MC method with a small number of random samples (e.g., L1 is
around 102~103).

Next, in the 2nd phase, we need to estimate the conditional
probability P2 = Pr[y(x) ∈ F2 | y(x) ∈ F1] which can be re-written
as Pr(x ∈ Ω2 | x ∈ Ω1). Towards this goal, one simple idea is to
directly draw random samples from the conditional PDF p(x | x ∈
Ω1) and then compute the mean of the indicator function IF2[y(x)]

15 () ()
()2

2

2

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (15)

This approach, however, is practically infeasible since p(x | x ∈
Ω1) is unknown in advance. To address this challenge, we apply a
modified Metropolis (MM) algorithm [16] to generate a set of
random samples that follow the conditional PDF p(x | x ∈ Ω1).

MM is a Markov chain Monte Carlo (MCMC) technique [19].

325

Starting from each of the samples {xF
(1, t); t = 1, 2, ···, T1} that fall

into Ω1 in the 1st phase, MM generates a sequence of samples that
form a Markov chain. In other words, there are T1 independently
generated Markov chains in total and xF

(1, t) is the 1st sample of
the t-th Markov chain. To clearly explain the MM algorithm, we
define the symbol x(2, t, 1) = xF

(1, t), where t ∈ {1, 2, ···, T1}. The
superscripts “2” and “1” of x(2, t, 1) refer to the 2nd phase and the
1st sample of the Markov chain respectively.

For our 2-D example, we start from x(2, 1, 1) = [x1
(2, 1, 1) x2

(2, 1, 1)]
to form the 1st Markov chain. To generate the 2nd sample x(2, 1, 2)
from x(2, 1, 1), we first randomly sample a new value x1

NEW from a
1-D transition PDF q1[x1

NEW | x1
(2, 1, 1)] that must satisfy the

following condition [16]

16 () ()2,1,1 2,1,1
1 1 1 1 1 1

NEW NEWq x x q x x⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ . (16)

There are many possible ways to define q1[x1
NEW | x1

(2, 1, 1)] in (16)
[16]. For example, a 1-D Normal PDF can be used

17 () (){ }22,1,1 2,1,1 2
1 1 1 1 1 1

1

1 exp 2
2

NEW NEWq x x x x σ
π σ

⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅⎣ ⎦⎣ ⎦ ⋅
, (17)

where x1
(2, 1, 1) and σ1 are the mean and standard deviation of the

distribution respectively. Here, σ1 is a parameter that should be
empirically chosen by following the heuristics in Section 3.2.

Next, we compute the ratio

18 () ()()2,1,1
1 1 1 1

NEWr p x p x= , (18)

where p1(x1) is the original PDF of the random variable x1 shown
in (2). A random sample u is then drawn from a 1-D uniform
distribution with the following PDF

19 () 1 0 1
0 Otherwise

u
f u

≤ ≤⎧
= ⎨
⎩

, (19)

and the value of x1
(2, 1, 2) is set as

20 () ()
() ()
12,1,2

1 2,1,1
1

min 1,

min 1,

NEWx u r
x

x u r

⎧ ≤⎪= ⎨
>⎪⎩

. (20)

A similar procedure is applied to generate x2
(2, 1, 2). Once x1

(2, 1, 2)
and x2

(2, 1, 2) are determined, we form a candidate xNEW = [x1
(2, 1, 2)

x2
(2, 1, 2)] and use it to create the sample x(2, 1, 2)

21 ()
()

12,1,2
2,1,1

1

NEW NEW

NEW

⎧ ∈ Ω⎪= ⎨
∉ Ω⎪⎩

x x
x

x x
. (21)

By repeating the aforementioned steps, we can create other
samples to complete the Markov chain {x(2, 1, l); l = 1, 2, ···, L2},
where L2 denotes the length of the Markov chain in the 2nd phase.
In addition, all other Markov chains can be similarly formed.
Since there are T1 Markov chains and each Markov chain contains
L2 samples, the total number of the MCMC samples is T1·L2 for
the 2nd phase. Figure 1 (b) shows the sampling results for our 2-D
example. In Figure 1 (b), the red points represent the initial
samples {x(2, t, 1); t = 1, 2, ···, T1} of the Markov chains and they
are obtained from the 1st phase. The yellow points represent the
MCMC samples created via the MM algorithm in the 2nd phase.

It has been proved in [16] that if the initial sample x(2, t, 1)
follows the distribution p(x | x ∈ Ω1), all the samples {x(2, t, l); l = 1,
2, ···, L2} in the Markov chain follow p(x | x ∈ Ω1). In our 2-D
example, since the initial samples {x(2, t, 1); t = 1, 2, ···, T1} are
randomly drawn from p(x) and belong to Ω1, they follow the
distribution p(x | x ∈ Ω1). Hence, all the MCMC samples {x(2, t, l);
t = 1, 2, ···, T1, l = 1, 2, ···, L2} in Figure 1 (b) follow p(x | x ∈ Ω1).
In other words, we have successfully generated a number of
random samples that follow our desired distribution for the 2nd

phase.
Among all the MCMC samples {x(2, t, l); t = 1, 2, ···, T1, l = 1,

2, ···, L2}, we further identify a subset of samples {xF
(2, t); t = 1,

2, ···, T2} that fall into Ω2, where T2 denotes the total number of
the samples in this subset. The conditional probability P2 can be
estimated as

22 ()()1 2

2

2, , 2
2

1 11 2 1 2

1 T L
t lSUS

F
t l

TP I y
T L T L= =

⎡ ⎤= ⋅ =⎣ ⎦⋅ ⋅∑∑ x , (22)

where P2
SUS denotes the estimated value of P2, and IF2[y(x)] is the

indicator function defined in (15).
By following the aforementioned idea, we can estimate all the

probabilities {Pk; k = 1, 2, ···, K}. Namely, for the k-th phase
where k > 2, we need to estimate the conditional probability Pk =
Pr[y(x) ∈ Fk | y(x) ∈ Fk−1] by generating MCMC samples via the
MM algorithm. Once the values of {Pk; k = 1, 2, ···, K} are
estimated, the rare failure rate PF is calculated by

23
1

K
SUS SUS

F k
k

P P
=

= ∏ , (23)

where PF
SUS represents the estimated value of PF by using SUS.

3.2 High-dimensional Case

If we have more than two random variables, estimating the
probabilities {Pk; k = 1, 2, ···, K} can be pursued in a similar way.
Algorithm 1 summarizes the major steps of the proposed SUS
method for high dimension. It consists of K phases. During the 1st
phase, we randomly sample the PDF p(x) to estimate P1. Next, we
apply MM (i.e., Step 7~15 in Algorithm 1) to estimate the
conditional probability Pk during the k-th phase, where k ∈ {2,
3, ···, K}. When estimating Pk, we construct Tk−1 Markov chains.
Each Markov chain contains Lk MCMC samples {x(k, t, l); l = 1,
2, ···, Lk} that are created by the MM algorithm. Hence, there are
Tk−1·Lk samples in total, and the probability Pk is estimated by
these samples. Finally, the rare failure rate PF is estimated from
{Pk; k = 1, 2, ···, K} by using (23).

Algorithm 1: Subset Simulation (SUS)
1. Start from a set of pre-defined failure events {Fk; k = 1, 2, ···,

K}.
2. Generate L1 random samples {x(1, l); l = 1, 2, ···, L1} from p(x).
3. From the random samples {x(1, l); l = 1, 2, ···, L1}, identify the

samples for which y[x(1, l)] ∈ F1. Label these samples as
{xF

(1, t); t = 1, 2, ···, T1}, where T1 represents the total number
of samples satisfying the condition. Calculate P1

SUS by (13).
4. Initialize k = 2.
5. Set x(k, t, 1) = xF

(k−1, t), where t = 1, 2, ···, Tk−1.
6. For t = 1, 2, ···, Tk−1
7. For l = 2, 3, ···, Lk
8. For m = 1, 2, ···, M
9. Generate a random value xm

NEW from the 1-D transition
PDF qm[xm

NEW | xm
(k, t, l−1)]. For instance, the 1-D

transition PDF can be a Normal distribution [16]

24 () (){ }2, , 1 , , 1 21 exp 2
2

k t l k t lNEW NEW
m m m m m m

m

q x x x x σ
π σ

− −⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅⎣ ⎦⎣ ⎦ ⋅
. (24)

10. Calculate the ratio

25 () ()(), , 1k t lNEW
m m m mr p x p x −= . (25)

11. Draw a random value u from the uniform distribution in
(19) and set the value of xm

(k, t, l) as

326

26 () ()
() ()

, ,
, , 1

min 1,

min 1,

NEW
mk t l

m k t l
m

x u r
x

x u r−

⎧ ≤⎪= ⎨
>⎪⎩

. (26)

12. End For
13. Form a candidate xNEW = [x1

(k, t, l) x2
(k, t, l) ··· xM

(k, t, l)], and
run a transistor-level simulation to evaluate y(xNEW).

14. Set the value of x(k, t, l) as

27 () ()
() ()

1, ,

, , 1
1

NEW NEW
kk t l

k t l NEW
k

y F

y F

−

−
−

⎧ ∈⎪= ⎨
∉⎪⎩

x x
x

x x
. (27)

15. End For
16. End For
17. From the Tk−1·Lk MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l =

1, 2, ···, Lk}, identify the samples for which y[x(k, t, l)] ∈ Fk.
Label these samples as {xF

(k, t); t = 1, 2, ···, Tk}, where Tk
represents the total number of samples satisfying the condition.

18. Calculate Pk
SUS by

28
1

SUS k
k

k k

TP
T L−

=
⋅

. (28)

19. If k < K, set k = k + 1 and go to Step 5. Otherwise, go to Step
20.

20. Calculate PF
SUS by (23).

There are several important clarifications that should be made
for Algorithm 1. First, sampling the transition PDF qm[xm

NEW |
xm

(k, t, l−1)] in (24) at Step 9 or the uniform PDF f(u) in (19) at Step
11 involves no transistor-level simulation and, hence, its
computational cost is almost negligible. The computational cost of
Algorithm 1 is dominated by the transistor-level simulation to
evaluate y(xNEW) at Step 13.

Second, MM successively samples a set of 1-D transition
PDFs {qm[xm

NEW | xm
(k, t, l−1)]; m = 1, 2, ···, M}, instead of any high-

dimensional joint PDF, to generate a new MCMC sample. For this
reason, MM does not suffer from any dimensionality issue and
can efficiently handle high-dimensional problems in practice.
More detailed discussions about the efficiency of MM for high
dimension can be found in [16].

Finally, the 1-D transition PDFs {qm[xm
NEW | xm

(k, t, l−1)]; m = 1,
2, ···, M} play an important role in sampling the failure region
Ωk−1 at the k-th phase, where Ωk−1 denotes the subset of the
variation space {x | y(x) ∈ Fk−1}. For illustration purposes, we
consider the 1-D transition PDF in (24) as an example. For this
Normal distribution, if its standard deviation σm is too large, it is
likely that the new sample xm

NEW is far away from the previous
sample xm

(k, t, l−1). In other words, we attempt to “jump” over a
long distance via the Markov chain. However, the new sample
xNEW may eventually fall out of the failure region Ωk−1 (i.e., y(xNEW)
∉ Fk−1) and get rejected, as shown in (27).

On the other hand, if σm is too small, it is likely that the new
sample xm

NEW is extremely close to the previous sample xm
(k, t, l−1).

In this case, it may require many MCMC samples to fully explore
the failure region Ωk−1. The aforementioned discussions imply an
important fact that the value of σm must be appropriately chosen in
order to make Algorithm 1 efficient. As a heuristic approach [16],
we simply set σm equal to the standard deviation of the original
PDF pm(xm) shown in (2). Intuitively, if the standard deviation of
pm(xm) is large, the random variable xm can vary over a large range.
In this case, we want to set σm to a relatively large value so that
the resulting Markov chain can quickly explore a large region of
the variation space.

4. IMPLEMENTATION DETAILS
In this section, we further discuss several important

implementation issues for SUS, including (i) subset selection, and
(ii) confidence interval estimation.

4.1 Subset Selection

In Algorithm 1, we assume that the failure events {Fk; k = 1,
2, ···, K} are pre-defined. In practice, however, we have to
carefully define {Fk; k = 1, 2, ···, K} so that our proposed SUS
method is computationally efficient. Otherwise, if {Fk; k = 1, 2, ···,
K} are not appropriately chosen, {Pk; k = 1, 2, ···, K} can be
extremely small and, hence, cannot be efficiently estimated by a
small number of samples.

To address this practical issue, we propose to adaptively
choose the failure events {Fk; k = 1, 2, ···, K} to satisfy the
following conditions

29
()1,2, , 1SUS

k OBJ

SUS
K OBJ

P P k K

P P

= = −

≥
, (29)

where POBJ (0 < POBJ < 1) is a user-specified parameter that
defines the “desired” value for Pk at the k-th phase. To intuitively
illustrate our proposed strategy for subset selection, we consider a
sense amplifier example where the PoI y(x) is the delay from the
input to its output. If the delay y(x) is greater than or equal to a
pre-defined specification ySPEC, we consider the sense amplifier as
“FAIL”. In this example, the failure events {Fk; k ∈ 1, 2, ···, K}
can be defined by setting different values for the delay
specification. The delay specification should be tight (i.e., small)
for F1 and loose (i.e., large) for FK. Our objective is to adaptively
determine a set of monotonically increasing values {y1 < y2 < ··· <
yK−1 < yK = ySPEC} and define the failure event Fk as Fk = {y | y(x)
≥ yk}, where k ∈ {1, 2, ···, K}, so that the conditions in (29) are
satisfied.

Based upon this idea, during the 1st phase of SUS for the
sense amplifier example, we need to take the random samples
{y[x(1, l)]; l = 1, 2, ···, L1} created in Step 2 of Algorithm 1, and
determine the value of y1 so that the condition y[x(1, l)] ≥ y1 holds
for T1 = L1⋅P1

SUS = L1⋅POBJ samples. To this end, we sort {y[x(1, l)];
l = 1, 2, ···, L1} and then set y1 to the T1-th largest value of y of the
sorted samples. Similarly, during the 2nd phase, we need to take
the random samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} created
in Step 6~16 of Algorithm 1, and determine the value of y2 so that
the condition y[x(2, t, l)] ≥ y2 holds for T2 = T1⋅L2⋅P2

SUS = T1⋅L2⋅POBJ
samples. We sort {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} and then
set y2 to the T2-th largest value of y of the sorted samples. The
aforementioned procedure is repeatedly applied to further
determine the values of {y3, y4, ···} until we reach the K-th phase
where setting yK = ySPEC results in the probability PK

SUS that is
greater than POBJ.

Two important clarifications should be made for our proposed
subset selection. First, combining (10), (23) and (29) implies
30 1SUS K SUS K

F F OBJ K OBJP P P P P−≈ = ⋅ ≥ . (30)
From (30), we observe that the total number of phases (i.e., K)
depends on the failure rate PF and the user-specified parameter
POBJ. The value of K is approximately equal to the minimum
integer that is greater than log(PF) / log(POBJ). Since we do not
know PF in advance, we cannot pre-determine K. Instead, the
value of K must be adaptively set when running the SUS
algorithm.

Second, but more importantly, the user-specified parameter
POBJ substantially impacts the efficiency of SUS. If POBJ is too

327

small, the probabilities {Pk; k = 1, 2, ···, K} are small. Hence,
estimating these probabilities requires a large number of samples
and, therefore, is not computationally efficient. On the other hand,
if POBJ is too large, estimating {Pk; k = 1, 2, ···, K} becomes trivial.
However, based on (30), a large number of phases are needed to
estimate the failure rate PF (i.e., K is large), thereby resulting in
high computational cost. For these reasons, it is crucial to
appropriately choose POBJ to make SUS efficient for practical
circuit analysis problems.

In this paper, an empirical value is chosen for POBJ (say, POBJ
= 0.1). In this case, even if the failure rate PF is extremely small
(e.g., 10−8~10−6), SUS only needs a small number of (e.g., K =
6~8) phases to complete. Furthermore, it only requires a few
hundred samples during each phase to accurately estimate the
probability Pk that is close to 0.1, where k ∈ {1, 2, ···, K}. It, in
turn, results in an efficient implementation of SUS for rare failure
rate estimation, as will be demonstrated by our experimental
results in Section 5.

4.2 Confidence Interval Estimation

To quantitatively assess the accuracy of the proposed SUS
estimator PF

SUS shown in (23), we must estimate its confidence
interval (CI). To this end, we need to know the distribution of
PF

SUS. Since PF
SUS is equal to the multiplication of {Pk

SUS; k = 1,
2, ···, K}, we should carefully study the statistical property of
{Pk

SUS; k = 1, 2, ···, K} in order to derive the distribution for PF
SUS.

As described in Algorithm 1, the estimators {Pk
SUS; k = 1, 2, ···,

K} are calculated from the random samples either drawn from p(x)
in Step 2 or created by MM in Step 6~16 of Algorithm 1. To be
specific, P1

SUS is calculated by using (13) with L1 independent and
identically distributed (i.i.d.) samples drawn from p(x) in Step 2
of Algorithm 1. According to the central limit theorem (CLT) [20],
P1

SUS approximately follows a Normal distribution
31 ()1 1 1~ ,SUSP N P v , (31)
where the mean value P1 is defined in (11) and the variance value
v1 can be approximated as [20]

32 ()1 1 1
1

1 1SUS SUSv P P
L

≈ ⋅ ⋅ − . (32)

On the other hand, Pk
SUS, where k ∈ {2, 3, ···, K}, is calculated

by using (28) with the MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l
= 1, 2, ···, Lk} created by MM in Step 6~16 of Algorithm 1. It has
been proved in [16] that all these MCMC samples {x(k, t, l); t = 1,
2, ···, Tk−1, l = 1, 2, ···, Lk} follow the conditional PDF p(x | x ∈
Ωk−1). Eq. (28) can be re-written as

33 ()()1
, ,

1 11

1 k k

k

T L
k t lSUS

k F
t lk k

P I y
T L

−

= =−

⎡ ⎤= ⋅ ⎣ ⎦⋅ ∑∑ x , (33)

where IFk[y(x)] represents the indicator function

34 () ()
()

1
0k

k
F

k

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (34)

From Step 7~15 of Algorithm 1, we can observe that {x(k, t, l); l
= 1, 2, ···, Lk}, where t ∈ {1, 2, ···, Tk−1}, are strongly correlated.
Alternatively speaking, the MCMC samples {x(k, t, l); t = 1, 2, ···,
Tk−1, l = 1, 2, ···, Lk} used to calculate Pk

SUS in (33) are not
independent and, hence, cannot be considered as i.i.d. samples.
For this reason, we cannot directly apply CLT [20] to derive the
distribution for the estimator Pk

SUS in (33).
To address this issue, we define a set of new random variables

35 () ()() (), , ,
1

1

1 1,2, ,
k

k

L
k t k t l

F k
lk

s I y t T
L −

=

⎡ ⎤= ⋅ =⎣ ⎦∑ x . (35)

Studying (35) reveals an important observation that s(k, t), where t
∈ {1, 2, ···, Tk−1}, only depends on the t-th Markov chain {x(k, t, l); l
= 1, 2, ···, Lk}. Since different Markov chains are created from
different initial samples {x(k, t, 1); t = 1, 2, ···, Tk−1}, the random
variables {s(k, t); t = 1, 2, ···, Tk−1} in (35) are almost statistically
independent. Furthermore, since all the initial samples {x(k, t, 1); t =
1, 2, ···, Tk−1} follow the same conditional PDF p(x | x ∈ Ωk−1) and
all the Markov chains are generated by following the same
procedure (i.e., Step 7~15 of Algorithm 1), the random variables
{s(k, t); t = 1, 2, ···, Tk−1} should be identically distributed. For these
reasons, we can consider {s(k, t); t = 1, 2, ···, Tk−1} as a set of i.i.d.
random variables.

Based on (35), Pk
SUS in (33) can be re-written as

36 ()1
,

11

1 kT
k tSUS

k
tk

P s
T

−

=−

= ⋅∑ . (36)

Since {s(k, t); t = 1, 2, ···, Tk−1} are i.i.d. random variables, Pk
SUS

approximately follows a Normal distribution according to CLT
37 () ()~ MEAN ,VARSUS SUS SUS

k k kP N P P⎡ ⎤⎣ ⎦ , (37)

where MEAN(•) and VAR(•) denote the mean and variance of a
random variable respectively. From (33) and (34), MEAN(Pk

SUS)
can be easily calculated as
38 ()MEAN SUS

k kP P= , (38)

where Pk is defined in (12). Based on (36) where {s(k, t); t = 1, 2, ···,
Tk−1} are i.i.d. random variables, VAR(Pk

SUS) can be computed as

39 () ()1
,

,2
11 1

1 1VAR VAR
kT

k tSUS
k s k

tk k

P s v
T T

−

=− −

⎡ ⎤= ⋅ = ⋅⎣ ⎦∑ , (39)

where vs,k represents the variance of the random variables {s(k, t); t
= 1, 2, ···, Tk−1}, and it can be approximated by the sample
variance of {s(k, t); t = 1, 2, ···, Tk−1}

40 ()1 2,
,

11

1
1

kT
k t SUS

s k k
tk

v s P
T

−

=−

⎡ ⎤≈ ⋅ −⎣ ⎦− ∑ . (40)

Substituting (38), (39) and (40) into (37) yields
41 () ()~ , 2,3, ,SUS

k k kP N P v k K= , (41)
where Pk is defined in (12) and

42
()

()1 2,

11 1

1
1

kT
k t SUS

k k
tk k

v s P
T T

−

=− −

⎡ ⎤≈ ⋅ −⎣ ⎦− ⋅ ∑ . (42)

To further derive the distribution for PF
SUS in (23) based on

(31) and (41), we take logarithm on both sides of (23) because it is
much easier to handle summation than multiplication

43 () ()
1

log log
K

SUS SUS
F k

k

P P
=

=∑ . (43)

To derive the distribution of {log(Pk
SUS); k = 1, 2, ···, K}, we

approximate the nonlinear function log(•) by the first-order Taylor
expansion around the mean value Pk of the random variable Pk

SUS

44 () ()log log log
SUS SUS

SUS k k k k
k k k SUS

k k

P P P PP P P
P P

− −≈ + ≈ + . (44)

According to the linear approximation in (44), log(Pk
SUS) follows

a Normal distribution
45 () () ()log,log ~ log , 1,2, ,SUS

k k kP N P v k K⎡ ⎤ =⎣ ⎦ , (45)

where

46 ()2

log,
SUS

k k kv v P= . (46)

328

Since log(PF
SUS) is the summation of several “approximately”

Normal random variables {log(Pk
SUS); k = 1, 2, ···, K}, log(PF

SUS)
also approximately follows a Normal distribution [20]
47 () () (){ }log ~ MEAN log ,VAR logSUS SUS SUS

F F FP N P P⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (47)

Based on (10), (43), and (45), MEAN[log(PF
SUS)] can be

expressed as

48 () () ()
1 1

MEAN log log log log
KK

SUS
F k k F

k k

P P P P
= =

⎛ ⎞⎡ ⎤ = = =⎜ ⎟⎣ ⎦ ⎝ ⎠
∑ ∏ , (48)

and VAR[log(PF
SUS)] can be calculated as

49
() ()

() ()
1

1

log,
1 1 1

VAR log VAR log

2 COV log ,log

K
SUS SUS

F k
k

K K K
SUS SUS

k i j
k i j i

P P

v P P

=

−

= = = +

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= + ⋅ ⎣ ⎦

∑

∑ ∑ ∑
, (49)

where COV(•, •) denotes the covariance of two random variables.
When applying MCMC, we often observe that an MCMC

sample is strongly correlated to its adjacent sample. However, the
correlation quickly decreases as the distance between two MCMC
samples increases. Therefore, we can assume that the samples
used to estimate log(Pi

SUS) are weakly correlated to the samples
used to estimate log(Pj

SUS), if the distance between i and j is
greater than 1 (i.e., |i – j| > 1). Based on this assumption, Eq. (49)
can be approximated as

50
()

() ()
1

log, 1
1 1

VAR log

2 COV log ,log

SUS
F

K K
SUS SUS

k k k
k k

P

v P P
−

+
= =

⎡ ⎤⎣ ⎦

⎡ ⎤≈ + ⋅ ⎣ ⎦∑ ∑
. (50)

Accurately estimating the covariance between log(Pk
SUS) and

log(Pk+1
SUS) is nontrivial. Here, we derive an upper bound for

COV[log(Pk
SUS), log(Pk+1

SUS)] [20]

51
() ()

()
1 log, log, 1COV log ,log

1,2, , 1

SUS SUS
k k k kP P v v

k K

+ +
⎡ ⎤ ≤ ⋅⎣ ⎦

= −
. (51)

Substituting (51) into (50) yields

52 ()
1

log, log, log, 1 log,
1 1

VAR log 2
K K

SUS
F k k k SUS

k k

P v v v v
−

+
= =

⎡ ⎤ ≤ + ⋅ ⋅ =⎣ ⎦ ∑ ∑ . (52)

In this paper, we approximate VAR[log(PF
SUS)] by its upper

bound vlog,SUS defined in (52) to provide a conservative estimation
for the CI. Based on (48) and (52), Eq. (47) can be re-written as
53 () () log,log ~ log ,SUS

F F SUSP N P v⎡ ⎤⎣ ⎦ . (53)

According to (53), we can derive the CI for any given confidence
level. For instance, the 95% CI is expressed as

54
()()

()()
log,

log,

exp log 1.96 ,

exp log 1.96

SUS
F SUS

SUS
F SUS

P v

P v

⎡ − ⋅⎣
⎤+ ⋅ ⎦

. (54)

The aforementioned CI estimation accurately captures the
uncertainty of our proposed estimator PF

SUS, as will be
demonstrated by several numerical examples in Section 5.

5. NUMERICAL EXAMPLES

In this section, we demonstrate the efficacy of SUS by several
circuit examples. For testing and comparison purposes, four
different algorithms are implemented: (i) brute-force MC, (ii)
minimum-norm importance sampling (MNIS) [10], (iii) SSS [15],
and (iv) SUS. In our experiments, the brute-force MC is applied to
generate the “golden” failure rate which is used to evaluate the
accuracy of the other three approaches. As described in [10],

MNIS consists of two stages: (i) 2000 transistor-level simulations
are first used to search the variation space, and (ii) a shifted
Normal PDF is then constructed to perform importance sampling
and estimate the rare failure rate. When implementing SSS, six
scaling factors (i.e., 1.5, 2.3, 3.1, 3.9, 4.7 and 5.5) are empirically
chosen. Finally, for our proposed SUS, the 1-D Normal
distribution in (24) is used as the transition PDF in Step 9 of
Algorithm 1 and the parameter POBJ in (29) is empirically set to
0.1.

5.1 SRAM Read Current

BL_

0 1

BL_
WL<0>

1 0

1 0

VDD
BL

WL<0>

BL

WL<1>

WL<63>

IBL_IBL

CELL<0>

CELL<1>

CELL<63>

Figure 2. The simplified schematic is shown for an SRAM column
consisting of 64 bit-cells designed in a 45nm CMOS process.

Figure 2 shows the simplified schematic of an SRAM column
consisting of 64 bit-cells designed in a 45nm CMOS process. In
this example, our PoI is the read current IREAD, which is defined as
the difference between the bit-line currents IBL and IBL_ (i.e., IREAD
= IBL – IBL_). The PoI IREAD directly impacts the SRAM read delay
and, hence, is an important performance metric. If IREAD is greater
than a pre-defined specification, we consider the SRAM circuit as
“PASS”. Otherwise, it is considered as “FAIL”. To mimic the
worst-case scenario for read operation, we maximize the impact of
leakage current by storing “0” in CELL<0> and “1” in all other
bit-cells. For process variation modeling, the local VTH mismatch
of each transistor is considered as an independent Normal random
variable. In total, we have 384 independent random variables (i.e.,
64 bit-cells × 6 transistors per bit-cell = 384). It, in turn, serves as
a good example to demonstrate the efficacy of SUS in a high-
dimensional (i.e., M = 384) variation space.

Table 1. Failure rate PF and 95% CI [PF
L, PF

U] estimated by MNIS, SSS,
and SUS (“golden” failure rate = 10−6)

of Sims 3600 4200 4800 5400 6000

MNIS
[10]

PF
L 0 0 0 0 0

PF 9.2×10−11 6.8×10−11 5.4×10−11 2.1×10−10 1.8×10−10

PF
U 2.5×10−10 1.8×10−10 1.4×10−10 4.7×10−10 4.0×10−10

SSS
[15]

PF
L 9.9×10−11 3.2×10−11 1.3×10−10 2.8×10−10 3.8×10−9

PF 5.3×10−7 1.6×10−7 8.5×10−7 9.6×10−7 1.3×10−6

PF
U 5.8×10−4 5.0×10−5 5.3×10−4 5.2×10−4 1.4×10−4

SUS

PF
L 2.1×10−7 1.2×10−7 1.9×10−7 1.7×10−7 2.3×10−7

PF 1.2×10−6 7.6×10−7 9.9×10−7 8.9×10−7 1.0×10−6

PF
U 7.4×10−6 4.7×10−6 5.1×10−6 4.7×10−6 4.5×10−6

Based on the brute-force MC with 107 samples, the “golden”

failure rate is equal to 10−6 in this example. Table 1 summarizes
the failure rate and the 95% CI estimated by MNIS, SSS, and SUS
with different numbers of simulations. From Table 1, we have
several important observations. First, the estimated failure rate
from MNIS is strongly biased. We believe that the shifted Normal

329

PDF used by MNIS for importance sampling does not capture the
most important failure region and, hence, the estimated failure
rate is substantially less than the “golden” failure rate. More
importantly, the 95% CI estimated by MNIS cannot cover the
“golden” failure rate, implying that MNIS also fails to assess the
accuracy of its estimated failure rate. This is an important
limitation of MNIS since the user cannot reliably know the actual
“confidence” of the estimator in practice.

Second, even though the 95% CI estimated by SSS can
overlap with the “golden” failure rate, its range is large and,
hence, the estimation is inaccurate. Because SSS relies on
extrapolation to estimate the failure rate based on a set of
probability values associated with different scaling factors, the
estimation errors for these intermediate probabilities can be
“amplified” due to the extrapolation operation. For this reason, the
failure rate estimated by SSS can be inaccurate and, consequently,
its CI covers a large range.

Third, for our proposed SUS method, the estimator is almost
unbiased and the 95% CI is relatively small compared to MNIS
and SSS. It, in turn, demonstrates that SUS can achieve
substantially better accuracy than the traditional methods (i.e.,
MNIS and SSS) in this SRAM example.

0 20 40 60 80 100-10
-8
-6
-4
-2

(a) MNIS

lo
g 10

(P
F)

0 20 40 60 80 100-10
-8
-6
-4
-2

(b) SSS

lo
g 10

(P
F)

0 20 40 60 80 100-10
-8
-6
-4
-2

(c) SUS

lo
g 10

(P
F)

Figure 3. The 95% CIs are estimated from 100 repeated runs with 6000
simulations in each run for three different methods: (a) MNIS, (b) SSS,
and (c) SUS. The red line represents the “golden” failure rate.

Finally, we further verify the accuracy of the 95% CI
estimated by three different methods (i.e., MNIS, SSS and SUS).
To this end, we repeatedly run each method for 100 times with
6000 simulations in each run. Figure 3 shows the 100 estimated
95% CIs for each method, where each blue bar represents the CI
of a single run, and the red line represents the “golden” failure
rate. To clearly plot these CIs, the y-axis of Figure 3 is displayed
in logarithmic scale over the range [10−10, 10−2]. If this range
cannot cover a complete CI, we only show a portion of the CI that
is inside the range.

Studying Figure 3 reveals several important observations.
First, only a single CI estimated from 100 repeated runs by MNIS
can cover the “golden” failure rate. It, again, demonstrates the fact
that the confidence level of MNIS cannot be accurately assessed
by its estimated CI. Second, there are 94 and 97 CIs out of 100
runs that cover the “golden” failure rate for SSS and SUS
respectively. It demonstrates that the CIs estimated by both SSS
and SUS accurately measure the estimation error and can
appropriately indicate the conference level of the estimator. Third,
the CIs of SUS are substantially tighter than those of SSS,
implying that SUS is more accurate than SSS in this example.

5.2 DFF Delay
We consider a DFF circuit designed in a 45nm CMOS process,

as shown in Figure 4. It consists of 20 transistors and the random
mismatch of each transistor is modeled by 10 independent Normal
random variables. Compared to the SRAM example in Section 5.1,
a detailed statistical model is used to capture the random
mismatch for the DFF circuit and, hence, additional random
variables are needed to model the mismatch of each transistor. In
total, there are 200 independent random variables in this example.
Our PoI is the data transfer delay DCLK→Q from the clock CLK to
the output Q. If the delay DCLK→Q belongs to a pre-defined interval
[DLOW, DUP], we consider the DFF circuit as “PASS”. Otherwise,
the DFF circuit is considered as “FAIL”.

CLK CLK_

CLK

CLK_

CLK_

CLK_

CLK

CLK

D Q

Figure 4. The simplified circuit schematic is shown for a DFF circuit
designed in a 45nm CMOS process.

Table 2. Failure rate PF and 95% CI [PF
L, PF

U] estimated by MNIS, SSS,
and SUS (“golden” failure rate = 4.8×10−6)

of Sims 3300 3850 4400 4950 5500

MNIS
[10]

PF
L 0 0 6.9×10−9 3.6×10−8 1.8×10−7

PF 1.2×10−6 9.2×10−7 7.5×10−7 6.4×10−7 7.3×10−7

PF
U 2.5×10−6 1.9×10−6 1.5×10−6 1.2×10−6 1.3×10−6

SSS
[15]

PF
L 2.4×10−8 2.1×10−8 1.3×10−8 1.1×10−8 3.2×10−8

PF 2.4×10−6 1.5×10−6 7.8×10−7 5.4×10−7 1.2×10−6

PF
U 1.8×10−4 8.7×10−5 3.9×10−5 2.3×10−5 3.9×10−5

SUS

PF
L 1.3×10−6 4.9×10−7 1.6×10−6 1.4×10−6 2.3×10−6

PF 6.0×10−6 2.2×10−6 6.1×10−6 5.0×10−6 7.4×10−6

PF
U 2.9×10−5 9.9×10−6 2.3×10−5 1.7×10−5 2.4×10−5

0 20 40 60 80 100
-8
-6
-4
-2

(a) MNIS

lo
g 10

(P
F)

0 20 40 60 80 100
-8
-6
-4
-2

(b) SSS

lo
g 10

(P
F)

0 20 40 60 80 100
-8
-6
-4
-2

(c) SUS

lo
g 10

(P
F)

Figure 5. The 95% CIs are estimated from 100 repeated runs with 5500
simulations in each run for three different methods: (a) MNIS, (b) SSS,
and (c) SUS. The red line represents the “golden” failure rate.

We first apply the brute-force MC with 5×106 random
samples and the estimated “golden” failure rate is equal to
4.8×10−6 in this example. Next, we apply three different
algorithms (i.e., MNIS, SSS and SUS) to estimate the failure rate

330

with different numbers of simulations. Table 2 compares the
estimation accuracy of these three methods. Similar to the SRAM
example in Section 5.1, neither MNIS nor SSS can accurately
estimate the failure rate even with 5500 simulations. On the other
hand, our proposed SUS method can accurately estimate the
failure rate with a tight confidence interval, even if the number of
simulations is as small as 3300. This DFF example again
demonstrates the superior accuracy of our proposed SUS method
over other traditional methods (i.e., MNIS and SSS) in a high-
dimensional variation space.

Next, to further verify the accuracy of the 95% CI estimated
by MNIS, SSS and SUS, we repeatedly run each method for 100
times with 5500 simulations in each run. The 100 estimated CIs
for these three methods are plotted in logarithmic scale in
Figure 5, where the range of the y-axis is set to [10−9, 10−2]. In this
example, there are 17, 95 and 98 CIs out of 100 runs that cover
the “golden” failure rate for MNIS, SSS, and SUS respectively.
From these results, we observe that while MNIS fails to
accurately estimate its CIs, both SSS and SUS successfully
estimate the CIs and, hence, their confidence levels are accurately
measured. Furthermore, the CIs associated with SUS are
significantly tighter than those of SSS. It, in turn, demonstrates
that our proposed SUS method is superior to the traditional SSS
method in this example.

6. CONCLUSIONS

In this paper, a novel SUS approach is proposed to accurately
analyze the rare failure events for nanoscale ICs in a high-
dimensional variation space. The key idea of SUS is to express the
rare failure probability as the product of several large conditional
probabilities by introducing a number of intermediate failure
events. A Markov chain Monte Carlo algorithm (i.e., the modified
Metropolis algorithm) is used to accurately estimate the
intermediate conditional probabilities and, eventually, the rare
failure rate of a given circuit. In addition, a statistical
methodology is further developed to reliably estimate the
confidence interval of SUS. Two circuit examples designed in
nanoscale technologies demonstrate that SUS offers superior
estimation accuracy over the traditional techniques (i.e., MNIS
and SSS) when hundreds of random variables are used to model
process variations.

7. ACKNOWLEDGEMENTS

This work has been supported in part by the National Science
Foundation under contract CCF–1148778.

8. REFERENCES
[1] B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar and

K. Shepard, “Digital circuit design challenges and opportunities
in the era of nanoscale CMOS,” Proc. IEEE, vol. 96, no. 2, pp.
343-365, Feb. 2008.

[2] A. Bhavnagarwala, X. Tang and J. Meindl, “The impact of
intrinsic device fluctuations on CMOS SRAM cell stability,”
IEEE JSSC, vol. 36, no. 4, pp. 658-665, Apr. 2001.

[3] R. Heald and P. Wang, “Variability in sub-100nm SRAM
designs,” IEEE ICCAD, pp. 347-352, 2004.

[4] R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling
and its application to the analysis of SRAM designs in the
presence of rare failure events,” IEEE DAC, pp. 69-72, 2006.

[5] R. Topaloglu, “Early, accurate and fast yield estimation through
Monte Carlo-alternative probabilistic behavioral analog system
simulations,” IEEE VTS, pp. 137-142, 2006.

[6] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear,
variability aware non-Monte-Carlo yield estimation procedure
with applications to SRAM cells and ring oscillators,” IEEE
ASP-DAC, pp. 754-761, 2008.

[7] L. Dolecek, M. Qazi, D. Shah and A. Chandrakasan, “Breaking
the simulation barrier: SRAM evaluation through norm
minimization,” IEEE ICCAD, pp. 322-329, 2008.

[8] J. Wang, S. Yaldiz, X. Li and L. Pileggi, “SRAM parametric
failure analysis,” IEEE DAC, pp. 496-501, 2009.

[9] A. Singhee and R. Rutenbar, “Statistical blockade: very fast
statistical simulation and modeling of rare circuit events, and its
application to memory design,” IEEE Trans. on CAD, vol. 28,
no. 8, pp. 1176-1189, Aug. 2009.

[10] M. Qazi, M. Tikekar, L. Dolecek, D. Shah and A.
Chandrakasan, “Loop flattening and spherical sampling: highly
efficient model reduction techniques for SRAM yield analysis,”
IEEE DATE, pp. 801-806, 2010.

[11] R. Fonseca, L. Dilillo, A. Bosio, P. Girard, S.
Pravossoudovitch, A. Virazel and N. Badereddine, “A statistical
simulation method for reliability analysis of SRAM core-cells,”
IEEE DAC, pp. 853-856, 2010.

[12] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi and T. Sato,
“Sequential importance sampling for low-probability and high-
dimensional SRAM yield analysis,” IEEE ICCAD, pp. 703-708,
2010.

[13] S. Sun, Y. Feng, C. Dong and X. Li, “Efficient SRAM failure
rate prediction via Gibbs sampling,” IEEE Trans. on CAD, vol.
31, no. 12, pp. 1831-1844, Dec. 2012.

[14] R. Kanj, R. Joshi, Z. Li, J. Hayes and S. Nassif, “Yield
estimation via multi-cones,” IEEE DAC, pp. 1107-1112, 2012.

[15] S. Sun, X. Li, H. Liu, K. Luo and B. Gu, “Fast statistical
analysis of rare circuit failure events via scaled-sigma sampling
for high-dimensional variation space,” IEEE ICCAD, pp. 478-
485, 2013.

[16] S. Au and J. Beck, “Estimation of small failure probabilities in
high dimensions by subset simulation,” Probabilistic Eng.
Mechanics, vol. 16, no. 4, pp. 263-277, Oct. 2001.

[17] A. Guyader, N. Hengartner and E. Matzner-Løber, “Simulation
and estimation of extreme quantiles and extreme probabilities,”
Appl. Math. Optimization, vol. 64, no. 2, pp. 171-196, Oct.
2011.

[18] F. Cérou, P. Moral, T. Furon and A. Guyader, “Sequential
Monte Carlo for rare event estimation,” Stat. Computing, vol.
22, no. 3, pp. 795-808, May 2012.

[19] C. Bishop, Pattern Recognition and Machine Learning,
Prentice Hall, 2007.

[20] A. Papoulis and S. Pillai, Probability, Random Variables and
Stochastic Process, McGraw-Hill, 2001.

331

