
  

  

Abstract—This paper describes a low-power hardware 
implementation for movement decoding of brain computer 
interface. Our proposed hardware design is facilitated by two 
novel ideas: (i) an efficient feature extraction method based on 
reduced-resolution discrete cosine transform (DCT), and (ii) a 
new hardware architecture of dual look-up table to perform 
discrete cosine transform without explicit multiplication. The 
proposed hardware implementation has been validated for 
movement decoding of electrocorticography (ECoG) signal by 
using a Xilinx FPGA Zynq-7000 board. It achieves more than 
56× energy reduction over a reference design using band-pass 
filters for feature extraction. 

I. INTRODUCTION 

Over the past several decades, brain computer interface 
(BCI) has been considered as a promising communication 
technique for patients with neuromuscular impairments. For 
instance, neural prosthesis provides a direct control pathway 
from brain to external prosthesis for paralyzed patients. It can 
offer substantially improved quality of life to these patients. 
To create a neural prosthesis, we must appropriately measure 
the brain signals and then accurately decode the movement 
information from the measured signals [1]-[6]. 

A variety of signal processing algorithms have been 
proposed for movement decoding in the literature. Most of 
these algorithms first extract the important features to 
compactly represent the information carried by the brain 
signals. Next, the extracted features are provided to a 
classification and/or regression engine to decode the 
movement information of interest. 

While most movement decoding algorithms in the 
literature are implemented with software on microprocessors, 
there is a strong need to migrate these algorithms to hardware 
in order to reduce the power consumption for practical BCI 
applications. Recently, significant efforts have been made to 
develop efficient hardware implementations for brain signal 
processing of epileptic seizure detection [7]-[10]. In this 
paper, we aim to extend these research works on hardware 
design and build a low-power hardware platform for 
movement decoding of BCI. Unlike the conventional feature 
extraction that relies on spectral density estimation [6] or 
band-pass filters [7], we adopt discrete cosine transform (DCT) 
to reliably extract BCI features with low power consumption. 
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By taking advantage of the periodicity of cosine functions 
with reduced resolution, we are able to minimize the total 
number of multiplications required for feature extraction and, 
hence, substantially reduce the power consumption for 
movement decoding. 

Moreover, we propose a new hardware architecture of dual 
look-up table (LUT) to implement the reduced-resolution 
DCT without explicit multiplication. By exploiting the fact 
that brain signal modulation often occurs within the same 
frequency bands across different channels [6], the proposed 
dual LUT can re-use the same set of cosine functions for 
feature extraction of multiple channels, thereby further 
reducing the power consumption. 

Our proposed hardware implementation is applicable to a 
number of different BCI systems based on 
electroencephalography (EEG), electrocorticography (ECoG), 
etc. It has been validated by using a Xilinx FPGA Zynq-7000 
board for a set of ECoG measurement data. As will be 
demonstrated by the experiment results in Section IV, our 
proposed hardware design achieves more than 56× energy 
reduction over a reference design using band-pass filters for 
feature extraction. 

The reminder of this paper is organized as follows. In 
Section II, we propose the DCT-based feature extraction for 
movement decoding, and then describe our low-power 
hardware implementation in Section III. Experimental results 
are presented in Section IV to demonstrate the superior 
performance of the proposed hardware design over the 
reference design. Finally, we conclude in Section V. 

II. REDUCED-RESOLUTION DISCRETE COSINE TRANSFORM 
FOR FEATURE EXTRACTION 

A. DCT-based Feature Extraction 
Conventionally, a set of band-pass filters are used to 

extract the important features (i.e., the spectral densities 
within different frequency bands) of brain signals [7]. 
Filtering a given signal in the time domain involves a 
convolution between the signal samples and the filter 
coefficients. To complete such a convolution operation, a 
large number of multiplications and summations are needed. 
These multiplications are particularly expensive for hardware 
implementation and often dominate the overall power 
consumption. For this reason, various techniques have been 
explored in the literature to perform power-efficient 
multiplications, e.g., by using LUTs [7]. 

Instead of relying on band-pass filters, we propose to use 
DCT for feature extraction in this paper. Given a discrete-time 
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signal {xn, n = 0, 1, 2, ⋅⋅⋅, N−1}, DCT calculates the following 
coefficient [11]: 
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In (1), Xm quantitatively indicates the signal energy at a 
particular frequency. Hence, the DCT coefficient Xm is highly 
correlated to the spectral density calculated by a band-pass 
filter and it can be used to represent the important feature 
required for movement decoding. 

Unlike the conventional filter-based approach that uses 
convolution to extract each feature, our DCT-based approach 
only needs to calculate the inner product of two vectors (i.e., 
the signal samples and the cosine function values). Hence, the 
number of multiplications is substantially reduced. In practice, 
multiple DCT coefficients should be calculated for several 
frequencies over a number of channels, resulting in a set of 
DCT-based features for decoding. 

 
B. Reduced-resolution DCT 

For low-power hardware implementation, floating-point 
arithmetic is overly expensive. Instead, fixed-point arithmetic 
must be used to minimize the power consumption. This has a 
two-fold meaning. First, the brain signals are quantized, e.g., 
by using an analog-to-digital converter (ADC) for the analog 
front-end. Second, but more importantly, the cosine function 
in (1) should also be quantized. As will be demonstrated by the 
experimental results in Section IV, the brain signals and the 
cosine functions can be quantized to 8 bits and 11 levels (i.e., 
less than 4 bits) respectively for our ECoG-based BCI without 
substantially sacrificing the decoding accuracy. 

Note that the cosine function in (1) is periodic. Once the 
cosine function is quantized (e.g., to 11 levels only), its values 
become identical at a large number of time points. Hence, we 
can partition the signal samples {xn, n = 0, 1, 2, ⋅⋅⋅, N−1} into 
several groups where the quantized cosine function shares the 
same value within the same group. Next, instead of directly 
calculating N multiplications for the DCT in (1), we first sum 
the signal samples from the same group and then the partial 
sum is multiplied by the quantized cosine function. 

For illustration purposes, we assume that the signal 
samples {xn, n = 0, 1, 2, ⋅⋅⋅, N−1} are partitioned into K groups 
when calculating the DCT-based feature Xm defined in (1): 

{ }, ,0 , ,1 , ,2, , ,m k m k m kx x x  , (2) 
where xm,k,i represents the i-th signal sample in the k-th group. 
The feature Xm in (1) is then calculated via two steps. First, the 
partial sum sm,k is calculated: 

, , ,0 , ,1 , ,2m k m k m k m ks x x x= + + + . (3) 
Next, all partial sums {sm,0, sm,1, sm,2, ⋅⋅⋅} are linearly combined 
to obtain the feature Xm: 

, ,0 ,0 ,1 ,1 ,2 ,2m m m m m m mX c s c s c s= ⋅ + ⋅ + ⋅ + , (4) 
where cm,k represents the quantized value of the cosine 
function corresponding to the k-th group. 

The aforementioned approach is referred to as 
reduced-resolution DCT in this paper. It significantly reduces 
the number of the multiplications and, hence, the power 
consumption for feature extraction. In addition, our proposed 

feature extraction can be efficiently implemented with a 
LUT-based architecture for additional power reduction, as will 
be discussed in detail in the next section. 

III. LOW-POWER HARDWARE ARCHITECTURE FOR 
MOVEMENT DECODING OF BRAIN COMPUTER INTERFACE 

 
Figure 1. A simplified block diagram is shown for the proposed 
hardware implementation. 

Figure 1 shows a simplified block diagram for the 
proposed hardware implementation. It consists of three major 
components: (i) feature normalization, (ii) feature extraction, 
and (iii) classification. In what follows, we will describe the 
implementation details of these three components with 
emphasis on power reduction. 

 
A. Feature Normalization with Bit-shift Operation 

The spectral densities of brain signals vary from subject to 
subject, from channel to channel and from frequency to 
frequency. For instance, it has been reported in the literature 
that the ECoG signal in high-gamma band (70~110 Hz) is 
highly correlated with movement, but its spectral density is 
substantially lower than that of the low-frequency signal [6]. 
Hence, the DCT-based features defined in (1) may 
substantially vary over a large range and representing these 
features by fixed-point arithmetic requires a large wordlength 
(i.e., a large number of bits). 

In order to minimize the wordlength and, consequently, 
the power consumption for fixed-point computation, we must 
appropriately normalize the brain signal from each channel 
before calculating the DCT-based features. In our BCI 
application, the normalization factor is determined by 
estimating the range of each feature based on the training data. 
In addition, we constrain the normalization factor to be a 
power of two, i.e., 2k where k is an integer. As such, the 
normalization can be performed by simply bit-shifting the 
signal, instead of dividing each brain signal by the 
corresponding normalization factor. It, in turn, reduces the 
power consumption required for feature normalization. 

 
B.  Feature Extraction with Dual Look-up Table 

As previously stated, feature extraction dominates the 
overall power consumption of movement decoding in most 
cases. Therefore, building a power-efficient feature extraction 
engine is of great importance. Figure 2 shows the simplified 
block diagram for our proposed feature extraction engine. It is 
implemented with two LUTs to minimize the power 
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consumption. 

1) LUT: Group Index 
The first LUT defines the grouping structure for the signal 

samples {xn, n = 0, 1, 2, ⋅⋅⋅, N−1}. For each sample xn, its group 
index is stored in the LUT. Based on the group index, xn is 
passed to one of the accumulators {s0, s1, s2, ⋅⋅⋅}. The partial 
sums in (3) are then calculated at these accumulators. 
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Figure 2. A simplified block diagram is shown for the proposed 
feature extraction engine with dual LUT. 

2) LUT: DCT Evaluation 
The second LUT “implicitly” multiplies the partial sum of 

each group with the quantized cosine function. Similar to the 
idea presented in [7], we first convert the partial sums {s0, s1, 
s2, ⋅⋅⋅} to a set of serial bits by using bit shift registers (BSRs). 
Next, these partial sums are implicitly multiplied by the 
quantized cosine function one bit by one bit using the LUT, 
instead of performing explicit multiplications. More details of 
the aforementioned LUT-based multiplication can be found in 
[7]. Finally, the weighted partial sums are added together to 
calculate the DCT-based feature in (4) and the final result is 
stored in the register shown in Figure 2. 

It is worth mentioning that since brain signal modulation 
often occurs within the same frequency bands across multiple 
channels [6], the DCT-based features should be extracted at 
the same frequencies from all the channels. Hence, the two 
LUTs in Figure 2 can be shared for different channels, thereby 
reducing the hardware complexity. 

 
C.  Classification Engine 

Once all DCT-based features are extracted for multiple 
channels, they are further combined to decode the movement 
information. In this paper, we focus on the problem of 
directional decoding based on a linear classifier. Namely, all 
features should be linearly combined to determine the 
movement direction of interest. Here, a variety of linear 
classification algorithms [12] (e.g., linear discriminant 
analysis, support vector machine, etc.) can be used, where the 
classifier training is performed offline. The on-chip 
classification engine performs the multiply-and-accumulate 
operations to determine the final output (i.e., the movement 
direction) from all DCT-based features. 

IV. EXPERIMENTAL RESULTS 

The proposed hardware platform based on 
reduced-resolution DCT is implemented with a Xilinx FPGA 
Zynq-7000 board. For testing and comparison purposes, we 
further implement a reference design that extracts the BCI 
features by using a set of band-pass filters. In this section, we 
demonstrate the superior performance of our proposed 
hardware implementation over the reference design. 

 
A. Movement Decoding Accuracy 

To compare the decoding accuracy for DCT- and 
filter-based designs, we consider the ECoG data set collected 
from a human subject with tetraplegia due to spinal cord injury 
[6]. The ECoG signals are recorded with a high-density 
32-electrode grid over the hand and arm area of the left 
sensorimotor cortex. The sampling frequency is 1.2 kHz. The 
human subject is able to voluntarily activate his sensorimotor 
cortex using attempted movements. 

Our objective is to decode the binary movement direction 
(i.e., left or right) from a single trial that is 300 ms in length. 
The ECoG data set contains 70 trials for each movement 
direction (i.e., 140 trials in total). For both DCT- and 
filter-based methods, 7 important channels with 6 features per 
channel (i.e., 42 features in total) are selected based on the 
Fisher criterion [12]. Two linear classifiers are trained by 
using the DCT- and filter-based features respectively. When 
implementing both classifiers with hardware, we use 8-bit 
fixed-point arithmetic. For our proposed reduced-resolution 
DCT, the cosine function in (1) is quantized to 11 levels (i.e., 
less than 4 bits). 

Table 1. Movement decoding accuracy for ECoG-based BCI 
 DCT-based 

(Proposed) 
Filter-based 
(Reference) 

Fixed-point 82.9% 75.0% 
Floating-point 75.7% 71.4% 

 
Table 1 summarizes the decoding accuracy estimated by 

5-fold cross-validation for the aforementioned ECoG data set. 
For comparison purposes, we list the decoding accuracy for 
both fixed- and floating-point arithmetic. Studying Table 1 
reveals two important observations. First, the fixed-point 
implementation is even slightly more accurate than the 
floating-point implementation, probably because the 
quantization posed by fixed-point arithmetic partially removes 
the random noises of the ECoG signals. This observation 
demonstrates the feasibility of aggressively reducing the 
resolution of fixed-point arithmetic without surrendering any 
decoding accuracy. 

Second, the DCT-based design is slightly more accurate 
than the filter-based design. It, in turn, implies that the 
proposed DCT-based features accurately capture the 
information that is required for movement decoding. 

 
B. Power Consumption 

We estimate the power and energy consumption for both 
DCT- and filter-based designs by using Xilinx Power 
Analyzer [13], where the clock frequency is set to 0.5 MHz. 
The ECoG data set described in Section IV.A is used as the 
input to both hardware designs for movement decoding. Table 
2 summarizes the results. Note that the proposed DCT-based 
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design achieves more than 56× energy reduction over the 
filter-based design. Such a significant energy reduction comes 
from three major sources: (i) replacing the convolution 
operation of filter by the inner product operation of DCT, (ii) 
calculating the partial sums for reduced-resolution DCT to 
minimize the number of multiplications, and (iii) 
implementing the reduced-resolution DCT by LUT without 
explicit multiplication. 

Table 3 further shows the power consumption for different 
functional blocks of the DCT-based design. Note that feature 
extraction dominates the overall power consumption for our 
proposed hardware implementation. Hence, additional efforts 
should be pursued to further reduce the power consumption of 
feature extraction in our future research. 

Table 2. Power and energy consumption per decoding operation 
 DCT-based 

(Proposed) 
Filter-based 
(Reference) 

Power (mW) 0.72 3.8 
Runtime (ms) 1.094 11.71 
Energy (μJ) 0.787 44.5 

Table 3. Power consumption of different functional blocks for 
DCT-based design 

Feature Normalization (μW) 25.2  
Feature Extraction (μW) 690.2 
Classification (μW) 2.6 

 
C. FPGA Board-level Validation 

 
Figure 3. A Xilinx FPGA Zynq-7000 board is used to validate the 
proposed DCT-based hardware design for movement decoding. 

To validate the proposed DCT-based hardware design on 
the Xilinx Zynq-7000 board, we first load our hardware design 
to the FPGA chip through the programming interface. Next, 
the ECoG data set is copied to an SD card that is connected to 
the Zynq-7000 board. When running the movement decoding 
flow, a single trial of the ECoG signals is first loaded to the 
SRAM block inside the FPGA chip. Next, these signals are 
passed to the functional blocks of feature normalization, 
feature extraction and classification for decoding. The 
decoding results are read back to an external computer through 
an RS-232 serial port on the Zynq-7000 board so that we can 
verify the decoding accuracy. Figure 3 shows a photograph of 
the Xilinx FPGA Zynq-7000 board where the RS-232 port and 
the programming interface are both highlighted. 

V. CONCLUSION 

In this paper, we develop a novel hardware implementation 
for movement decoding of BCI. Our proposed design 
minimizes the power consumption via two complementary 
avenues. First, a novel feature extraction method is proposed 
to reduce the computational complexity by using 
reduced-resolution DCT. Second, a new hardware 
architecture of dual LUT is developed to implement the 
reduced-resolution DCT without explicit multiplication. Our 
proposed DCT-based design has been validated by using a 
Xilinx FPGA Zynq-7000 board. The experimental results 
demonstrate that it achieves more than 56× energy reduction 
over a reference design using band-pass filters for feature 
extraction. As an important aspect of our future research, we 
will further design an application-specific integrated circuit 
(ASIC) to implement the proposed hardware design for 
movement decoding and integrate the IC into a practical BCI 
system. 
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