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Abstract—In this paper, we consider the problem of commu-
nicating data from distributed sensors for the goal of inference.
Two inference problems of linear regression and binary linear
classification are investigated. Assuming perfect training of
the classifier, an approximation of the problem of minimizing
classification error-probability under Gaussianity assumptions
leads us to recover Fisher score: a metric that is commonly
used for feature selection in machine learning. Further, this
allows us to soften the notion of feature selection by assigning
a degree of relevance to each feature based on the number of
bits assigned to it. This relative relevance is used to obtain
numerical results on savings on number of bits acquired
and communicated for classification of neural data obtained
from Electrocorticography (ECoG) experiments. The results
demonstrate that significant savings on costs of communication
can be achieved by compressing Big Data at the source.

I. INTRODUCTION

In this work, we investigate the problem of compressing
data from different data streams. These data streams could
be generated by different sources (e.g., sensors), some of
which are more “relevant” to the goal at hand than others.
To motivate these problems, consider the practical example
of Brain-Computer Interfaces (BCIs) [1]. Such interfaces
typically record large amounts of data [2], and communicate
them at high rates (and consequently, with large amounts
of energy, see e.g., [3]). With the demand to make these
interfaces wireless (e.g., [4]), it is important to reduce the
communication requirements.

Standard information-theoretic compression techniques
tend to be difficult to apply in these problems. For instance,
the sensors often sense correlated data, which can make the
possibility of using distributed source-coding techniques (see
e.g., [5]–[8], etc.) very appealing. However, the techniques
rely on estimation of joint distribution. Even when with
additional assumptions the underlying distribution can be
parameterized, the problem is hard: (i) it requires O(n2)
data to estimate correlations between n sources, where n can
typically be very large; and (ii) it often requires moving data
to a central node prior to compression so that correlations can
be computed. In contrast, parameter estimation at individual
sensors can require less data and can be performed in
isolation. One observation that can help reduce the required
data rates comes from the literature of “channel selection”

(see, e.g., [9]–[17]) in brain-machine interfaces. Motivated
primarily by ease of computation through dimensionality re-
duction (once the data has been collected), channel-selection
algorithms select the channels most relevant to the task at
hand, and ignore data from other channels. When the goal is
one of classifying data streams into one of many classes (e.g.,
for neuroprosthetic applications [18]), techniques based on
computing Fisher scores [9], recursive channel selection [9],
common spatial pattern [10]–[13], mutual information max-
imization [14], [15], genetic algorithms [16], [17], etc., have
been proposed.

The core idea examined in this work is the following:
instead of hard selection of each data stream (as is done in
channel selection), our goal is to quantize each stream using
minimal number of bits in order to accomplish the inference
goal with a target accuracy. The allocation of number of bits
to each data stream depends on the relevance of that stream
to the goal. Further, we want to preserve, to some degree,
the data in the more relevant data streams themselves in
order to enable improved estimation of the underlying joint
distribution at the receiving end. The receiver can then use
sophisticated inference algorithms that could exploit correla-
tions. Thus, our problem (posed formally in Section II) is one
where we are forced to reconstruct the relevant data streams
themselves for distribution estimation. We propose strategies
(in Section III) that assign more weight to the reconstruction
error of more relevant data streams, which would enable
improved estimates of the marginal distributions of more
relevant streams, and improved understanding of redundancy
in these streams. We do believe that this is merely an
approximation of the actual underlying problem, and that a
system-level approach is needed in order to understand the
costs of learning the system and classification together.

Towards understanding how bits should be allocated to dif-
ferent data streams that reflect their relevance, two problems
of inference are considered in this work: linear regression
for prediction, and linear classification. For the problem of
linear classification, the proposed strategy is tested on neural
data (in Section IV). The obtained results show substantial
reductions in data rates (over uniform quantization over all
sensors) suggesting that the proposed compression strategies
can enable significant lowering of energy requirements if the
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needed intelligence for computing relevance can be built
into the sensing system.

Channel-selection approaches often rely on feature-
selection techniques from machine learning [19], [20]. A
common feature-selection technique is one that uses “Fisher
score” [21], selecting only features that have sufficiently
high Fisher scores (see Section III and Section IV). For an
underlying Gaussian model and the goal of binary linear
classification, interestingly, our results in Section III show
that Fisher score falls out naturally from our proposed
strategies.

Within information theory, in the problems of distributed
data compression, perhaps the most closely related works are
those of Berger (the “CEO problem” [22]) and Han [23] (and
the follow-up work on these papers). From the perspective
of the CEO problem, the underlying class can be viewed
as the source of information. Corrupted versions of this
source are observed at various sensors. The problem becomes
one of rate-constrained minimization of error in estimating
the source. Han [23] surveys the literature in distributed
compression for inference, and hence is more closely related.
The core difference here from both of these works is that
we need reconstruction of not only the underlying class,
but also of the data streams themselves, with increasing
resolution for the more relevant data streams. Nevertheless,
the problems are intimately related, and our ongoing work
seeks to understand how strategies proposed in this literature
can prove helpful in reducing the data and energy overhead
faced by brain-machine interfaces, and sensor networks in
general.

Fig. 1. Model of a distributed sensor network. In the CEO problem, the
parameter θ is the unobservable source X while in the statistical inference
problem, the parameter θ is the underlying class (or hypothesis) as the
problem posed in this paper. The main difference between our problem
formulation and the other two is that while in the CEO and statistical
inference problems, only reconstruction of the parameter θ is required, we
also need to obtain estimations of the data streams.

This paper is organized as follows. Section II contains
the formulation of two inference problems: linear regression
and binary linear classification. Section III develops the
main results of the paper and draws the connection between
the proposed rate-allocation strategies for classification and
Fisher score. In section IV, the performance of the proposed
rate-allocation method is evaluated using numerical results,
and section V concludes the paper.

II. PROBLEM FORMULATION

In this section, the inference problems of linear regression
for prediction and binary linear classification based on mea-
surements obtained from a set of distributed sensors under a
sum-rate constraint are presented.

Consider the problem of inference based on data obtained
from sensors on which training has already been performed
and thus, the distributions on the data have already been
estimated. Suppose there are M distributed sensors which
are sending their measurements Xi, i = 1, 2, ...,M to a
decision center for the goal of inference through noiseless
channels between each sensor and the decision center. Con-
sidering each of these measurements as a feature, the vector
X = [X1, X2, ..., XM ] of measurements is called a data point
in the M -dimensional feature space.

Assuming Ri bits of resolution are dedicated to the i-
th feature Xi, its quantized representation using Ri bits
is denoted by X̂i. More precisely, the i-th sensor uses an
encoder (quantization) function Ei : Xni → {1, ..., 2nRi}
and sends Ei(Xn

i ) to the decision center. The decision center
uses a set of decoding functions Di : {1, ..., 2nRi} → X̂ni
to reproduce the features. Given a set of data points
{X(1),X(2), ...,X(n)} in the feature space, consider the
problem of inference based on a reconstruction of those data
points {X̂(1), X̂(2), ..., X̂(n)} subject to a constraint on the
total rate.

A. Linear Regression for Prediction

Suppose that the data points in the M -dimensional feature
space are such that the i-th feature of each data point is
distributed according to a Gaussian distribution, i.e., Xi ∼
N (µi, σ

2
i ). Consider the problem of predicting the value of

the dot product wTX subject to a constraint on the sum-rate
of communication, where the vector w has been estimated
beforehand from the estimated data distribution. In other
words, the problem is how to divide the total rate among
different features so that the mean-squared error in predicting
wTX, i.e., E[(wTX−wT X̂)2] is minimized. More formally,
the inference problem can be formulated as follows:

minimize
Ei,Di,Ri

1

n

n∑
t=1

E

[(
wTX(t) −wT X̂(t)

)2]
.

subject to
M∑
i=1

Ri ≤ R
(1)

We will derive an inner bound for the above optimization
problem in section III.A.

B. Binary Linear Classification

Assume that each data point belongs to one of the two
existing classes with equal probabilities. If a data point X is
of class j, j = 1, 2, the i-th, i = 1, 2, ...,M feature of that
data point is distributed according to a Gaussian distribution,
i.e., Xi ∼ N (µji, σ

2
ji); in other words, each feature is a

random variable distributed according to a Gaussian mixture
model with two equiprobable components.
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Without loss of generality, we can assume that for each
feature Xi, µ1i = −µ2i = −µi. Also, for simplicity, we
assume that for each feature Xi, σ1i = σ2i = σi. Thus, in
the remainder of the paper, we will assume that under class
1, Xi ∼ N (−µi, σ2

i ) and under class 2, Xi ∼ N (µi, σ
2
i ).

Given a data point X in the feature space, consider the
problem of classification by the linear discriminant analysis
(LDA) algorithm using a reconstruction of that data point
X̂ subject to a constraint on the total rate. The LDA algo-
rithm for classification is based on two assumptions. First,
it assumes that the conditional probability distribution of
a data point given its class is normal, i.e., under class 1,
X ∼ N (µ1,Σ1) and under class 2, X ∼ N (µ2,Σ2). Under
this assumption, the Bayes optimal solution is to classify the
data point in the first class if the log-likelihood ratio is above
some threshold constant d, i.e.,

(X− µ1)
T
Σ−11 (X− µ1) + ln |Σ1|
− (X− µ2)

T
Σ−12 (X− µ2)− ln |Σ2| > d.

(2)

Second, it assumes that the conditional covariance matrices
under the two classes are identical, i.e., Σ1 = Σ2 = Σ.
Under this assumption, the decision criterion in (2) simplifies
to wTX < d′, for some threshold constant d′, where

w ∝ Σ−1 (µ2 − µ1) . (3)

This means that the decision rule which classifies a data point
X in class j, j = 1, 2 is a function of this linear combination
of the known measurements.

Assuming that the vector w has been estimated beforehand
from the estimated data distribution, consider the problem of
minimizing the classification error-probability averaged over
time subject to a constraint on the sum-rate of communica-
tion, i.e.,

minimize
Ei,Di,Ri

1

n

n∑
t=1

Pr
(

Class
(
X̂(t)

)
6= Class

(
X(t)

))
.

subject to
M∑
i=1

Ri ≤ R

(4)
In other words, the problem is how to divide the total rate
among different features so that the probability of misclassi-
fication is minimized. We will derive two inner bounds for
the above optimization problem in section III.B.

III. MAIN RESULTS

This section includes the main results of the paper, specif-
ically an inner bound for the linear regression problem in
(1) and two inner bounds for the binary linear classification
problem in (4). We also draw a connection between our
proposed methods of rate-allocation for (4) and Fisher score.

A. Linear Regression for Prediction
We first derive an upper bound on the target function in

(1) as follows:

E

[(
wTX(t) −wT X̂(t)

)2]
(5)

= E

[(
wT

(
X(t) − X̂(t)

))2]
(6)

= E

( M∑
i=1

wi

(
X

(t)
i − X̂

(t)
i

))2
 (7)

= E

 M∑
i=1

M∑
j=1

wiwj

(
X

(t)
i − X̂

(t)
i

)(
X

(t)
j − X̂

(t)
j

) (8)

=

M∑
i=1

M∑
j=1

wiwjE
[(
X

(t)
i − X̂

(t)
i

)(
X

(t)
j − X̂

(t)
j

)]
(9)

≤
M∑
i=1

M∑
j=1

wiwj

√
E

[(
X

(t)
i − X̂

(t)
i

)2]
E

[(
X

(t)
j − X̂

(t)
j

)2]
(10)

=

(
M∑
i=1

wi

√
E

[(
X

(t)
i − X̂

(t)
i

)2])2

(11)

=

(
M∑
i=1

√
w2
iE

[(
X

(t)
i − X̂

(t)
i

)2])2

(12)

=

(
M∑
i=1

√
E

[(
wiX

(t)
i − wiX̂

(t)
i

)2])2

(13)

=

(
M∑
i=1

√
D

(t)
i

)2

, (14)

where (10) follows from the Cauchy-Schwarz inequal-
ity and (14) follows from the definition D

(t)
i ,

E[(wiX
(t)
i − wiX̂

(t)
i )2]. Therefore, the solution to the fol-

lowing problem is an inner bound to that of (1):

minimize
Ei,Di,Ri

1

n

n∑
t=1

(
M∑
i=1

√
D

(t)
i

)2

.

subject to
M∑
i=1

Ri ≤ R

(15)

Since codebooks are generated randomly in the achiev-
ability proof of the distortion-rate function, averaging over
the randomly chosen codebook, the expected distortion in
recovering the i-th feature of the t-th data point, and thus,
D

(t)
i , is the same for all data points. Thus, we can drop (t)

in the problem definition and (15) can be simplified to

minimize
Ei,Di,Ri

(
M∑
i=1

√
Di

)2

,

subject to
M∑
i=1

Ri ≤ R

(16)
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which is equivalent to the following problem:

minimize
Ei,Di,Ri

M∑
i=1

√
Di.

subject to
M∑
i=1

Ri ≤ R

(17)

Rather than deriving the rate-allocation strategy which min-
imizes the target function in (1), we are trying to determine
the strategy that minimizes the target function in (17) which
is an upper bound to the former one.

Theorem 1. Let Xi ∼ N (µi, σ
2
i ), i = 1, 2, . . . ,M be

independent Gaussian random variables. Then, an inner
bound for (17) is given by

Ri =
1

2
log

(
w2
i σ

2
i

Di

)
, (18)

where
Di =

{
λ′, λ′ ≤ w2

i σ
2
i ,

w2
i σ

2
i , λ′ > w2

i σ
2
i ,

(19)

where λ′ is chosen such that
∑M
i=1Ri = R.

Proof. From the distortion-rate function of a single Gaussian
source

(
D(R) = σ22−2R

)
, we know that Di = w2

i σ
2
i 2−2Ri .

Thus, it remains to solve the following optimization problem:

minimize
Ri

M∑
i=1

wiσi2
−Ri .

subject to
M∑
i=1

Ri = R

(20)

Using Lagrange multipliers, the Lagrange function is

J(R) =

M∑
i=1

wiσi2
−Ri + λ

(
M∑
i=1

Ri −R

)
. (21)

Differentiating with respect to Ri and setting to zero, we
have

∂J

∂Ri
= −wiσi2−Ri ln 2 + λ = 0, (22)

which results in Ri = log wiσi ln 2
λ which can be translated

to Di = λ2

ln2 2
= λ′. Thus, we arrive at the same reverse

water-filling result for the rate-allocation strategy as that in
minimizing the sum-distortion (as opposed to sum of square
roots of distortions) of independent Gaussian sources. �

B. Binary Linear Classification
Since classification using the LDA algorithm only depends

on wTX, intuitively, better approximation of wTX leads
to lower classification error-probability. This suggests the
approximation of (4) by

minimize
Ei,Di,Ri

1

n

n∑
t=1

E

[(
wTX(t) −wT X̂(t)

)2]
.

subject to
M∑
i=1

Ri ≤ R
(23)

In other words, the problem is how to divide the total rate
among different features so that the mean-squared error in
recovering the dot product wTX, i.e., E[(wTX −wT X̂)2]
is minimized. The above approximation is also important
because in inference problems, the estimated distributions of
Xi’s often need to be updated.

Using the same procedure and reasoning as in section
III.A, instead of deriving the rate-allocation strategy which
minimizes the target function in (23), we are trying to
determine the strategy that minimizes the target function in
(17) which is an upper bound to the former one.

Theorem 2. Let Xi, i = 1, 2, . . . ,M be indepen-
dent random variables each distributed as a mixture
of two equiprobable Gaussian densities, i.e., p(Xi) =
1
2N (−µi, σ2

i )+ 1
2N (µi, σ

2
i ). Then, an inner bound for (17)

is given by

Ri =
1

2
log

(
Λ2
i

Di

)
, (24)

where
Di =

{
λ′, λ′ ≤ Λ2

i ,
Λ2
i , λ′ > Λ2

i ,
(25)

where Λi = wi
√
σ2
i + µ2

i and λ′ is chosen such that∑M
i=1Ri = R.

Proof. It is known that for a given second moment and a
given distortion, the Gaussian source has the largest rate-
distortion function; equivalently, for a given second mo-
ment and a given rate, the Gaussian source has the largest
distortion-rate function. Thus, we can derive an upper bound
on the distortion-rate function of a Gaussian mixture source
by considering the distortion-rate function of the Gaussian
source with the same second moment. For the Gaussian
mixture random variable Xi ∼ 1

2N (−µi, σ2
i )+ 1

2N (µi, σ
2
i ),

the second moment is obtained as follows:

E
[
X2
i

]
=

2∑
c=1

p(C = c)E
[
X2
i |C = c

]
= σ2

i + µ2
i , (26)

where C represents whether Xi is taken from the first
or the second Gaussian component. Therefore, considering
the Gaussian random variable Yi ∼ N (0, E

[
X2
i

]
), the

distortion-rate function of the Gaussian mixture source Xi

is bounded by

Di ≤ w2
i V ar[Xi]2

−2Ri = w2
i

(
σ2
i + µ2

i

)
2−2Ri . (27)

Thus, it remains to solve the following optimization problem:

minimize
Ri

M∑
i=1

wi

√
σ2
i + µ2

i 2
−Ri .

subject to
M∑
i=1

Ri = R

(28)

Substituting w2
i σ

2
i in Theorem 1 with w2

i

(
σ2
i + µ2

i

)
, the rest

of the proof is along the same lines as that of Theorem 1.
Thus, the achievable rate-allocation strategy in (24) leads to
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a kind of reverse water-filling for the rate-allocation strategy,
as illustrated in Fig. 2. �

Fig. 2. Reverse water-filling. a) In the rate-allocation strategy corresponding
to the first inner bound, only features with parameter w2

i

(
σ2
i + µ2i

)
larger

than some constant λ′ are quantized. All these features suffer the same
individual distortion. b) In the rate-allocation strategy corresponding to the
second inner bound, features with parameter w2

i σ
2
i larger than some constant

λ′ are quantized such that all of them suffer the same individual distortion.
Each of the other features is quantized such that its individual distortion
is equal to its parameter w2

i σ
2
i . (Figure is a modified version of Fig. 10.7

in [24].)

The rate-distortion function of a Gaussian mixture random
variable with two equiprobable components for distortions
D ≤ σ2 satisfies [25]

R(D) =
1

2
log

(
σ2

D

)
+ 1− ε

(µ
σ

)
, (29)

where ε(x) goes to zero as x → ∞. Using the fact that the
distortion-rate function D(R) is a non-increasing function of
the rate R, the distortion-rate function of a Gaussian mixture
random variable with two equiprobable components for R ≥
1− ε

(
µ
σ

)
is given by

D(R) = σ22−2(R−1+ε(
µ
σ )). (30)

Theorem 3. Let Xi, i = 1, 2, . . . ,M be independent
random variables each distributed as a mixture
of two equiprobable Gaussian densities, i.e.,
p(Xi) = 1

2N (−µi, σ2
i )+ 1

2N (µi, σ
2
i ). Then, assuming

R ≥
∑M
i=1

(
1− ε

(
µi
σi

))
, an inner bound for (17) is given

by

Ri =
1

2
log

(
w2
i σ

2
i

Di

)
+ 1− ε

(
µi
σi

)
, (31)

where
Di =

{
λ′, λ′ ≤ w2

i σ
2
i ,

w2
i σ

2
i , λ′ > w2

i σ
2
i ,

(32)

where λ′ is chosen such that
∑M
i=1Ri = R.

Proof. First, we assign 1 − ε
(
µi
σi

)
bits to the i-th feature

for i = 1, . . . ,M . Then, using (30), we have Di =

w2
i σ

2
i 2
−2

(
Ri−1+ε

(
µi
σi

))
. Thus, it remains to solve the fol-

lowing optimization problem:

minimize
Ri

M∑
i=1

wiσi2
−Ri+1−ε

(
µi
σi

)
.

subject to
M∑
i=1

Ri = R

(33)

Following the same lines as those in the proof of Theorem 1,
we get Di = λ2

ln2 2
= λ′. Thus, the achievable rate-allocation

strategy in (31) also leads to a kind of reverse water-filling
for the rate-allocation strategy, as illustrated in Fig. 2. �

Remark 1. As seen in Theorem 2 and Theorem 3, the rate
allocated to the i-th feature is dependent on the parameters Λ2

i

and w2
i σ

2
i , respectively. Traditionally, Fisher score is used to

determine the most discriminant features so that the features
with the highest Fisher scores (larger than a threshold) are
assumed to be more relevant and the others are assumed less
relevant (and thereby ignored). Now, we show that under
certain assumptions, our rate-allocation strategies are soft
generalizations of feature selection using Fisher score where
the relevance of each feature is not measured in a hard man-
ner, i.e., whether the feature is relevant or irrelevant. Instead,
each feature is assigned a degree of relevance quantified by
the rate allocated to it. For this, assume that the features
of each data point are statistically mutually independent and
also σ1i = σ2i = σi for the i-th feature, which imply that
the covariance matrix Σ is a diagonal matrix whose diagonal
elements are σ2

i , i = 1, 2, . . . ,M . Obtaining the vector w as
in (3) with factor of proportionality equal to 1, we have

w = Σ−1(µ2 − µ1) = Σ−1(2µ), (34)

where we have used the assumption that µ1 = −µ2.
Therefore,

wi =
2µi
σ2
i

. (35)

In Theorem 2, the rate allocated to each feature is depen-
dent on the parameter Λ2

i = w2
i

(
σ2
i + µ2

i

)
. Using (35), we

have

Λ2
i = w2

i σ
2
i

(
1 +

µ2
i

σ2
i

)
(36)

=
4µ2

i

σ2
i

(
1 +

µ2
i

σ2
i

)
(37)

= FSi

(
1 +

FSi
4

)
, (38)

which is a function of Fisher score of the i-th feature, FSi.
In Theorem 3, the rate allocated to the i-th feature depends

on the variance of wiXi, i.e., w2
i σ

2
i . From (35), we have

w2
i σ

2
i =

4µ2
i

σ2
i

, (39)

which is equal to the Fisher score of the i-th feature, FSi.
Thus, the rate-allocation strategy corresponding to the first
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inner bound can be considered as a generalization of feature
selection using Fisher score.

IV. NUMERICAL RESULTS: AN APPLICATION TO
RECORDED NEURAL DATA

In this section, we test our proposed method of inference-
oriented compression on data obtained from real-world neural
measurement systems to evaluate its effect on classification
accuracy.

A. Data Description

In this study, the ECoG signals recorded with a high-
density 32-electrode grid over the hand and arm area of the
left sensorimotor cortex of a paralyzed individual are used.
The individual can activate his sensorimotor cortex using
attempted movements to the left or right. The ECoG data set
used, consists of 140 trials, 70 trials for each of the movement
directions. Each trial is 300ms long and sampled at 1.2kHz
frequency, resulting in 361 samples per trial. Given a trial,
we are interested in decoding the movement direction.

B. Data Pre-processing

In this experiment, instead of common feature extraction
techniques which rely on spectral density estimation [26]
or band-pass filters [27], we use discrete cosine transform
(DCT) as proposed in [3] which reduces the power consump-
tion in extracting brain-computer interface (BCI) features
substantially. Taking the DCT of the signals recorded by each
of the 32 channels for integer frequencies from 0 to 120, we
obtain a 3872-dimensional feature vector (121 frequencies
for 32 channels) for each trial. Linear classification using the
LDA algorithm is performed on these 3872-dimensional data
points.

C. Evaluating Classification Accuracy

First, only the important features with Fisher scores above
a threshold, in this case 0.25, are kept and the other features
are removed. Then, we select 35 trials of each class randomly
to train the LDA algorithm, i.e., to obtain the vector w as in
(3) with factor of proportionality equal to 1, and use the other
trials for validation. After training is done, the classification
is performed by first quantizing each of the remaining 28
features of a validation data point with the number of bits
allocated to that feature according to Theorem 2 (note that the
total number of bits are divided only between 28 features),
and then performing the LDA algorithm on these quantized
DCT features. The result, illustrated in Fig. 3, provides the
tradeoff between classification accuracy and total number of
bits allocated to features under the assumption that the DCT
values for different frequencies are independent. Even under
this inaccurate assumption, the resulting classifier works
with about 90% accuracy with just 30 total bits allocated
across 3872 features. This illustrates the dramatic potential
for energy savings: allocating only one bit to represent each
of 3872 features would need 3872 bits (130x more energy)

to be transmitted from the sensors, with barely any classifi-
cation accuracy. For another comparison, allocating 8 bits to
represent each of 28 important features as suggested in [3],
would need 224 bits (8x more energy) and the classification
accuracy would not be any better (about 82.5%).

Fig. 3. Binary classification accuracy vs. number of bits with ”inference-
oriented” communication. The number of bits is spread across 3872 features
for neural data of binary movement decoding. Notice that accuracy close to
90% is obtained with just 30 total bits. If relevance is disregarded, and bits
are distributed uniformly across all features with one bit for each feature, it
would still require 3872 bits, with barely any accuracy.

V. CONCLUSIONS

We investigated the problem of allocating bits to data
streams as a function of their relevance for inference obtained
from the data. The proposed techniques go beyond standard
compression and compress more relevant data with higher
resolution. These techniques could save a substantial amount
of energy in communication for neural data acquisition,
and for Big Data acquisition in general. Under simplifying
assumptions of Gaussianity and independence of features, our
techniques for classification can be interpreted as soft feature
selection techniques. A metric widely used in practice for
feature selection in machine learning, namely, Fisher score,
falls out of the Gaussian formulation. Numerical experiments
on neural data indicate that our proposed method achieves
substantial savings on the number of bits communicated
while the gains in classification saturate with increasing
number of bits.

Many problems remain to be addressed. Besides extension
to multiclass classification and stronger connections with
existing works in distributed source coding, to bring our
results closer to practice, we need more realistic models of
energy consumption in circuits (e.g., [28], [29]).
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