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ABSTRACT 
In this paper, we propose a novel subset simulation (SUS) 
technique to efficiently estimate the rare failure rate for nanoscale 
circuit blocks (e.g., SRAM, DFF, etc.) in high-dimensional 
variation space. The key idea of SUS is to express the rare failure 
probability of a given circuit as the product of several large 
conditional probabilities by introducing a number of intermediate 
failure events. These conditional probabilities can be efficiently 
estimated with a set of Markov chain Monte Carlo samples 
generated by a modified Metropolis algorithm, and then used to 
calculate the rare failure rate of the circuit. To quantitatively 
assess the accuracy of SUS, a statistical methodology is further 
proposed to accurately estimate the confidence interval of SUS 
based on the theory of Markov chain Monte Carlo simulation. Our 
experimental results of two nanoscale circuit examples 
demonstrate that SUS achieves significantly enhanced accuracy 
over other traditional techniques when the dimensionality of the 
variation space is more than a few hundred. 
 
1. INTRODUCTION 

As deep sub-micron technology advances, the ever increasing 
process variation has become a growing concern for today’s 
integrated circuits (ICs) [1]. A complex IC, containing numerous 
circuit components (e.g., millions of SRAM bit-cells integrated in 
an advanced microprocessor), is required to meet the design 
specification not only at the nominal process corner, but also 
under large-scale process variations. To achieve sufficiently high 
yield, each component must be designed to be extremely robust. 
For instance, the failure rate of an SRAM bit-cell must be smaller 
than 10−8~10−6 for a typical SRAM design [2]-[3]. For this reason, 
efficiently analyzing the rare failure events for individual circuit 
components is an important task for the IC design community. 

To address this issue, a large number of methods have been 
proposed in the literature [4]-[14]. Most of these traditional 
methods focus on failure rate estimation for SRAM bit-cells, and 
only a small number of (e.g., 10~50) independent random 
variables are used to model process variations. Hence, the 
corresponding variation space is low-dimensional. It has been 
demonstrated in [15] that estimating the rare failure probability in 
a high-dimensional space (e.g., hundreds of independent random 
variables to model the device-level variations for a DFF) becomes 
increasingly important. Unfortunately, such a high-dimensional 
problem cannot be efficiently handled by most traditional methods 
[4]-[14]. To address this challenge, the scaled-sigma sampling 
(SSS) method has been proposed in [15]. Though no 
dimensionality curse is observed for SSS, the estimated failure 
rate may not be highly accurate since SSS is based on 
extrapolation. In a word, how to efficiently and accurately 
estimate the rare failure probability in a high-dimensional 
variation space remains an open question. 

In this paper, a novel subset simulation (SUS) technique is 

proposed to address this technical challenge. The key idea of SUS, 
borrowed from the statistics community [16]-[18], is to express 
the rare failure probability as the product of several large 
conditional probabilities by introducing a number of intermediate 
failure events. As such, the original problem of rare failure 
probability estimation is cast to an equivalent problem of 
estimating a sequence of conditional probabilities via multiple 
phases. Since these conditional probabilities are relatively large, 
they are substantially easier to estimate than the original rare 
failure rate. 

When implementing the proposed SUS method, it is difficult, 
if not impossible, to directly draw random samples from the 
conditional probability density functions (PDFs) and estimate the 
conditional probabilities, since these conditional PDFs are 
unknown in advance. To address this issue, a modified Metropolis 
(MM) algorithm is adopted from [16] to generate random samples 
by constructing a number of Markov chains. The conditional 
probabilities of interest are then estimated from these random 
samples. Unlike most traditional techniques [4]-[14] that suffer 
from the dimensionality issue, SUS can be efficiently applied to 
high-dimensional problems, as will be explained in the technical 
sections of this paper. 

In addition, a statistical methodology is further developed to 
accurately estimate the confidence interval of SUS based on the 
theory of Markov chain Monte Carlo (MCMC) simulation [19]. 
As will be demonstrated by the numerical experiments in Section 
5, SUS can achieve substantially better accuracy than the 
traditional methods when hundreds of independent random 
variables are used to model process variations. 

The remainder of this paper is organized as follows. We 
briefly review the background of rare failure probability 
estimation in Section 2, and then describe the proposed SUS 
approach in Section 3. Several implementation issues, including (i) 
how to define the intermediate failure events, and (ii) how to 
quantitatively assess the accuracy of the proposed SUS estimator, 
are discussed in Section 4. Two circuit examples are presented to 
demonstrate the efficacy of SUS in Section 5. Finally, we 
conclude in Section 6. 
 
2. BACKGROUND 

Suppose that the vector 
1 [ ]1 2 Mx x x=x  (1) 
is an M-dimensional random variable modeling the device-level 
process variations and its joint PDF is p(x). Without loss of 
generality, we further assume that the random variables {xm; m = 
1, 2, ···, M} in the vector x are mutually independent [4]-[15] 

2 ( ) ( )
1

M

m m
m

p p x
=

= ∏x , (2) 

where pm(xm) is the 1-D PDF for xm. 
Consider a circuit-level performance of interest (PoI) and it 
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can be expressed as a function of the device-level variations: y(x). 
The failure rate PF can be expressed as 
3 ( )PrFP y F= ⎡ ∈ ⎤⎣ ⎦x , (3) 
where Pr(•) denotes the probability that an event occurs, and F 
stands for the failure region in the performance space (i.e., the 
subset of the performance space where the PoI does not meet the 
specification). 

In theory, the failure rate PF can be estimated by brute-force 
Monte Carlo (MC) analysis. The key idea of MC is to draw N 
random samples {x(n); n = 1, 2, ···, N} from p(x), and perform 
transistor-level simulations to evaluate their PoI values {y(x(n)); n 
= 1, 2, ···, N}. The failure rate PF is then estimated by 

4 ( )( )
1

1 N
nMC

F F
n

P I y
N =

⎡ ⎤= ⋅ ⎣ ⎦∑ x , (4) 

where IF[y(x)] represents the indicator function 

5 ( ) ( )
( )

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (5) 

When MC is applied, around 1/PF random samples are 
required on average to obtain a single random sample whose PoI 
falls into the failure region F. Evaluating the PoI for each random 
sample requires an expensive transistor-level simulation and, 
hence, a large number of (e.g., 107~109) simulations are needed by 
MC when the failure rate PF is extremely small (e.g., 10−8~10−6). 
From this point of view, MC cannot be efficiently applied to the 
problem of rare failure rate estimation in practice. 
 
3. SUBSET SIMULATION 

Instead of directly estimating the rare failure probability, SUS 
expresses the rare failure probability as the product of several 
large conditional probabilities by introducing several intermediate 
failure events. Without loss of generality, we assume that the 
performance function y(x) is continuous. Define K intermediate 
failure events {Fk; k = 1, 2, ···, K} as the subsets of the 
performance space 
6 1 2 1K KF F F F F−= ⊂ ⊂ ⊂ ⊂ . (6) 
Based on (6), we can express PF in (3) as 
7 ( ) ( ) ( ) ( ) 1Pr Pr Pr ,F K K KP y F y F y F y F −= ⎡ ∈ ⎤= ⎡ ∈ ⎤= ⎡ ∈ ∈ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x x x . (7) 

In (7), if y(x) belongs to FK, it will undoubtedly belong to FK−1 
because FK is a subset of FK−1 as shown in (6). Eq. (7) can be re-
written as [20] 
8 ( ) ( ) ( )1 1Pr PrF K K KP y F y F y F− −⎡ ⎤= ∈ ∈ ⋅ ⎡ ∈ ⎤⎣ ⎦⎣ ⎦x x x . (8) 

Here, the conditional probability Pr[y(x) ∈ FK | y(x) ∈ FK−1] 
represents the probability of y(x) ∈ FK given y(x) ∈ FK−1. 
Similarly, we can express Pr[y(x) ∈ FK−1] as 
9 ( ) ( ) ( ) ( )1 1 2 2Pr Pr PrK K K Ky F y F y F y F− − − −⎡ ⎤⎡ ∈ ⎤= ∈ ∈ ⋅ ⎡ ∈ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦x x x x . (9) 

From (6), (8) and (9), we can easily derive 

10 ( ) ( ) ( )1 1
2 1

Pr Pr
K K

F k k k
k k

P y F y F y F P−
= =

⎡ ⎤= ⎡ ∈ ⎤⋅ ∈ ∈ =⎣ ⎦ ⎣ ⎦∏ ∏x x x , (10) 

where 
11 ( )1 1PrP y F= ⎡ ∈ ⎤⎣ ⎦x  (11) 

12 ( ) ( ) ( )1Pr 2,3, ,k k kP y F y F k K−⎡ ⎤= ∈ ∈ =⎣ ⎦x x . (12) 

If the failure events {Fk; k = 1, 2, ···, K} are properly chosen, 
all the probabilities {Pk; k = 1, 2, ···, K} are large and can be 
efficiently estimated. Once {Pk; k = 1, 2, ···, K} are known, the 

rare failure probability PF can be easily calculated by (10). In 
what follows, we will first use a simple 2-D example to intuitively 
illustrate the basic flow of SUS in Section 3.1, and then further 
generalize SUS to high dimension in Section 3.2. 
 
3.1 A Simple 2-D Example 

Figure 1 shows a simple 2-D example with two random 
variables x = [x1 x2] to model the device-level process variations. 
In Figure 1, the failure regions Ω1 and Ω2 denote the subsets of the 
variation space where the PoI y(x) belongs to F1 and F2 
respectively, i.e., Ω1 = {x | y(x) ∈ F1} and Ω2 = {x | y(x) ∈ F2}. 
Note that Ω1 and Ω2 are depicted for illustration purposes in this 
example. In practice, we do not need to explicitly know Ω1 and Ω2. 
Instead, we can run a transistor-level simulation to determine 
whether a sample x belongs to Ω1 and/or Ω2. 

0 x1

x2 Ω1

 

x1

x2 Ω1

0

Ω2

(a) (b) 
Figure 1.  A two-dimensional example is used to illustrate the procedure 
of probability estimation via multiple phases by using SUS: (a) generating 
MC samples and estimating P1 in the 1st phase, and (b) generating MCMC 
samples and estimating P2 in the 2nd phase. 

Our objective is to estimate the probabilities {Pk; k = 1, 2, ···, 
K} via multiple phases. Starting from the 1st phase, we simply 
draw L1 independent random samples {x(1, l); l = 1, 2, ···, L1} from 
the PDF p(x) to estimate P1. Here, the superscript “1” of the 
symbol x(1, l) refers to the 1st phase. Among these L1 samples, we 
identify a subset of samples {xF

(1, t); t = 1, 2, ···, T1} that fall into 
Ω1, where T1 denotes the total number of the samples in this 
subset. As shown in Figure 1 (a), the red points represent the 
samples that belong to Ω1 and the green points represent the 
samples that are out of Ω1. In this case, P1 can be estimated as 

13 ( )( )1

1

1, 1
1

11 1

1 L
lSUS

F
l

TP I y
L L=

⎡ ⎤= ⋅ =⎣ ⎦∑ x , (13) 

where P1
SUS denotes the estimated value of P1, and IF1[y(x)] 

represents the indicator function 

14 ( ) ( )
( )1

1

1

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (14) 

If P1 is large, it can be accurately estimated by the aforementioned 
MC method with a small number of random samples (e.g., L1 is 
around 102~103). 

Next, in the 2nd phase, we need to estimate the conditional 
probability P2 = Pr[y(x) ∈ F2 | y(x) ∈ F1] which can be re-written 
as Pr(x ∈ Ω2 | x ∈ Ω1). Towards this goal, one simple idea is to 
directly draw random samples from the conditional PDF p(x | x ∈ 
Ω1) and then compute the mean of the indicator function IF2[y(x)] 

15 ( ) ( )
( )2

2

2

1
0F

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (15)  

This approach, however, is practically infeasible since p(x | x ∈ 
Ω1) is unknown in advance. To address this challenge, we apply a 
modified Metropolis (MM) algorithm [16] to generate a set of 
random samples that follow the conditional PDF p(x | x ∈ Ω1). 

MM is a Markov chain Monte Carlo (MCMC) technique [19]. 
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Starting from each of the samples {xF
(1, t); t = 1, 2, ···, T1} that fall 

into Ω1 in the 1st phase, MM generates a sequence of samples that 
form a Markov chain. In other words, there are T1 independently 
generated Markov chains in total and xF

(1, t) is the 1st sample of 
the t-th Markov chain. To clearly explain the MM algorithm, we 
define the symbol x(2, t, 1) = xF

(1, t), where t ∈ {1, 2, ···, T1}. The 
superscripts “2” and “1” of x(2, t, 1) refer to the 2nd phase and the 
1st sample of the Markov chain respectively. 

For our 2-D example, we start from x(2, 1, 1) = [x1
(2, 1, 1) x2

(2, 1, 1)] 
to form the 1st Markov chain. To generate the 2nd sample x(2, 1, 2) 
from x(2, 1, 1), we first randomly sample a new value x1

NEW from a 
1-D transition PDF q1[x1

NEW | x1
(2, 1, 1)] that must satisfy the 

following condition [16] 

16 ( ) ( )2,1,1 2,1,1
1 1 1 1 1 1

NEW NEWq x x q x x⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ . (16) 

There are many possible ways to define q1[x1
NEW | x1

(2, 1, 1)] in (16) 
[16]. For example, a 1-D Normal PDF can be used 

17 ( ) ( ){ }22,1,1 2,1,1 2
1 1 1 1 1 1

1

1 exp 2
2

NEW NEWq x x x x σ
π σ

⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅⎣ ⎦⎣ ⎦ ⋅
, (17) 

where x1
(2, 1, 1) and σ1 are the mean and standard deviation of the 

distribution respectively. Here, σ1 is a parameter that should be 
empirically chosen by following the heuristics in Section 3.2. 

Next, we compute the ratio 

18 ( ) ( )( )2,1,1
1 1 1 1

NEWr p x p x= , (18) 

where p1(x1) is the original PDF of the random variable x1 shown 
in (2). A random sample u is then drawn from a 1-D uniform 
distribution with the following PDF 

19 ( ) 1 0 1
0 Otherwise

u
f u

≤ ≤⎧
= ⎨
⎩

, (19) 

and the value of x1
(2, 1, 2) is set as 

20 ( ) ( )
( ) ( )
12,1,2

1 2,1,1
1

min 1,

min 1,

NEWx u r
x

x u r

⎧ ≤⎪= ⎨
>⎪⎩

. (20) 

A similar procedure is applied to generate x2
(2, 1, 2). Once x1

(2, 1, 2) 
and x2

(2, 1, 2) are determined, we form a candidate xNEW = [x1
(2, 1, 2) 

x2
(2, 1, 2)] and use it to create the sample x(2, 1, 2) 

21 ( )
( )

12,1,2
2,1,1

1

NEW NEW

NEW

⎧ ∈ Ω⎪= ⎨
∉ Ω⎪⎩

x x
x

x x
. (21) 

By repeating the aforementioned steps, we can create other 
samples to complete the Markov chain {x(2, 1, l); l = 1, 2, ···, L2}, 
where L2 denotes the length of the Markov chain in the 2nd phase. 
In addition, all other Markov chains can be similarly formed. 
Since there are T1 Markov chains and each Markov chain contains 
L2 samples, the total number of the MCMC samples is T1·L2 for 
the 2nd phase. Figure 1 (b) shows the sampling results for our 2-D 
example. In Figure 1 (b), the red points represent the initial 
samples {x(2, t, 1); t = 1, 2, ···, T1} of the Markov chains and they 
are obtained from the 1st phase. The yellow points represent the 
MCMC samples created via the MM algorithm in the 2nd phase. 

It has been proved in [16] that if the initial sample x(2, t, 1) 
follows the distribution p(x | x ∈ Ω1), all the samples {x(2, t, l); l = 1, 
2, ···, L2} in the Markov chain follow p(x | x ∈ Ω1). In our 2-D 
example, since the initial samples {x(2, t, 1); t = 1, 2, ···, T1} are 
randomly drawn from p(x) and belong to Ω1, they follow the 
distribution p(x | x ∈ Ω1). Hence, all the MCMC samples {x(2, t, l); 
t = 1, 2, ···, T1, l = 1, 2, ···, L2} in Figure 1 (b) follow p(x | x ∈ Ω1). 
In other words, we have successfully generated a number of 
random samples that follow our desired distribution for the 2nd 

phase. 
Among all the MCMC samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 

2, ···, L2}, we further identify a subset of samples {xF
(2, t); t = 1, 

2, ···, T2} that fall into Ω2, where T2 denotes the total number of 
the samples in this subset. The conditional probability P2 can be 
estimated as 

22 ( )( )1 2

2

2, , 2
2

1 11 2 1 2

1 T L
t lSUS

F
t l

TP I y
T L T L= =

⎡ ⎤= ⋅ =⎣ ⎦⋅ ⋅∑∑ x , (22) 

where P2
SUS denotes the estimated value of P2, and IF2[y(x)] is the 

indicator function defined in (15). 
By following the aforementioned idea, we can estimate all the 

probabilities {Pk; k = 1, 2, ···, K}. Namely, for the k-th phase 
where k > 2, we need to estimate the conditional probability Pk = 
Pr[y(x) ∈ Fk | y(x) ∈ Fk−1] by generating MCMC samples via the 
MM algorithm. Once the values of {Pk; k = 1, 2, ···, K} are 
estimated, the rare failure rate PF is calculated by 

23 
1

K
SUS SUS

F k
k

P P
=

= ∏ , (23) 

where PF
SUS represents the estimated value of PF by using SUS. 

 
3.2 High-dimensional Case 

If we have more than two random variables, estimating the 
probabilities {Pk; k = 1, 2, ···, K} can be pursued in a similar way. 
Algorithm 1 summarizes the major steps of the proposed SUS 
method for high dimension. It consists of K phases. During the 1st 
phase, we randomly sample the PDF p(x) to estimate P1. Next, we 
apply MM (i.e., Step 7~15 in Algorithm 1) to estimate the 
conditional probability Pk during the k-th phase, where k ∈ {2, 
3, ···, K}. When estimating Pk, we construct Tk−1 Markov chains. 
Each Markov chain contains Lk MCMC samples {x(k, t, l); l = 1, 
2, ···, Lk} that are created by the MM algorithm. Hence, there are 
Tk−1·Lk samples in total, and the probability Pk is estimated by 
these samples. Finally, the rare failure rate PF is estimated from 
{Pk; k = 1, 2, ···, K} by using (23). 

Algorithm 1: Subset Simulation (SUS) 
1. Start from a set of pre-defined failure events {Fk; k = 1, 2, ···, 

K}. 
2. Generate L1 random samples {x(1, l); l = 1, 2, ···, L1} from p(x). 
3. From the random samples {x(1, l); l = 1, 2, ···, L1}, identify the 

samples for which y[x(1, l)] ∈ F1. Label these samples as 
{xF

(1, t); t = 1, 2, ···, T1}, where T1 represents the total number 
of samples satisfying the condition. Calculate P1

SUS by (13). 
4. Initialize k = 2. 
5. Set x(k, t, 1) = xF

(k−1, t), where t = 1, 2, ···, Tk−1. 
6. For t = 1, 2, ···, Tk−1 
7. For l = 2, 3, ···, Lk 
8. For m = 1, 2, ···, M 
9. Generate a random value xm

NEW from the 1-D transition 
PDF qm[xm

NEW | xm
(k, t, l−1)]. For instance, the 1-D 

transition PDF can be a Normal distribution [16] 

24 ( ) ( ){ }2, , 1 , , 1 21 exp 2
2

k t l k t lNEW NEW
m m m m m m

m

q x x x x σ
π σ

− −⎡ ⎤ ⎡ ⎤= ⋅ − − ⋅⎣ ⎦⎣ ⎦ ⋅
. (24) 

10. Calculate the ratio 

25 ( ) ( )( ), , 1k t lNEW
m m m mr p x p x −= . (25) 

11. Draw a random value u from the uniform distribution in 
(19) and set the value of xm

(k, t, l) as 
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26 ( ) ( )
( ) ( )

, ,
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mk t l

m k t l
m

x u r
x

x u r−

⎧ ≤⎪= ⎨
>⎪⎩

. (26) 

12. End For 
13. Form a candidate xNEW = [x1

(k, t, l) x2
(k, t, l) ··· xM

(k, t, l)], and 
run a transistor-level simulation to evaluate y(xNEW). 

14. Set the value of x(k, t, l) as 

27 ( ) ( )
( ) ( )

1, ,

, , 1
1

NEW NEW
kk t l

k t l NEW
k

y F

y F

−

−
−

⎧ ∈⎪= ⎨
∉⎪⎩

x x
x

x x
. (27) 

15. End For 
16. End For 
17. From the Tk−1·Lk MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l = 

1, 2, ···, Lk}, identify the samples for which y[x(k, t, l)] ∈ Fk. 
Label these samples as {xF

(k, t); t = 1, 2, ···, Tk}, where Tk 
represents the total number of samples satisfying the condition. 

18. Calculate Pk
SUS by 

28 
1

SUS k
k

k k

TP
T L−

=
⋅

. (28) 

19. If k < K, set k = k + 1 and go to Step 5. Otherwise, go to Step 
20.  

20. Calculate PF
SUS by (23). 

There are several important clarifications that should be made 
for Algorithm 1. First, sampling the transition PDF qm[xm

NEW | 
xm

(k, t, l−1)] in (24) at Step 9 or the uniform PDF f(u) in (19) at Step 
11 involves no transistor-level simulation and, hence, its 
computational cost is almost negligible. The computational cost of 
Algorithm 1 is dominated by the transistor-level simulation to 
evaluate y(xNEW) at Step 13. 

Second, MM successively samples a set of 1-D transition 
PDFs {qm[xm

NEW | xm
(k, t, l−1)]; m = 1, 2, ···, M}, instead of any high-

dimensional joint PDF, to generate a new MCMC sample. For this 
reason, MM does not suffer from any dimensionality issue and 
can efficiently handle high-dimensional problems in practice. 
More detailed discussions about the efficiency of MM for high 
dimension can be found in [16]. 

Finally, the 1-D transition PDFs {qm[xm
NEW | xm

(k, t, l−1)]; m = 1, 
2, ···, M} play an important role in sampling the failure region 
Ωk−1 at the k-th phase, where Ωk−1 denotes the subset of the 
variation space {x | y(x) ∈ Fk−1}. For illustration purposes, we 
consider the 1-D transition PDF in (24) as an example. For this 
Normal distribution, if its standard deviation σm is too large, it is 
likely that the new sample xm

NEW is far away from the previous 
sample xm

(k, t, l−1). In other words, we attempt to “jump” over a 
long distance via the Markov chain. However, the new sample 
xNEW may eventually fall out of the failure region Ωk−1 (i.e., y(xNEW) 
∉ Fk−1) and get rejected, as shown in (27). 

On the other hand, if σm is too small, it is likely that the new 
sample xm

NEW is extremely close to the previous sample xm
(k, t, l−1). 

In this case, it may require many MCMC samples to fully explore 
the failure region Ωk−1. The aforementioned discussions imply an 
important fact that the value of σm must be appropriately chosen in 
order to make Algorithm 1 efficient. As a heuristic approach [16], 
we simply set σm equal to the standard deviation of the original 
PDF pm(xm) shown in (2). Intuitively, if the standard deviation of 
pm(xm) is large, the random variable xm can vary over a large range. 
In this case, we want to set σm to a relatively large value so that 
the resulting Markov chain can quickly explore a large region of 
the variation space. 
 

4. IMPLEMENTATION DETAILS 
In this section, we further discuss several important 

implementation issues for SUS, including (i) subset selection, and 
(ii) confidence interval estimation. 
 
4.1 Subset Selection 

In Algorithm 1, we assume that the failure events {Fk; k = 1, 
2, ···, K} are pre-defined. In practice, however, we have to 
carefully define {Fk; k = 1, 2, ···, K} so that our proposed SUS 
method is computationally efficient. Otherwise, if {Fk; k = 1, 2, ···, 
K} are not appropriately chosen, {Pk; k = 1, 2, ···, K} can be 
extremely small and, hence, cannot be efficiently estimated by a 
small number of samples. 

To address this practical issue, we propose to adaptively 
choose the failure events {Fk; k = 1, 2, ···, K} to satisfy the 
following conditions 

29 
( )1,2, , 1SUS

k OBJ

SUS
K OBJ

P P k K

P P

= = −

≥
, (29) 

where POBJ (0 < POBJ < 1) is a user-specified parameter that 
defines the “desired” value for Pk at the k-th phase. To intuitively 
illustrate our proposed strategy for subset selection, we consider a 
sense amplifier example where the PoI y(x) is the delay from the 
input to its output. If the delay y(x) is greater than or equal to a 
pre-defined specification ySPEC, we consider the sense amplifier as 
“FAIL”. In this example, the failure events {Fk; k ∈ 1, 2, ···, K} 
can be defined by setting different values for the delay 
specification. The delay specification should be tight (i.e., small) 
for F1 and loose (i.e., large) for FK. Our objective is to adaptively 
determine a set of monotonically increasing values {y1 < y2 < ··· < 
yK−1 < yK = ySPEC} and define the failure event Fk as Fk = {y | y(x) 
≥ yk}, where k ∈ {1, 2, ···, K}, so that the conditions in (29) are 
satisfied. 

Based upon this idea, during the 1st phase of SUS for the 
sense amplifier example, we need to take the random samples 
{y[x(1, l)]; l = 1, 2, ···, L1} created in Step 2 of Algorithm 1, and 
determine the value of y1 so that the condition y[x(1, l)] ≥ y1 holds 
for T1 = L1⋅P1

SUS = L1⋅POBJ samples. To this end, we sort {y[x(1, l)]; 
l = 1, 2, ···, L1} and then set y1 to the T1-th largest value of y of the 
sorted samples. Similarly, during the 2nd phase, we need to take 
the random samples {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} created 
in Step 6~16 of Algorithm 1, and determine the value of y2 so that 
the condition y[x(2, t, l)] ≥ y2 holds for T2 = T1⋅L2⋅P2

SUS = T1⋅L2⋅POBJ 
samples. We sort {x(2, t, l); t = 1, 2, ···, T1, l = 1, 2, ···, L2} and then 
set y2 to the T2-th largest value of y of the sorted samples. The 
aforementioned procedure is repeatedly applied to further 
determine the values of {y3, y4, ···} until we reach the K-th phase 
where setting yK = ySPEC results in the probability PK

SUS that is 
greater than POBJ. 

Two important clarifications should be made for our proposed 
subset selection. First, combining (10), (23) and (29) implies 
30 1SUS K SUS K

F F OBJ K OBJP P P P P−≈ = ⋅ ≥ . (30) 
From (30), we observe that the total number of phases (i.e., K) 
depends on the failure rate PF and the user-specified parameter 
POBJ. The value of K is approximately equal to the minimum 
integer that is greater than log(PF) / log(POBJ). Since we do not 
know PF in advance, we cannot pre-determine K. Instead, the 
value of K must be adaptively set when running the SUS 
algorithm. 

Second, but more importantly, the user-specified parameter 
POBJ substantially impacts the efficiency of SUS. If POBJ is too 
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small, the probabilities {Pk; k = 1, 2, ···, K} are small. Hence, 
estimating these probabilities requires a large number of samples 
and, therefore, is not computationally efficient. On the other hand, 
if POBJ is too large, estimating {Pk; k = 1, 2, ···, K} becomes trivial. 
However, based on (30), a large number of phases are needed to 
estimate the failure rate PF (i.e., K is large), thereby resulting in 
high computational cost. For these reasons, it is crucial to 
appropriately choose POBJ to make SUS efficient for practical 
circuit analysis problems. 

In this paper, an empirical value is chosen for POBJ (say, POBJ 
= 0.1). In this case, even if the failure rate PF is extremely small 
(e.g., 10−8~10−6), SUS only needs a small number of (e.g., K = 
6~8) phases to complete. Furthermore, it only requires a few 
hundred samples during each phase to accurately estimate the 
probability Pk that is close to 0.1, where k ∈ {1, 2, ···, K}. It, in 
turn, results in an efficient implementation of SUS for rare failure 
rate estimation, as will be demonstrated by our experimental 
results in Section 5. 
 
4.2 Confidence Interval Estimation 

To quantitatively assess the accuracy of the proposed SUS 
estimator PF

SUS shown in (23), we must estimate its confidence 
interval (CI). To this end, we need to know the distribution of 
PF

SUS. Since PF
SUS is equal to the multiplication of {Pk

SUS; k = 1, 
2, ···, K}, we should carefully study the statistical property of 
{Pk

SUS; k = 1, 2, ···, K} in order to derive the distribution for PF
SUS. 

As described in Algorithm 1, the estimators {Pk
SUS; k = 1, 2, ···, 

K} are calculated from the random samples either drawn from p(x) 
in Step 2 or created by MM in Step 6~16 of Algorithm 1. To be 
specific, P1

SUS is calculated by using (13) with L1 independent and 
identically distributed (i.i.d.) samples drawn from p(x) in Step 2 
of Algorithm 1. According to the central limit theorem (CLT) [20], 
P1

SUS approximately follows a Normal distribution 
31 ( )1 1 1~ ,SUSP N P v , (31) 
where the mean value P1 is defined in (11) and the variance value 
v1 can be approximated as [20] 

32 ( )1 1 1
1

1 1SUS SUSv P P
L

≈ ⋅ ⋅ − . (32) 

On the other hand, Pk
SUS, where k ∈ {2, 3, ···, K}, is calculated 

by using (28) with the MCMC samples {x(k, t, l); t = 1, 2, ···, Tk−1, l 
= 1, 2, ···, Lk} created by MM in Step 6~16 of Algorithm 1. It has 
been proved in [16] that all these MCMC samples {x(k, t, l); t = 1, 
2, ···, Tk−1, l = 1, 2, ···, Lk} follow the conditional PDF p(x | x ∈ 
Ωk−1). Eq. (28) can be re-written as 

33 ( )( )1
, ,

1 11

1 k k

k

T L
k t lSUS

k F
t lk k

P I y
T L

−

= =−

⎡ ⎤= ⋅ ⎣ ⎦⋅ ∑∑ x , (33) 

where IFk[y(x)] represents the indicator function 

34 ( ) ( )
( )

1
0k

k
F

k

y F
I y

y F
⎧ ∈⎪⎡ ⎤ = ⎨⎣ ⎦ ∉⎪⎩

x
x

x
. (34)  

From Step 7~15 of Algorithm 1, we can observe that {x(k, t, l); l 
= 1, 2, ···, Lk}, where t ∈ {1, 2, ···, Tk−1}, are strongly correlated. 
Alternatively speaking, the MCMC samples {x(k, t, l); t = 1, 2, ···, 
Tk−1, l = 1, 2, ···, Lk} used to calculate Pk

SUS in (33) are not 
independent and, hence, cannot be considered as i.i.d. samples. 
For this reason, we cannot directly apply CLT [20] to derive the 
distribution for the estimator Pk

SUS in (33). 
To address this issue, we define a set of new random variables 

35 ( ) ( )( ) ( ), , ,
1

1

1 1,2, ,
k

k

L
k t k t l

F k
lk

s I y t T
L −

=

⎡ ⎤= ⋅ =⎣ ⎦∑ x . (35) 

Studying (35) reveals an important observation that s(k, t), where t 
∈ {1, 2, ···, Tk−1}, only depends on the t-th Markov chain {x(k, t, l); l 
= 1, 2, ···, Lk}. Since different Markov chains are created from 
different initial samples {x(k, t, 1); t = 1, 2, ···, Tk−1}, the random 
variables {s(k, t); t = 1, 2, ···, Tk−1} in (35) are almost statistically 
independent. Furthermore, since all the initial samples {x(k, t, 1); t = 
1, 2, ···, Tk−1} follow the same conditional PDF p(x | x ∈ Ωk−1) and 
all the Markov chains are generated by following the same 
procedure (i.e., Step 7~15 of Algorithm 1), the random variables 
{s(k, t); t = 1, 2, ···, Tk−1} should be identically distributed. For these 
reasons, we can consider {s(k, t); t = 1, 2, ···, Tk−1} as a set of i.i.d. 
random variables. 

Based on (35), Pk
SUS in (33) can be re-written as 

36 ( )1
,

11

1 kT
k tSUS

k
tk

P s
T

−

=−

= ⋅∑ . (36) 

Since {s(k, t); t = 1, 2, ···, Tk−1} are i.i.d. random variables, Pk
SUS 

approximately follows a Normal distribution according to CLT 
37 ( ) ( )~ MEAN ,VARSUS SUS SUS

k k kP N P P⎡ ⎤⎣ ⎦ , (37) 

where MEAN(•) and VAR(•) denote the mean and variance of a 
random variable respectively. From (33) and (34), MEAN(Pk

SUS) 
can be easily calculated as 
38 ( )MEAN SUS

k kP P= , (38) 

where Pk is defined in (12). Based on (36) where {s(k, t); t = 1, 2, ···, 
Tk−1} are i.i.d. random variables, VAR(Pk

SUS) can be computed as 

39 ( ) ( )1
,

,2
11 1

1 1VAR VAR
kT

k tSUS
k s k

tk k

P s v
T T

−

=− −

⎡ ⎤= ⋅ = ⋅⎣ ⎦∑ , (39) 

where vs,k represents the variance of the random variables {s(k, t); t 
= 1, 2, ···, Tk−1}, and it can be approximated by the sample 
variance of {s(k, t); t = 1, 2, ···, Tk−1} 

40 ( )1 2,
,

11

1
1

kT
k t SUS

s k k
tk

v s P
T

−

=−

⎡ ⎤≈ ⋅ −⎣ ⎦− ∑ . (40) 

Substituting (38), (39) and (40) into (37) yields 
41 ( ) ( )~ , 2,3, ,SUS

k k kP N P v k K= , (41) 
where Pk is defined in (12) and 

42 
( )

( )1 2,

11 1

1
1

kT
k t SUS

k k
tk k

v s P
T T

−

=− −

⎡ ⎤≈ ⋅ −⎣ ⎦− ⋅ ∑ . (42) 

To further derive the distribution for PF
SUS in (23) based on 

(31) and (41), we take logarithm on both sides of (23) because it is 
much easier to handle summation than multiplication 

43 ( ) ( )
1

log log
K

SUS SUS
F k

k

P P
=

=∑ . (43) 

To derive the distribution of {log(Pk
SUS); k = 1, 2, ···, K}, we 

approximate the nonlinear function log(•) by the first-order Taylor 
expansion around the mean value Pk of the random variable Pk

SUS 

44 ( ) ( )log log log
SUS SUS

SUS k k k k
k k k SUS

k k

P P P PP P P
P P

− −≈ + ≈ + . (44) 

According to the linear approximation in (44), log(Pk
SUS) follows 

a Normal distribution 
45 ( ) ( ) ( )log,log ~ log , 1,2, ,SUS

k k kP N P v k K⎡ ⎤ =⎣ ⎦ , (45) 

where 

46 ( )2

log,
SUS

k k kv v P= . (46) 
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Since log(PF
SUS) is the summation of several “approximately” 

Normal random variables {log(Pk
SUS); k = 1, 2, ···, K}, log(PF

SUS) 
also approximately follows a Normal distribution [20] 
47 ( ) ( ) ( ){ }log ~ MEAN log ,VAR logSUS SUS SUS

F F FP N P P⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (47)   

Based on (10), (43), and (45), MEAN[log(PF
SUS)] can be 

expressed as 

48 ( ) ( ) ( )
1 1

MEAN log log log log
KK

SUS
F k k F

k k

P P P P
= =

⎛ ⎞⎡ ⎤ = = =⎜ ⎟⎣ ⎦ ⎝ ⎠
∑ ∏ , (48)   

and VAR[log(PF
SUS)] can be calculated as 

49 
( ) ( )

( ) ( )
1

1

log,
1 1 1

VAR log VAR log

2 COV log ,log

K
SUS SUS

F k
k

K K K
SUS SUS

k i j
k i j i

P P

v P P

=

−

= = = +

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= + ⋅ ⎣ ⎦

∑

∑ ∑ ∑
, (49) 

where COV(•, •) denotes the covariance of two random variables. 
When applying MCMC, we often observe that an MCMC 

sample is strongly correlated to its adjacent sample. However, the 
correlation quickly decreases as the distance between two MCMC 
samples increases. Therefore, we can assume that the samples 
used to estimate log(Pi

SUS) are weakly correlated to the samples 
used to estimate log(Pj

SUS), if the distance between i and j is 
greater than 1 (i.e., |i – j| > 1). Based on this assumption, Eq. (49) 
can be approximated as 

50 
( )

( ) ( )
1

log, 1
1 1

VAR log

2 COV log ,log

SUS
F

K K
SUS SUS

k k k
k k

P

v P P
−

+
= =

⎡ ⎤⎣ ⎦

⎡ ⎤≈ + ⋅ ⎣ ⎦∑ ∑
. (50) 

Accurately estimating the covariance between log(Pk
SUS) and 

log(Pk+1
SUS) is nontrivial. Here, we derive an upper bound for 

COV[log(Pk
SUS), log(Pk+1

SUS)] [20] 

51 
( ) ( )

( )
1 log, log, 1COV log ,log

1,2, , 1

SUS SUS
k k k kP P v v

k K

+ +
⎡ ⎤ ≤ ⋅⎣ ⎦

= −
. (51) 

Substituting (51) into (50) yields 

52 ( )
1

log, log, log, 1 log,
1 1

VAR log 2
K K

SUS
F k k k SUS

k k

P v v v v
−

+
= =

⎡ ⎤ ≤ + ⋅ ⋅ =⎣ ⎦ ∑ ∑ . (52) 

In this paper, we approximate VAR[log(PF
SUS)] by its upper 

bound vlog,SUS defined in (52) to provide a conservative estimation 
for the CI. Based on (48) and (52), Eq. (47) can be re-written as 
53 ( ) ( ) log,log ~ log ,SUS

F F SUSP N P v⎡ ⎤⎣ ⎦ . (53) 

According to (53), we can derive the CI for any given confidence 
level. For instance, the 95% CI is expressed as 

54 
( )( )

( )( )
log,

log,

exp log 1.96 ,

exp log 1.96

SUS
F SUS

SUS
F SUS

P v

P v

⎡ − ⋅⎣
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. (54) 

The aforementioned CI estimation accurately captures the 
uncertainty of our proposed estimator PF

SUS, as will be 
demonstrated by several numerical examples in Section 5. 
 
5. NUMERICAL EXAMPLES 

In this section, we demonstrate the efficacy of SUS by several 
circuit examples. For testing and comparison purposes, four 
different algorithms are implemented: (i) brute-force MC, (ii) 
minimum-norm importance sampling (MNIS) [10], (iii) SSS [15], 
and (iv) SUS. In our experiments, the brute-force MC is applied to 
generate the “golden” failure rate which is used to evaluate the 
accuracy of the other three approaches. As described in [10], 

MNIS consists of two stages: (i) 2000 transistor-level simulations 
are first used to search the variation space, and (ii) a shifted 
Normal PDF is then constructed to perform importance sampling 
and estimate the rare failure rate. When implementing SSS, six 
scaling factors (i.e., 1.5, 2.3, 3.1, 3.9, 4.7 and 5.5) are empirically 
chosen. Finally, for our proposed SUS, the 1-D Normal 
distribution in (24) is used as the transition PDF in Step 9 of 
Algorithm 1 and the parameter POBJ in (29) is empirically set to 
0.1. 
 
5.1 SRAM Read Current 
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Figure 2.  The simplified schematic is shown for an SRAM column 
consisting of 64 bit-cells designed in a 45nm CMOS process. 

Figure 2 shows the simplified schematic of an SRAM column 
consisting of 64 bit-cells designed in a 45nm CMOS process. In 
this example, our PoI is the read current IREAD, which is defined as 
the difference between the bit-line currents IBL and IBL_ (i.e., IREAD 
= IBL – IBL_). The PoI IREAD directly impacts the SRAM read delay 
and, hence, is an important performance metric. If IREAD is greater 
than a pre-defined specification, we consider the SRAM circuit as 
“PASS”. Otherwise, it is considered as “FAIL”. To mimic the 
worst-case scenario for read operation, we maximize the impact of 
leakage current by storing “0” in CELL<0> and “1” in all other 
bit-cells. For process variation modeling, the local VTH mismatch 
of each transistor is considered as an independent Normal random 
variable. In total, we have 384 independent random variables (i.e., 
64 bit-cells × 6 transistors per bit-cell = 384). It, in turn, serves as 
a good example to demonstrate the efficacy of SUS in a high-
dimensional (i.e., M = 384) variation space. 

Table 1.  Failure rate PF and 95% CI [PF
L, PF

U] estimated by MNIS, SSS, 
and SUS (“golden” failure rate = 10−6) 

# of Sims 3600 4200 4800 5400 6000 

MNIS 
[10] 

PF
L 0 0 0 0 0 

PF 9.2×10−11 6.8×10−11 5.4×10−11 2.1×10−10 1.8×10−10

PF
U 2.5×10−10 1.8×10−10 1.4×10−10 4.7×10−10 4.0×10−10

SSS 
[15] 

PF
L 9.9×10−11 3.2×10−11 1.3×10−10 2.8×10−10 3.8×10−9 

PF 5.3×10−7 1.6×10−7 8.5×10−7 9.6×10−7 1.3×10−6 

PF
U 5.8×10−4 5.0×10−5 5.3×10−4 5.2×10−4 1.4×10−4 

SUS 

PF
L 2.1×10−7 1.2×10−7 1.9×10−7 1.7×10−7 2.3×10−7 

PF 1.2×10−6 7.6×10−7 9.9×10−7 8.9×10−7 1.0×10−6 

PF
U 7.4×10−6 4.7×10−6 5.1×10−6 4.7×10−6 4.5×10−6 

 
Based on the brute-force MC with 107 samples, the “golden” 

failure rate is equal to 10−6 in this example. Table 1 summarizes 
the failure rate and the 95% CI estimated by MNIS, SSS, and SUS 
with different numbers of simulations. From Table 1, we have 
several important observations. First, the estimated failure rate 
from MNIS is strongly biased. We believe that the shifted Normal 
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PDF used by MNIS for importance sampling does not capture the 
most important failure region and, hence, the estimated failure 
rate is substantially less than the “golden” failure rate. More 
importantly, the 95% CI estimated by MNIS cannot cover the 
“golden” failure rate, implying that MNIS also fails to assess the 
accuracy of its estimated failure rate. This is an important 
limitation of MNIS since the user cannot reliably know the actual 
“confidence” of the estimator in practice. 

Second, even though the 95% CI estimated by SSS can 
overlap with the “golden” failure rate, its range is large and, 
hence, the estimation is inaccurate. Because SSS relies on 
extrapolation to estimate the failure rate based on a set of 
probability values associated with different scaling factors, the 
estimation errors for these intermediate probabilities can be 
“amplified” due to the extrapolation operation. For this reason, the 
failure rate estimated by SSS can be inaccurate and, consequently, 
its CI covers a large range. 

Third, for our proposed SUS method, the estimator is almost 
unbiased and the 95% CI is relatively small compared to MNIS 
and SSS. It, in turn, demonstrates that SUS can achieve 
substantially better accuracy than the traditional methods (i.e., 
MNIS and SSS) in this SRAM example. 
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Figure 3.  The 95% CIs are estimated from 100 repeated runs with 6000 
simulations in each run for three different methods: (a) MNIS, (b) SSS, 
and (c) SUS. The red line represents the “golden” failure rate. 

Finally, we further verify the accuracy of the 95% CI 
estimated by three different methods (i.e., MNIS, SSS and SUS). 
To this end, we repeatedly run each method for 100 times with 
6000 simulations in each run. Figure 3 shows the 100 estimated 
95% CIs for each method, where each blue bar represents the CI 
of a single run, and the red line represents the “golden” failure 
rate. To clearly plot these CIs, the y-axis of Figure 3 is displayed 
in logarithmic scale over the range [10−10, 10−2]. If this range 
cannot cover a complete CI, we only show a portion of the CI that 
is inside the range. 

Studying Figure 3 reveals several important observations. 
First, only a single CI estimated from 100 repeated runs by MNIS 
can cover the “golden” failure rate. It, again, demonstrates the fact 
that the confidence level of MNIS cannot be accurately assessed 
by its estimated CI. Second, there are 94 and 97 CIs out of 100 
runs that cover the “golden” failure rate for SSS and SUS 
respectively. It demonstrates that the CIs estimated by both SSS 
and SUS accurately measure the estimation error and can 
appropriately indicate the conference level of the estimator. Third, 
the CIs of SUS are substantially tighter than those of SSS, 
implying that SUS is more accurate than SSS in this example. 
 

5.2 DFF Delay 
We consider a DFF circuit designed in a 45nm CMOS process, 

as shown in Figure 4. It consists of 20 transistors and the random 
mismatch of each transistor is modeled by 10 independent Normal 
random variables. Compared to the SRAM example in Section 5.1, 
a detailed statistical model is used to capture the random 
mismatch for the DFF circuit and, hence, additional random 
variables are needed to model the mismatch of each transistor. In 
total, there are 200 independent random variables in this example. 
Our PoI is the data transfer delay DCLK→Q from the clock CLK to 
the output Q. If the delay DCLK→Q belongs to a pre-defined interval 
[DLOW, DUP], we consider the DFF circuit as “PASS”. Otherwise, 
the DFF circuit is considered as “FAIL”. 
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CLK_

CLK_

CLK_

CLK

CLK

D Q

 
Figure 4.  The simplified circuit schematic is shown for a DFF circuit 
designed in a 45nm CMOS process. 

Table 2.  Failure rate PF and 95% CI [PF
L, PF

U] estimated by MNIS, SSS, 
and SUS (“golden” failure rate = 4.8×10−6) 

# of Sims 3300 3850 4400 4950 5500 

MNIS 
[10] 

PF
L 0 0 6.9×10−9 3.6×10−8 1.8×10−7 

PF 1.2×10−6 9.2×10−7 7.5×10−7 6.4×10−7 7.3×10−7 

PF
U 2.5×10−6 1.9×10−6 1.5×10−6 1.2×10−6 1.3×10−6 

SSS 
[15] 

PF
L 2.4×10−8 2.1×10−8 1.3×10−8 1.1×10−8 3.2×10−8 

PF 2.4×10−6 1.5×10−6 7.8×10−7 5.4×10−7 1.2×10−6 

PF
U 1.8×10−4 8.7×10−5 3.9×10−5 2.3×10−5 3.9×10−5 

SUS 

PF
L 1.3×10−6 4.9×10−7 1.6×10−6 1.4×10−6 2.3×10−6 

PF 6.0×10−6 2.2×10−6 6.1×10−6 5.0×10−6 7.4×10−6 

PF
U 2.9×10−5 9.9×10−6 2.3×10−5 1.7×10−5 2.4×10−5 
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Figure 5.  The 95% CIs are estimated from 100 repeated runs with 5500 
simulations in each run for three different methods: (a) MNIS, (b) SSS, 
and (c) SUS. The red line represents the “golden” failure rate. 

We first apply the brute-force MC with 5×106 random 
samples and the estimated “golden” failure rate is equal to 
4.8×10−6 in this example. Next, we apply three different 
algorithms (i.e., MNIS, SSS and SUS) to estimate the failure rate 
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with different numbers of simulations. Table 2 compares the 
estimation accuracy of these three methods. Similar to the SRAM 
example in Section 5.1, neither MNIS nor SSS can accurately 
estimate the failure rate even with 5500 simulations. On the other 
hand, our proposed SUS method can accurately estimate the 
failure rate with a tight confidence interval, even if the number of 
simulations is as small as 3300. This DFF example again 
demonstrates the superior accuracy of our proposed SUS method 
over other traditional methods (i.e., MNIS and SSS) in a high-
dimensional variation space. 

Next, to further verify the accuracy of the 95% CI estimated 
by MNIS, SSS and SUS, we repeatedly run each method for 100 
times with 5500 simulations in each run. The 100 estimated CIs 
for these three methods are plotted in logarithmic scale in 
Figure 5, where the range of the y-axis is set to [10−9, 10−2]. In this 
example, there are 17, 95 and 98 CIs out of 100 runs that cover 
the “golden” failure rate for MNIS, SSS, and SUS respectively. 
From these results, we observe that while MNIS fails to 
accurately estimate its CIs, both SSS and SUS successfully 
estimate the CIs and, hence, their confidence levels are accurately 
measured. Furthermore, the CIs associated with SUS are 
significantly tighter than those of SSS. It, in turn, demonstrates 
that our proposed SUS method is superior to the traditional SSS 
method in this example. 
 
6. CONCLUSIONS 

In this paper, a novel SUS approach is proposed to accurately 
analyze the rare failure events for nanoscale ICs in a high-
dimensional variation space. The key idea of SUS is to express the 
rare failure probability as the product of several large conditional 
probabilities by introducing a number of intermediate failure 
events. A Markov chain Monte Carlo algorithm (i.e., the modified 
Metropolis algorithm) is used to accurately estimate the 
intermediate conditional probabilities and, eventually, the rare 
failure rate of a given circuit. In addition, a statistical 
methodology is further developed to reliably estimate the 
confidence interval of SUS. Two circuit examples designed in 
nanoscale technologies demonstrate that SUS offers superior 
estimation accuracy over the traditional techniques (i.e., MNIS 
and SSS) when hundreds of random variables are used to model 
process variations. 
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