

Paper 5.1 INTERNATIONAL TEST CONFERENCE 1

978-1-4799-0859-2/13/$31.00 ©2013 IEEE

PADRE: Physically-Aware Diagnostic Resolution Enhancement

Yang Xue, Osei Poku, Xin Li and R. D. (Shawn) Blanton

Advanced Chip Testing Laboratory

www.ece.cmu.edu/~actl

Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh PA 15213

{yxue, xinli, blanton}@ece.cmu.edu

Abstract

Diagnosis is the first step of IC failure analysis. The

conventional objective of identifying the failure locations

has been augmented with various physically-aware

techniques that are intended to improve both diagnostic

resolution and accuracy. Despite these advances, it is often

the case however that resolution, i.e., the number of

locations or candidates reported by diagnosis, exceeds the

number of actual failing locations. Imperfect resolution

greatly hinders any follow-on, information-extraction

analyses (e.g., physical failure analysis, volume diagnosis,

etc.) due to the resulting ambiguity. To address this major

challenge, a novel, unsupervised learning methodology that

uses ordinarily-available tester and simulation data is

described that significantly improves resolution with

virtually no negative impact on accuracy. Simulation

experiments using a variety of fault types (SSL, MSL,

bridges, opens and cell-level input-pattern faults) reveal

that the number of failed ICs that have perfect resolution

can be more than doubled, and overall resolution is

improved by 22%. Application to silicon data also

demonstrates significant improvement in resolution (38%

overall and the number of chips with ideal resolution is

nearly tripled) and verification using PFA demonstrates

that accuracy is maintained.

1. Introduction

Diagnosis is a fast and non-destructive approach to

preliminarily identify and locate possible defects in a failing

IC [1]. It is a software-based method that analyzes the

applied tests, the failed IC tester response, and its

netlist/layout to produce a list of diagnostic candidates that

represent the locations and sometimes behaviors/types of

defects in the chip. Diagnosis can be then followed by

physical failure analysis (PFA), a time-consuming and

destructive approach for exposing the defect in order to

characterize the failure mechanism [2]. Due to the high cost

and destructive nature of PFA, the accuracy and resolution

of diagnosis is of critical importance.

In addition to being an integral part of PFA, diagnosis

results from a population of failed chips also serve as input

for a number of applications in a variety of other areas. For

instance, the diagnostic results can reveal both important

statistics including the defect distribution or the primary

yield detractors [3, 4], and useful feedback for evaluating

and improving the quality of manufacturing test [4, 5, 6].

In practice, diagnosis tends to be non-ideal for a variety of

reasons. Two such reasons include the limitation on test-set

size, and the equivalent circuit I/O behavior that inherently

exists among candidates. Because there is a trade-off

between the time needed to both create and apply tests and

the cost of test, it is always the case that not all possible

defects are fully exposed when they are detected by the

production test set. Even if a comprehensive test is

economically viable, there still can be candidates that have

equivalent logical behavior among the many locations

within the IC that are specific to the standard cells used and

their interconnections. Also the fault models employed for

both test and the diagnosis are not perfect either, meaning it

is quite likely that the actual defective behavior cannot be

fully explained by the fault model(s) selected [7]. The

overall result is an imperfect diagnosis that typically

produces an accurate result but a non-ideal resolution.

Specifically, more than one candidate is often reported,

where one or more may correspond to the actual failing

locations while many others do not. Figure 1 illustrates this

point by showing the cumulative diagnosis resolution of an

in-production commercial chip. It can be easily seen that

less than 10% of the diagnosed chips exhibit ideal resolution.

However, it is possible to improve the resolution with add-

on techniques that rely on existing diagnosis results.

Improving diagnostic resolution requires the derivation of

certain characteristics that enable good candidates to be

distinguished from bad ones. For instance, there have been

a number of proven heuristics that allow candidates to be

effectively ranked. In [8, 9], it is suggested that candidates

detected by more tester-passing patterns are less likely to

capture the actual defective location(s). Other work reveals

that the same neighborhood state of a good candidate should

not be observed in both the Tester-Pass-Simulation-Fail

(TPSF) and the Tester-Fail-Simulation-Fail (TFSF) patterns

[1, 4, 10, 11, 12]. If a neighborhood state appears in both

TPSF and TFSF patterns, the candidate is said to be

inconsistent and is likely incorrect [1, 4, 10, 11, 12]. While

these techniques are effective (e.g., the work in [10] reports

a resolution improvement of 67% for 2,293 chips), they only

Paper 5.1 INTERNATIONAL TEST CONFERENCE 2

utilize a limited amount of the tester and design data

available for comparing and contrasting candidates. Our

work here explores the use of additional information

derived from fault simulation and ordinarily-available tester

data for further improving diagnostic resolution.

Specifically, chip- and candidate-specific features are

created to both characterize and distinguish the diagnostic

candidates. Some of the features are well known and

involve the comparisons between the observed tester

response and the fault-simulation response of a candidate.

Other new features are also established in this work and are

combined with existing features in order to characterize

each chip failure and its corresponding candidates. The

feature data from a population of candidates are then

supplied to a classifier for learning a model that separates

good candidates from bad ones.

One issue with creating a supervised classifier is the need

for “training data” [13]. For the diagnosis application, this

means we need a population of failed chips with candidates

that are all correctly labeled as “good” or “bad”. One

obvious choice for deriving training data is through PFA of

actual diagnosed chips. But because PFA is both costly and

time consuming, it is very unlikely that (1) it will be

explicitly used to identify bad candidates and (2) it will

result in a training-set size that is statistically significant. In

this work, we have virtually eliminated this problem by

a novel technique that derives labeled candidates (i.e.,

training data) from unlabeled candidates. Specifically,

we use intuitive heuristics to identify failed chips that

allow their corresponding diagnosis candidates to be

correctly labeled, for the most part, as either good or bad.

In past work [1, 4, 10, 11, 12], it has been shown that the

consistency check was very adept at identifying bad

1Although simulation data is used in this work, it should be noted that it is
not integral and is only used in order to verify accuracy.

candidates. We therefore employ a two-level classifier,

where the first-level is a simple rule-base check of the

neighborhood consistency of each candidate. The second-

level classifier is learned from those candidates that pass

through the first-level classifier. SVM (support vector

machine) [13] is used in our work for learning the second-

level classifier. It should be noted however that other

classifiers (KNN [13], decision trees [13], etc.) can also be

likely used as well.

SVM is a versatile and robust machine learning framework

for performing classification based on training-data features

[13]. Machine learning techniques such as SVM have been

shown to be effective in various tester-time reduction

methods [14-17], and in a variety of diagnosis applications

[18, 19]. In [18], the authors use decision trees to identify

subtle bridge defects, and in [19] the authors use SVM to

correlate the board-level diagnosis results with the root-

causes of failure. Nevertheless, these learning techniques

are often limited by low-quality training sets. (Both [18] and

[19] derive training data from simulation1.) But it is well

known that simulation of fault models rarely results in

behaviors that match those exhibited by real defects [20].

An alternative for obtaining realistic training data is to use

historical data, i.e., existing diagnosis results from other

designs that have been labeled through PFA or other means.

There are two major limitations in using historical data

however. The first limitation has already been mentioned

and again is the scarcity of labeled data from PFA. For a

reliable performance, a classifier requires an adequate

number of both good and bad candidates for training. A

second limitation lies in the relevance of the previous

diagnosis data. Using “old chip data” to train a classifier for

a new design likely introduces error that substantially

undermines the performance of the classifier.

As already mentioned, we solve this problem by deriving

training data (i.e., labeled candidates) from a population of

candidates using intuitive heuristics. This means that an

abundant amount of training data specific to the actual chip

under diagnosis will always be available for use.

In the remaining sections of this paper, we describe the

details of the PADRE methodology in Section 2; Section 3

demonstrates the applicability of PADRE in experiments

that use both virtual and real failed ICs. Finally, Section 4

discusses the experiment results and provides conclusions

and directions for future work.

2. PADRE

Our approach for PADRE (Physically-Aware Diagnostic

Resolution Enhancement) involves a two-level classifier

that identifies bad candidates in the first level and good

candidates in the second. PADRE takes as input the

diagnosis results for a set of 𝑀 failed chips 𝐶 =

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Number of cumulative candidates in a chip

Figure 1: The cumulative diagnostic resolution distribution of a

commercial chip shows that less than 10% of a population of 1,202 failed

chips has an ideal resolution of one. The cumulative diagnostic
resolution plot sorts the chips by the number of candidates for each chip.

Each point on the plot shows the proportion of chips in the entire

population that have candidates equal or below certain number, ranging

from 1 to the maximum number of candidates any chip has.

Paper 5.1 INTERNATIONAL TEST CONFERENCE 3

{𝑐1, 𝑐2, … , 𝑐𝑀} . Each chip 𝑐𝑖 has 𝑁 (𝑁 ≥ 1) diagnosis

candidates 𝐷𝑖 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑁, where each 𝑑𝑖,𝑗 has 𝑃

feature values 𝐹𝑖,𝑗 = 𝑓𝑖,𝑗,1, 𝑓𝑖,𝑗,2, … , 𝑓𝑖,𝑗,𝑃 . Each feature

value 𝑓𝑖,𝑗,𝑘 is a particular characteristic of the candidate 𝑑𝑖,𝑗

that includes data from the design (the logical netlist and/or

the physical layout) or from the test data (the simulation

and/or the tester).

PADRE consists of three major steps, namely candidate-

feature construction, first-level identification of bad

candidates, and second-level identification of good

candidates. Each step is discussed in detail in sub-sections

2.1-2.3.

2.1 Candidate Features

Candidate features are specific design and test

characteristics that differentiate good diagnosis candidates

from bad ones. The candidate features now considered in

PADRE are summarized in Table 1.

Feature Description

no_nbrs No. of neighbors for a given candidate

no_TPSFs
No. of Tester-Pass-Simulation-Fail

(TPSF) patterns associated with a given

candidate

no_TFSFs
No. of Tester-Fail-Simulation-Fail
(TFSF) patterns associated with a given

candidate

no_TFSPs
No. of Tester-Fail-Simulation-Pass
(TFSP) patterns associated with a given

candidate

no_TPSF_outputs
No. of Tester-Pass-Simulation-Fail
(TPSF) outputs associated with a given

candidate

no_TFSF_outputs
No. of Tester-Fail-Simulation-Fail

(TFSF) outputs associated with a given
candidate

no_TFSP_outputs
No. of Tester-Fail-Simulation-Pass

(TFSP) outputs associated with a given
candidate

tot_no_fail_outputs
Total no. of failing outputs of the

Simulation-Fail patterns associated with a

given candidate

min_no_fail_outputs
No. of failing outputs of the Simulation-

Fail patterns that exhibit the smallest

number of failing outputs

max_no_fail_outputs
No. of failing outputs of the Simulation-
Fail patterns that exhibit the largest

number of failing outputs

mean_no_fail_outputs
Average number of failing outputs of all
the Simulation-Fail patterns

unique_no_fail_outputs
No. of unique failing outputs in the

Simulation-Fail patterns among all chip

candidates

no_pass_states
No. of different neighborhood states in the

TPSF patterns

no_fail_states
No. of different neighborhood states in the
TFSF patterns

no_incst_states
No. of neighborhood states exhibited by

both the TPSF and TFSF patterns

candidate_entropy
The uncertainty level of a candidate’s

logic value as a function of its possible
neighborhood states

Table 1: Diagnostic-candidate features that are based on various test and

design characteristics.

The candidate features no_pass_states, no_fail_states,

no_incst_states, and candidate_entropy characterize the

physical characteristics of a candidate when it is both

activated and sensitized. Specifically, the neighborhood

state of a candidate is defined to be the logic values driven

on lines that are in physical proximity of the candidate for

tests that detect the candidate (i.e., TPSF and TFSP patterns)

[1]. The neighborhood of a candidate, as illustrated in

Figure 2, includes:

1. Physical neighbors: nets that are in close proximity of

the candidate as determined by the design layout.

2. Drivers: inputs of the cell that drives the candidate.

3. Side inputs: side inputs of cells driven by the candidate.

Despite the size of the circuit, the logic value of a candidate,

whether faulty or fault-free, is assumed to be largely

determined by the neighborhood state, i.e., the logic values

of its neighbors [1]. The characteristics of the neighborhood

may also provide an indication of the authenticity of a

candidate. The heuristic is that if a candidate is indeed a site

of failure, its failing behavior should be a consistent

function of its neighborhood failing and passing states.

More detailed discussions of the neighborhood-related

features and other major features employed in PADRE are

described next.

Entropy. The notion of neighborhood entropy [12] is used

as a candidate feature (candidate_entropy). In [12], the

Figure 2: Example of a neighborhood for a candidate associated with net
S6: (a) the physical neighbors ≡ nets in physical proximity and (b) the

logical neighbors ≡ driver and receiving-cell side inputs.

Physical

proximity

S4

S8

S6

S1

S2

S3

S4

S5

S6 S7

S8

Side-input

Driver

(a)

(b)

Candidate

Paper 5.1 INTERNATIONAL TEST CONFERENCE 4

authors describe the entropy of a candidate as a measure of

the level of uncertainty of its logic value with relation to its

neighbors. As already mentioned, the logic value of a

candidate is assumed to be correlated to its neighborhood

site. Moreover, for a particular set of neighborhood states,

the lower the candidate_entropy, the greater the correlation

between the candidate and its neighborhood.

The feature candidate_entropy is the weighted average of

the entropy of the observed neighborhood states. It is

calculated as 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘) by the following

equation:

𝐻(𝑋𝑑|𝑋𝑛, 𝐺𝑑 = 𝑔𝑑
𝑘)

= − ∑[𝑃(𝑋𝑛 = 𝑥𝑛
𝑗
|𝐺𝑑 = 𝑔𝑑

𝑘)

2

𝑗=1

× ∑ 𝑃(𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘)

2

𝑖=1

× log2 𝑃 (𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘)]

where 𝑋𝑑 is the random variable that represents the actual

value of the candidate 𝑑, 𝑥𝑓 is a possible value of 𝑋𝑑, 𝑋𝑛 is

the random variable that represents the value of neighbor 𝑛

of 𝑑, 𝑥𝑛 is a possible value of 𝑋𝑛, 𝐺𝑑 is the random variable

that represents the fault-free value of 𝑑, and 𝑔𝑑 is a possible

value of 𝐺𝑑. 𝑃(𝑋𝑛 = 𝑥𝑛
𝑗
|𝐺𝑑 = 𝑔𝑑

𝑘) is the conditional

probability of observing a neighborhood state 𝑥𝑛
𝑗
 given the

fault-free value of candidate 𝑔𝑓
𝑘 .

𝑃(𝑋𝑑 = 𝑥𝑑
𝑖 |𝑋𝑛 = 𝑥𝑛

𝑗
, 𝐺𝑑 = 𝑔𝑑

𝑘) is the conditional

probability of observing a candidate value 𝑥𝑑
𝑖 given the

candidate fault-free value 𝑔𝑑
𝑘 and neighborhood state 𝑥𝑛

𝑗
.

If the correlation between 𝑋𝑛 and 𝑋𝑑 is significant, or the

actual value of 𝑑 is entirely controlled by the neighborhood

state, then 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘) = 0 . If the correlation is

insignificant, in the worst case, for the given condition, 𝑋𝑑

has equal chance to be 0 and1 , then the entropy is the

maximum, i.e., 𝐻(𝑋𝑑|𝑋𝑛 , 𝐺𝑑 = 𝑔𝑑
𝑘) = 1.

Unique failing outputs. The number of unique chip outputs

(unique_no_fail_outputs) that fail as predicted by fault

simulation of a candidate is potentially a good feature for

characterizing the correctness of a candidate. If the failing

output of a failed chip is explained2 by only one particular

candidate, while other outputs are explained by many

candidates, it may be likely that this particular candidate is

correct. It should be noted however that the feature

unique_no_fail_outputs may be zero for all of the

candidates of a given chip.

Passing/failing patterns and outputs. In addition to

comparing/contrasting the pass-fail status of the test

2A candidate is said to “explain” a failed output 𝑜𝑗 observed on the tester

for a given test pattern 𝑡𝑘 if its fault simulation response for 𝑡𝑘 predicts

the failure of 𝑜𝑗.

patterns on the tester and in simulation, we also

compare/contrast the failing and passing outputs measured

on the tester with those predicted by fault simulating the

candidates. The intuition for performing this bit-level

analysis in addition to the pattern-level analysis is that it

accounts for the differences that seemingly do not exist

among conventionally-ranked candidates.

Consider, for example, a three-output failed chip with test

set 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} that has the associated candidate

simulation (S) and failed-chip tester (T) responses shown in

Table 2. Table entries with a “P” indicate that the failed chip

(candidate) did not cause the corresponding output to fail

when the test was applied (fault simulated). A table entry

of “F”, on the other hand, has the opposite meaning.

Test
O1 O2 O3

S T S T S T

𝑡1 P P P P P P

𝑡2 P F P F F F

𝑡3 F P P F F P

𝑡4 P F P F P F

 Table 2: Output-level comparison of an example failed-chip tester
response and a candidate-simulation response for a three-output circuit.

Comparing and contrasting the tester response with the

candidate fault simulation response at the pattern level leads

to the feature values shown in Table 3.

Test Response Feature Value

𝑡1 TPSP no_TPSPs 1

𝑡2 TFSF no_TFSPs 1

𝑡3 TFSF no_TPSFs 0

𝑡4 TFSP no_TFSFs 2

Table 3: Pattern-level feature values derived from the example responses

from Table 2.

Comparing and contrasting the tester response with the

candidate fault simulation response at the output level leads

to the feature values shown in Table 4.

Test O1 O2 O3 Feature Value

𝒕𝟏 TPSP TPSP TPSP no_TPSP_outputs 3

𝒕𝟐 TFSP TFSP TFSF no_TFSP_outputs 6

𝒕𝟑 TPSF TFSP TPSF no_TPSF_outputs 2

𝒕𝟒 TFSP TFSP TFSP no_TFSF_outputs 1

Table 4: Output-level feature values derived from the example responses
from Table 2.

It can be observed that the pattern-level features (i.e.,

no_TFSPs, no_TPSFs, and no_TFSFs) and the output-

level features (i.e., no_TFSP_outputs, no_TPSF_outputs,

and no_TFSF_outputs) have very different values. It can

be easily argued that the output-level features subsume the

pattern-level features, and as a result, the pattern-level

features should be simply eliminated. In the end, the pattern-

level features may indeed be ignored by the classifier but

we do not a priori impose that decision on the classifier

because all commercial diagnosis tools find the pattern-

level features useful for distinguishing candidates through

Paper 5.1 INTERNATIONAL TEST CONFERENCE 5

ranking. For example, Synopsys TetraMAX® [21] uses the

following pattern-level feature formulation to rank

candidates:

𝑠𝑐𝑜𝑟𝑒 =

2.2 First-level Classifier

The first-level classifier of PADRE is a one-rule

discriminator that is based on the inconsistent-state feature

(no_incst_states). As described earlier, this feature counts

the number of unique neighbor states that both appear in at

least one TPSF pattern and one TFSF pattern. The existence

of an inconsistent state is likely an indication that the

candidate is not actually a good candidate. While it is

possible that a defective location can behave inconsistently,

past work has shown that this feature is an excellent

discriminator [1, 4, 10, 11, 12].

In the first-level classifier, any candidate with a non-zero

no_incst_states is labeled as a bad candidate. For all the

remaining candidates with no inconsistent state, their labels

remain unknown.

 𝑙𝑎𝑏𝑒𝑙 (𝑐𝑖) = {
 bad

 unknown

2.3 Second-level Classifier

Although the first-level classifier is able to accurately

identify a good number of the bad candidates. Many of the

candidates still remain unlabeled. We introduce a second-

level classifier to further process the remaining unlabeled

candidates, with a particular focus to identify the good

candidates.

All unlabeled candidates from the first-level classifier are

processed by an SVM-based second-level classifier. SVM

requires a training set to derive (i.e., learn) a classifier. In

our work, the training sets are constructed using novel and

reasonable heuristics that identify the likely good and bad

candidates from unlabeled candidates.

The construction of the training sets from unlabeled

candidates follows a three-step workflow as follows:

- Initial sets: Initial good training set consists of all the

chips with a single candidate; and the initial bad training

set consists of all chips with more than 𝑄 candidates,

where 𝑄 is a user-set threshold. In this work, we use 𝑄 =
20.

- Refined sets: Interquartile range (IQR) [22] is used to

remove any outliers from the initial sets. Specifically,

any candidate with a feature value that is 3 × IQR away

from the feature mean is eliminated from the training

sets.

- Balanced sets: Oversampling the smaller data set is

performed to balance the sizes of the good and bad data

sets.

A detailed discussion of each step is given next.

Initial set. Unlike conventional supervised-learning

methods, the second-level classifier learned in PADRE

derives training data from the pool of unlabeled candidates.

Specifically, the initial good training set is obtained from all

chips with a single candidate. Assuming that diagnosis is

accurate, collecting a statistically-significant set of single-

candidate chips ensures that the features of good diagnosis

candidates are reasonably captured. On the other hand, the

bad training set is obtained from all the chips with more than

𝑄 = 20 candidates. It is reasonable to assume that there is

likely only one good candidate in a chip. Thus for a chip

with multiple candidates, all but one will be bad. By taking

all chips with more than 𝑄 = 20 candidates, the bad

training set should mostly consist of bad candidates with an

error bounded at 5%, i.e., at most 5% of candidates in the

bad training set would be actually good candidates. This

approach for identifying bad-candidate data introduces very

little error. For example, for the simulation-based

experiment discussed in Section 3.2, we found that fewer

than 2.9% of the bad training-data candidates are actually

good.

Refined set. To improve the quality of the training set, IQR

(interquartile range) is employed to remove outliers from

the training set. The outlier analysis removes candidates

from the initial sets that are outside the 3 × IQR of the

initial training set, which corresponds to 4.72 sigma (i.e.,

99.9992% in a normal distribution). This ensures the quality

of the training set by only including the most typical good

and bad candidates.

Balanced set. Because the size of the good training set and

the bad training set are likely different (the good candidates

identified from the unlabeled pool of candidates are

typically much fewer than the bad candidates), a biased

classifier from SVM may result. Specifically, if the size of

the bad training set overwhelms the size of the good training

set, the classification margin obtained by SVM will be

heavily biased towards the bad candidates, causing the good

candidates to fall within the margin of bad candidates [23].

As a result, it would be more likely for the resulting

classifier to incorrectly categorize an actual good candidate

as bad. A straightforward solution for this dilemma involves

balancing the size of the training data by employing simple

sampling techniques. There are two ways to perform the

sampling. One approach is to under-sample the bad training

set, and the alternative is to oversample the good training set

[23]. Under-sampling the bad training set has the benefit of

lower computational cost, but depending on the sizes of the

training sets, it may incur the risk of not properly

characterizing both the good and bad candidates.

A major drawback of the oversampling method is over-

fitting. The duplicates reinforce the distribution of the

existing candidates in the training set, instead of the real

distribution of the good training set. The latter can only be

(no_incst_states (𝑐𝑖) > 0)
(no_incst_states (𝑐𝑖) = 0)

no_TFSPs

no_TFSFs + no_TPSFs + no_TPSFs

Paper 5.1 INTERNATIONAL TEST CONFERENCE 6

obtained by using an increased number of real good

candidates. However, in our case, the imbalance among the

good and bad training sets is not too significant. For

example, in our simulation data sets, the number of bad

candidates is about 9× larger than the good candidates.

Therefore, any over-fitting introduced is likely not to

significantly affect the performance of the classifier. We

therefore chose to balance the two training sets by

oversampling the good training set. Specifically, good

candidates are randomly duplicated until their number

equals the number of bad candidates.

The SVM algorithm is chosen for PADRE due to its robust

performance in classifying two different classes of data by

error-margin maximization. Classification problems are

essentially concerned with assigning a label 𝑦 to a sample

based on its feature set 𝒙:

 𝑦 = 𝑓(𝒙)

where the scalar 𝑦 is the label of the sample and the vector

𝒙 is the set of features of the sample. The function 𝑓(𝒙) is

the classifier that we want to learn for determining the

labels. A linear classifier uses the following discriminant

function:

 𝑓(𝒙) = {
0 (𝒘𝑇𝒙 + 𝑐 ≥ 0)

1 (𝒘𝑇𝒙 + 𝑐 < 0)

where 𝒘 is the weight vector for each feature, and 𝑐 is a

constant.

SVM is robust because it attempts to distinguish different

classes by maximizing the error margin. This will usually

give a robust separation of the classes [13]. The margin-

maximization problem associated with SVM can be

formulated as:

min
𝒘,𝑐,𝜉

∑ 𝜉𝑖 + 𝜆𝒘𝑇𝒘

S. T. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑐) ≥ 1 − 𝜉𝑖; 𝜉𝑖 ≥ 0

(𝑖 = 1,2, … , 𝑁)

where 𝜆 regularizes the penalty of misclassification, and 𝜉𝑖

is the error of the 𝑖-th data point. To avoid over-fitting, cross

validation is usually used to determine 𝜆.

The aforementioned SVM formulation is referred to as the

soft-margin SVM in the literature [13]. It is able to classify

samples with allowance of classification error, such as the

case illustrated in Figure 3. The soft-margin SVM

appropriately meets the needs of our application because the

training set constructed from unlabeled candidates is

inherently imperfect. This is particularly true for the bad

training set, where a small number of the good candidates

are knowingly included within the larger set of bad

candidates. Soft-margin SVM allows robust classification

even with an imperfect training set.

3. Experiment

A comprehensive simulation experiment is performed to

evaluate PADRE. In the experiment, fault-tuple macrofaults

[24] are used to emulate real defects. Specifically, a large

number of different fault types are injected into the

benchmark circuit, and a typical testing procedure is

employed to obtain the initial fault diagnosis results.

PADRE is subsequently applied to refine the diagnostic

resolution which is then evaluated for the level of

improvement and accuracy achieved. The experiment is

also repeated for actual failed chips from the LSI

Corporation.

3.1 Setup

The circuit B12 from the ITC’99 benchmark suite [25] is

used as the “chip under test”. B12 consists of 1,000 gates

and 121 flip-flops. Five-hundred instances of six different

types of faults are randomly injected into the circuit to

emulate defective chips. The fault-tuple macrofaults used to

emulate the defects are simulated using FATSIM [24]. The

injected macrofaults include: and-, or-, and dominating-type

bridge faults, cell-level input pattern faults [26], SSL faults,

and MSL faults. The numbers of chips injected for each type

of fault and detected by the applied test set are listed in

Table 5.

Fault type Number of chips

and-bridge 493

or-bridge 497

dominant-bridge 499

input pattern 487

SSL 490

MSL 421

Table 5: Fault-tuple macrofaults of various types are randomly injected

into B12 circuit to construct a virtual set of defective chips for diagnosis.

The fault types listed in Table 5 are chosen to represent the

large variety of actual defects that occur in real chips. The

advantage of using virtual failed chips is that it provides a

large number of failed chips with known defect types and

locations, which is essential for verifying accuracy.

Figure 3: Two sets of data (blue crosses and red triangles) are plotted with

respect to two features 𝒙𝟏 and 𝒙𝟐 . A soft-margin SVM allows

classification errors and maximizes the margin between support vectors
(circled crosses and triangle) to find a decision boundary.

𝑥1

𝑥2

0

decision boundary

error

error

Paper 5.1 INTERNATIONAL TEST CONFERENCE 7

The test set used in this experiment is a 100% stuck-at test

set generated by a commercial ATPG tool. Each failed chip

is tested and analyzed using physically-aware diagnosis [1,

10, 12, 27]. Because each failed chip is virtual in nature (i.e.,

we know the locations of the “defective” lines), the accuracy

of the diagnosis refinement is easy to verify. However, a list

of golden answers is never available in practice.

The number of candidates represents the resolution of the

initial diagnosis. The cumulative distribution of the initial

resolution for the virtual population is illustrated in Figure

4. For every candidate of a failed chip, the previously

described features in Section 2.1 are extracted for the

classification process.

3.2 Results and Discussion

A total of 33,178 candidates result from diagnosing the

virtual population of failed chips listed in Table 5. The

number of bad candidates being labeled by the first-level

classifier is 13,622. Comparing these results with the inject

locations reveals that 99.85% of the predicted bad

candidates are indeed the wrong candidates.

A total of 19,556 unlabeled candidates from the first-level

classifier are processed by the second-level classifier. The

construction of the training sets from unlabeled candidates

follows the three-step workflow described in Section 2.3.

The sizes of the training sets in each step are tabulated in

Table 6a.

Chip-level diagnosis results of the total 2,887 chips are

classified into four classes to understand the performance of

PADRE. The classification examines the quality of the

refined candidates sets of the chips, i.e., the sets of

candidates produced by PADRE that have a reduced

number of candidates compared to the original candidates

of the respective chips. The description and number of chips

that fall into each class are shown in Table 8.

 Good training set Bad training set

Initial sets 468 4,409

Refined sets 324 3,283

Balanced sets 3,283 3,283

(a)

 Good training set Bad training set

Initial sets 897 1,228

Refined sets 895 1,085

Balanced sets 1,085 1,085

(b)

Table 6: The sizes of training sets in each step of the training-set-

construction workflow for (a) the virtual failed-chip population and (b) the

actual failed-chip population from LSI.

The SVM module from MATLAB is used to perform

second-level classification. The balanced training sets are

fed into SVM to learn the classifier. The second-level

classifier labels each of the unlabeled candidates as either

good or bad. A total of 793 good candidates are labeled by

the second-level classifier, which means that a total of

32,385 bad candidates are labeled by the PADRE. The

candidate-level diagnosis results are summarized in Table 7.

Comparing the predicted results with the actual locations

reveals that 94.70% of the labeled good candidates are

correct. For the labeled bad candidates, the first-level

classifier has an accuracy of 99.85% while the second-level

classifier only has an accuracy of 70.88%. Given that it is

costly to mistake a good candidate as bad, we decide to only

consider the classification results from the first-level

classifier for bad candidates in PADRE. Although including

the second-level classification for the bad candidates can

aggressively improve the resolution, a considerable number

of good candidates would be lost, which is undesirable.

Type of labeling result Number of candidates

Label good
Correct 751

Wrong 42

Label bad
Correct 28,610

Wrong 3,775

Table 7: The second-level classifier of PADRE shows a high accuracy for

good-candidate classification and a moderate accuracy for bad-candidate

classification.

Overall, PADRE improves resolution for 1,959 of the 2,887

chips. For the remaining 928 chips, PADRE does not

identify any good candidate with the second-level classifier

or eliminate any bad candidates with the first-level classifier,

which may be due to the result of limited training sets that

do not comprehensively cover all the possible

characteristics of the good and bad candidates. Therefore,

no improvement of resolution is achieved for those chips.

However, by comparing the refined resolution, i.e., the

number of candidates in refined candidate sets, with the

original resolution, it is clear that the resolution

improvement for the refined chips is significant as shown in

Figure 4. Specifically, the average per-chip resolution

improvement is over 32.0% for the refined chips, or 21.7%

for all the chips. Moreover, the number of chips that exhibit

perfect resolution (i.e., only one candidate) is more than

doubled (i.e., 11% to 27%).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

Number of cumulative candidates in a chip

refined resolution

original resolution

Figure 4: Resolution refinement through PADRE shows that resolution

can be improved by 21.7% on average. Moreover, the number of chips that

exhibit perfect resolution is more than doubled (i.e., 11% to 27%).

Paper 5.1 INTERNATIONAL TEST CONFERENCE 8

Class Description
Number

of chips

1

All good candidates remain in the refined

candidate set; no bad candidates exist in the

refined candidate set.

814

2

All good candidates remain in the refined
candidate set; some bad candidates also exist in

the refined candidate set.

1,869

3

Not all good candidates remain in the refined

candidate set; no bad candidates exist in the
refined candidate set.

12

4

Not all good candidates remain in refined

candidate set; some bad candidates exist in the
refined candidate set.

192

Table 8: PADRE results viewed at the chip level reveal a high probability

of including all the good candidates in the refined candidate set, and a

relatively high probability that some of the bad candidates are also included
in the refined candidate set.

The computational time of PADRE does not degrade with

circuit size, but does with the number of chips in the

population. A total of 3.9s was used by the classifier to

process the feature data of 33,178 candidates of 2,887 chips,

which is equivalent to 0.12ms per candidate or 1.4ms per

chip, on average. It is important to note however that

PADRE is applied after traditional diagnosis, so it will

always add to the time overhead. Besides, the objective of

PADRE is to enable better diagnostic resolution instead of

faster diagnosis, so the optimization of time overhead is not

emphasized in current development.

PADRE is also applied to actual failed test chips

manufactured by the LSI Corporation that includes mostly

74X181 ALU circuits. The LSI ALU consists of 2,309

gates. Specifically, a total of 5,362 failed test chips are

diagnosed using a commercial tool, leading to a total of

36,186 diagnosis candidates. Similar to the virtual failed-

chip population, we provide the training set statistics for the

LSI failed-chip population in Table 6b. The candidates of

the LSI chips were processed by the first-level classifier and

subsequently the second-level classifier. Figure 5 compares

the (cumulative) distribution of diagnostic resolution

produced by the commercial tool and the improved

distribution produced by PADRE. Resolution is improved

on average by 37.9% for 5,362 failed chips, and the number

of chips that have ideal resolution is nearly tripled (i.e., 16%

to 46%).

Verifying the accuracy of PADRE for the virtual failed-chip

population is straightforward since the fault type and

location are known for each chip. This is not the case

however for the silicon failed-chip population. But we do

have in hand five chips that have been PFA’ed, the details

of which are given in Figure 63. PADRE is deemed accurate

if the actual failure locations are contained within the

refined set of diagnostic candidates. As shown in Figure 6,

for the five chips examined, diagnostic resolution is either

dramatically improved or maintained, and in all cases, the

3It should be noted that the resolution reported here systematically differs
from reference [10] simply because candidates (i.e., signal lines) are here

correct candidate(s) are contained within the reduced

candidate set.

4. Conclusions and Future Work

An improved diagnosis resolution reduces the time and cost

of PFA and also benefits other applications that utilize the

results of diagnosis for a population of chips (i.e., volume

diagnosis). Despite the existence of various approaches for

improving diagnostic resolution, there is still much room for

improvement. In this work, we present a novel resolution

refinement method that uses a two-level unsupervised

learning classifier, combined with a series of existing and

new heuristics to distinguish good and bad candidates.

PADRE (Physically-Aware Diagnostic Resolution

Enhancement) constructs good and bad training data from

the originally available unlabeled candidates, instead of

relying on the historical data as is usually accomplished in

past work [18, 19]. PADRE is shown to improve average

resolution over conventional results by 21.7%, and also

more than doubles the number of chips that exhibit perfect

resolution for a virtual population of failed chips. These

numbers improve even further for actual silicon chips.

Specifically, resolution is reduced for 38% of the nearly

3,000 failed chips examined, and the number of chips

exhibiting ideal resolution is nearly tripled (i.e., 16% to

46%). Finally, for five of the silicon failed-chips, we

demonstrated that PADRE does not at all degrade

diagnostic accuracy.

PADRE demonstrates that it is possible to better understand

the nature of a diagnostic candidate by exploiting the logical

and physical information. Our future work will focus on

exploring other effective chip- or candidate-related features

to further improve the capability of PADRE.

equated with signal-line locations, and in [10] candidates are equated with
faults.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

Number of cumulative candidates in a chip

refined resolution

original resolution

Figure 5: Resolution refinement through PADRE shows that resolution
can be improved by 37.9% on average. Moreover, the number of chips that

exhibit perfect resolution is nearly tripled (i.e., 16% to 46%).

Paper 5.1 INTERNATIONAL TEST CONFERENCE 9

References
[1] R. Desineni, O. Poku and R. D. Blanton, “A Logic Diagnosis

Methodology of Accurate Defect Behavior,” in Proc.

International Test Conference, 2006.

[2] L. C. Wagner, “Chemical Analysis,” in Failure Analysis of

Integrated Circuits Tools and Techniques, Kluwer

Academic Publishers, pp. 195-204, 1999.

[3] L. M. Huisman, M. Kassab and L. Pastel, “Data Mining

Integrated Circuit Fails with Fail Commonalities,” in Proc.

International Test Conference, 2004.

[4] W. C. Tam, O. Poku and R. D. Blanton, “Precise Failure

Localization using Automated Layout Analysis of Diagnosis

Candidates,” in Proc. Design Automation Conference, 2008.

[5] R. D. Blanton and Y. Lin, “Test Effectiveness Evaluation

through Analysis of Readily-Available Tester Data,” in

Proc. International Test Conference, 2009.

[6] X. Yu and R. D. Blanton, “Estimating Defect-Type

Distributions through Volume Diagnosis and Defect

Behavior Attribution,” in Proc. International Test

Conference, 2010.

[7] R. C. Aitken, “Finding Defects with Fault Models,” in Proc.

International Test Conference, 1995.

[8] J. A. Waicukauski, “Failure Diagnosis of Structured VLSI,”

Design & Test of Computer, vol. 6, no. 4, pp. 49-60, 1989.

[9] D. B. Lavo, I. Hartanto and T. Larrabee, “Multiplets,

Models, and the Search for Meaning: Improving Per-test

Fault Diagnosis,” in Proc. International Test Conference,

2002.

[10] R. D. Blanton, W. C. Tam, X. Yu, J. E. Nelson and O. Poku,

“Yield Learning Through Physically Aware Diagnosis of

IC-Failure Populations,” IEEE Design & Test of Computers,

vol. 29, no. 1, pp. 36 - 47, 2012.

[11] R. Desineni and R. D. Blanton, “Diagnosis of Arbitrary

Defects using Neighborhood Function Extraction,” in Proc.

VLSI Test Symposium, 2005.

[12] X. Yu and R. D. Blanton, “Improving Diagnosis through

Failing Behavior Identification,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. 31, no. 10, pp. 1614-1625, 2012.

[13]

C. M. Bishop, Pattern Recognition and Machine Learning,

Springer, 2007.

[14] S. Biswas and R. D. Blanton, “Reducing Test Execution

Cost of Integrated, Heterogeneous Systems Using

Continuous Test Data,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 30,

no. 1, pp. 148-158, 2011.

[15] E. Yilmaz, S. Ozev and K.M. Butler, “Adaptive Test Flow

for Mixed-Signal/RF Circuits Using Learned Information

from Device Under Test,” in Proc. International Test

Conference, 2010.

[16] S. Goyal, A. Chatterjee and B. Shenouda, "Test Time

Reduction of Successive Approximation Register A/D

Converter by Selective Code Measurement,” in Proc.

International Test Conference, 2005.

[17] N. Kupp, K. Huang, J. M. Carulli and Y. Makris, “Spatial

Correlation Modeling for Probe Test Cost Reduction in RF

Devices,” in International Conference on Computer-Aided

Design, 2012.

[18] J. E. Nelson, W. C. Tan and R. D. Blanton, “Automatic

Classification of Bridge Defects,” in Proc. International

Test Conference, 2010.

[19] F. Ye, Z. Zhang, K. Chakrabarty and X. Gu, "Board-Level

Functional Fault Diagnosis Using Learning Based on

Incremental Support-Vector Machines,” in Proc. Asian Test

Symposium, 2012.

[20] Y. Lin and R. D. Blanton, “METER: Measuring Test

Effectiveness Regionally,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. 30, no. 7, pp. 1058-1071, 2011.

[21] Synopsys Inc., “TetraMAX ATPG User Guide,” Version W-

2004.12, 2005.

[22] G. Upton, Understanding Statistics, Oxford University

Press, 1996.

[23] Y. Liu, A. An and X. Huang, “Boosting Prediction Accuracy

on Imbalanced Datasets with SVM Ensembles,” Advances

in Knowledge Discovery and Data Mining, vol. 3918, pp.

107-118, 2006.

[24] K. N. Dwarakanath and R. D. Blanton, “Universal Fault

Simulation Using Fault Tuples,” in Proc. Design

Automation Conference, 2000.

[25] F. Corno, M. S. Reorda and G. Squillero, “RT level ITC'99

Benchmarks and First ATPG Results,” IEEE Design and

Test of Computers, vol. 17, no. 3, pp. 44-53, 2000.

 Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

Original

resolution
16 1 4 11 2

New

resolution
4 1 4 3 2

Accuracy

maintained?
Yes Yes Yes Yes Yes

SEM of failure

4-line bridge

Gate-to-gnd short

Poly-to-active short

Open via

Open contact

Figure 6: For these five failed chips, diagnostic resolution is significantly improved or maintained without degrading accuracy.

Paper 5.1 INTERNATIONAL TEST CONFERENCE 10

[26] . D. Blanton and J. P. Hayes, “Properties of the Input Pattern

Fault Model,” in Proc. IEEE International Conference on

Computer Design: VLSI in Computers and Processors,

1997.

[27] Y. Lin, O. Poku, R. D. Blanton, P. Nigh, P. Lloyd and V.

Iyengar, “Evaluating the Effectiveness of Physically-Aware

N-Detect Test using Real Silicon,” in Proc. International

Test Conference, 2008.

