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ABSTRACT

A critical problem in pre-Silicon and post-Silicon validation
of analog/mixed-signal circuits is to estimate the distribu-
tion of circuit performances, from which the probability of
failure and parametric yield can be estimated at all circuit
configurations and corners. With extremely small sample
size, traditional estimators are only capable of achieving a
very low confidence level, leading to either over-validation
or under-validation. In this paper, we propose a multi-
population moment estimation method that significantly im-
proves estimation accuracy under small sample size. In fact,
the proposed estimator is theoretically guaranteed to out-
perform usual moment estimators. The key idea is to ex-
ploit the fact that simulation and measurement data col-
lected under different circuit configurations and corners can
be correlated, and are conditionally independent. We exploit
such correlation among different populations by employing
a Bayesian framework, i.e., by learning a prior distribution
and applying maximum a posteriori estimation using the
prior. We apply the proposed method to several datasets
including post-silicon measurements of a commercial high-
speed I/O link, and demonstrate an average error reduction
of up to 2×, which can be equivalently translated to signifi-
cant reduction of validation time and cost.

1. INTRODUCTION
In various product validation disciplines (e.g., pre-Silicon

simulation-based validation, post-Silicon measurement-based
validation), it is critical to make statistically valid predic-
tions of circuit performances. This requirement boils down
to the problem of estimating the probability distribution of
circuit performance metrics of interest. From this distribu-
tion, we may also compute the probability of failure (PoF) or
yield. The common practice is to estimate the moments of a
distribution. In particular, if the distribution of performance
metrics is Gaussian, the distribution is fully characterized by
its first two moments, i.e., mean and variance. With abun-
dant data, sample mean and sample variance converge to
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the actual mean and variance, as guaranteed by the law of
large numbers and central limit theorem [1].

However, in practice, simulation and measurement are
both time and cost consuming [2, 3, 4]. For example, post-
layout simulation can be slow, especially for circuits such
as SRAM/PLL where extremely small time steps are re-
quired for high accuracy. As another example, during post-
Silicon validation, due to the time-line of product releases,
only a limited amount of measurement may be performed
within the post-Silicon time-frame. In addition, the mea-
surement of performance metrics, such as Bit-Error-Ratio
and Time/Voltage Margins of high-speed I/O links, takes a
long time, and requires expensive equipment (such as BER
testers) [5, 6, 7].

Furthermore, for the validation of products, there are many
corners and configurations to be covered. As an exam-
ple, in I/O link validation, in addition to common process,
voltage and temperature (PVT) corners, we must also vali-
date against different board/add-in card configurations, in-
put patterns, different equalization settings, etc.. Therefore,
with the time and cost constraints of simulation and mea-
surement, an extremely small number (1 to 5) of data is
available at each corner or configuration.

We call the above problem the small-sample-size problem.
This problem makes most statistical analysis tools/algorithms
not applicable because they are built upon the assumption
that “enough” data is available for valid statistical estima-
tion. When the assumption is broken, we obtain low con-
fidence in the estimated quantities. In another word, this
means that we may either under-validate or over-validate
the circuit. Similar to over-design and under-design, over-
validation and under-validation are as harmful, if not more,
in terms of cost and time-to-market. Unfortunately, there is
few existing satisfying solution to get around this problem.
To the best of our knowledge, the usual practice is to in-
crease the sample size as much as possible to reach a certain
confidence level, or to set an empirical guard-band on top
of the estimation. There is a recent work [8] that considers
a similar problem, but for performance modeling. Another
recently published technique [9] solves a similar problem for
post-layout performance distribution estimation, but with
mildly small number of samples (50 or more).

It is also important to point out that in many situa-
tions, it is necessary to estimate the distribution at each
corner/configuration, for which we only have 1 to 5 samples.
For example, to validate I/O interfaces such as PCIE[10] and
DDR[11], it is critical to make sure that the interface works
properly with different boards and add-in cards/DIMMs.



Therefore, for each board and add-in card, the distribution
of the BER must be estimated separately. It is inappropri-
ate to mix the measurements under different configurations,
because even with a low overall PoF, we may obtain a very
high PoF at a particular configuration. In this case, combin-
ing data from all configurations does not help us to increase
the sample size. In fact, estimating the overall distribution
can lead to misleading validation results.

In this paper, we propose a technique to efficiently es-
timate the mean and standard deviation of circuit perfor-
mance distributions under the small-sample-size constraint.
The key idea of the method is to exploit correlation in data
collected at multiple populations to improve the accuracy of
the proposed estimator. In particular, we emphasize that
data collected at different design stages, different configura-
tions and different corners are not independent, but are cor-
related. Taking advantage of this non-intuitive fact leads to
a theoretically guaranteed better estimator. In comparison
to sample mean/standard deviation estimators, our method
achieves an average error reduction of up to 2×, for examples
obtained from measurement of commercial designs.

Mathematically, we employ Bayesian inference[12] to fuse
conditionally independent data. The method is composed
of two steps. First, the Maximum Likelihood (ML) method
is used to learn a prior distribution of mean/standard devi-
ation from data collected at multiple populations. Second,
the prior learned in the first step is used to obtain the Max-
imum A Posteriori (MAP) estimation of mean and standard
deviation. The two steps are formulated as two optimization
problems. Based on this formulation, we further propose a
relaxed algorithm, to alleviate the computational burden.

While this paper focuses on derivations for the mean and
standard deviation estimation, our formulation is general,
and it incorporates estimation of moments of any order. Our
formulation is also general to cover many application scenar-
ios, depending on the availability of different data sets. In
particular, the following two scenarios are commonly seen in
practice:

1. Given early stage data, or empirical results, estimate
the mean and standard deviation at a targeted config-
uration.

2. Given data at multiple configurations, estimate the
mean and standard deviation at each configuration.

The rest of paper is organized as follows. Sec. 2 formulates
the problem and describes the small-sample-size problem.
Sec. 3 discusses and derives the multi-population estimation
algorithm based on the Bayesian framework. Sec. 4 presents
experimental results on several datasets to demonstrate the
advantages of the proposed method.

2. BACKGROUND AND PROBLEM FORMU-

LATION
For simplicity, in this paper, we consider the problem of

estimating a single performance metric, denoted by x, which
depends on many parameters such as process parameters,
voltage, temperature, board, add-in card, etc.. The perfor-
mance metric x also depends (indirectly) on time, because
a subset of the parameters, such as process parameters, also
change over time.

As an example application, we consider the problem of
post-Silicon validation of I/O interfaces. In this application,

a configuration is defined by fixing the values of a subset
of the parameters. By considering variability of all other
parameters, x has a distribution at each configuration. For
example, a configuration of an I/O link can be defined by the
combination of a specific board and a specific add-in card.
The variability of time/voltage margin (of the eye diagram)
is caused by parameter variations such as PVT variations.
Measurement of margins is repeated at each configuration
for each Silicon stepping, and the goal of validation is to
ensure that PoF meets the specification at each stepping
and at each configuration.

2.1 Problem Formulation
To formalize the above description, we define a population

to be a specific (corner, configuration, stepping) combina-
tion, and suppose that there are P populations. For each
population, we define a random variable xi, (i = 1, · · · , P ) to
model the variability of the performance metric at the corre-
sponding (corner, configuration, stepping) combination, and
xi satisfies a Gaussian distribution xi ∼ N(µi, σ

2
i ) where µi

is the mean and σ2
i is the variance. For notational conve-

nience, we define µ = [µ1, · · · , µP ]
T and σ = [σ1 · · · , σP ]

T .
For each population, we obtain a set of independent ob-

servations Xi = {xi,1, · · · , xi,Ni
}, where Ni is the sample

size of the i-th population. (For simplicity, we consider the
case where N1 = · · · = NP = N throughout the paper. Ex-
tension to the more general case is straightforward. Each
element in Xi corresponds to one independent measurement
at the i-th population. The problem we aim to address is to
estimate µi’s and σi’s given the observations {X1, · · · ,XP },
with the special constraint that Ni’s are very small.

2.2 Low Confidence under Small Sample Size
For a specific population, the most widely used estimator

for mean and variance is the sample mean x̄i and sample
variance Si, respectively,

x̄i =
1

Ni

Ni
∑

j=1

xi,j , Si =
1

Ni − 1

Ni
∑

j=1

(xi,j − x̄i)
2. (1)

Since x̄i ∼ N(µi,
σ2
i

Ni

) and Si ∼ σ2
i

Ni−1
χ2
Ni−1, we obtain

Std(x̄i) =
1√
Ni

σi, Std(Si) =

√
2√

Ni − 1
σ2
i . (2)

If the standard deviation of an unbiased estimator is used
as a measure of accuracy and confidence level, Eqn. (2)
shows that the accuracy of both sample mean and variance
estimators depend on Ni. As Ni approaches infinity, the
error converges to 0. However, when Ni is small, both esti-
mators suffer from significant error.

3. MULTI-POPULATION MOMENT ESTI-

MATION

3.1 Overview
As is evident in Sec. 2.2, if each population is treated

independently, there is little room for improvement. In con-
trast, our method views data at different populations as cor-
related, and it tries to exploit such correlation to improve
the accuracy of the estimator.

Mathematically, out method employs a Bayesian frame-
work, and consists of two steps, as shown in Fig. 1. First, it



learns a prior distribution of p(µ,σ) from data at all pop-
ulations, using maximum likelihood estimation. Second, it
applies Maximum A Posteriori estimation to each popula-
tion using the prior distribution learned from the first step.

Figure 1: Proposed method consists of two steps.

To give an intuitive idea of why methods other than sam-
ple mean/variance can be much better, we consider two spe-
cial examples. It can be shown that the estimators described
in the two examples can be thought of as special cases of our
proposed method.

Example 3.1 (unequal mean, equal variance).
Assume that µi’s are different, and σ1 = · · · = σP = σ,
and consider the problem of estimating σ2. Since Si ∼
σ2

N−1
χ2
N−1, we obtain an unbiased estimator for σ2

1

P
[S1 + · · ·+ SP ] ∼

1

P

σ2

N − 1
χ2
NP−P , (3)

from which Std( 1
P
[S1 + · · · + SP ]) = σ2

√

2
P (N−1)

. Hence,

the estimation error decreases as P increases, and is smaller
than Std(Si).

Example 3.2 (equal mean, unequal variance).
Assume that µ1 = · · · = µP = µ, and σi’s are different, and

consider the problem of estimating µ. Since x̄i ∼ N(µ,
σ2
i

N
),

we obtain an unbiased estimator for µ

1

P
[x̄1 + · · ·+ x̄P ] ∼ N(µ,

1

P 2
[
σ2
1

N
+ · · ·+ σ2

P

N
]). (4)

As P increases, the variance of 1
P
[x̄1 + · · ·+ x̄P ] decreases.

This shows that when there are many populations, we may
achieve a very accurate estimate of µ.

Note, however, Eqn. (4) is not the “best” estimator. In-
tuitively, consider an estimator of µ which is a linear com-
bination of x̄i’s. Then, more weight should be given to x̄i

if σi is smaller. However, we omit the derivation since the
actual expression is rather involved.

3.2 Choice of Prior Distributions
Intuitively, prior distributions for µi’s and σi’s, denoted

by p(µi) and p(σi) respectively, describe our belief about
the correlation among µi’s and σi’s. We stress that µi’s and
σi’s are fixed quantities at each population, and we simply
model the variation across populations by imposing a prior
distribution. In Example 3.1, σ1 = · · · = σP corresponds
to a Dirac distribution p(σi) = δ(σi − σ). In Example 3.2,
µ1 = · · · = µP corresponds to a Dirac distribution p(µi) =
δ(µi − µ). In a real application, however, it is too strong to
claim a priori that µi’s and σi’s at all populations are the
same.

Rather, it is often seen that µi’s and σi’s at different pop-
ulations are similar, but not equal. This observation makes

a lot of sense, especially for circuits designed to account for
variability. For example, many circuits have compensation
loops and self-reconfigurable features that cancel out the
effects due to certain variability, which effectively pushes
µi’s towards each other. On the other hand, the variance
in the circuit performance is usually caused by a small set
of parameters (such as critical process parameters, temper-
ature, voltage), and the dependency at different configura-
tions tends to be similar, which effectively pushes σi towards
each other.

Based on the above observation, we choose to use uniform
priors for µi’s and σi’s, i.e.,

µi ∼ U(a, b), σi ∼ U(c, d), (5)

where a, b, c, d ∈ R, c, d ≥ 0. Note that the Dirac prior is an
extreme case of the uniform prior when |b − a| and |d − c|
become 0.

While the derivations in the rest of the paper will be based
on the choice of uniform prior, there is no limitation to in-
corporate other types of prior distributions in our method in
Fig. 1. For example, one may use a Gaussian prior, or even
any arbitrary probability distribution. Furthermore, even
µi and σi can be correlated, in which case we may define an
arbitrary joint distribution p(µ,σ) as the prior distribution.
However, in order for the method to work well, the prior dis-
tribution must roughly reflect the relationships of µi’s and
σi’s in reality.

We stress again that although we apply a prior distribu-
tion to µ and σ, µi’s and σi’s are fixed quantities for each
population, rather than random variables. The prior distri-
bution is simply a statistical tool to describe how µi’s and
σi’s are correlated.

It will be shown later that using a uniform prior distribu-
tion effectively applies a bound on the estimated quantities.
Therefore, the process of learning a uniform prior can be
thought of obtaining a bound on the quantities to be esti-
mated, and the probability distribution can be thought of
as a mathematical tool to model correlation.

3.3 Learning a Prior Distribution
The first step in our method is to learn a prior distribu-

tion from data collected at all populations. We employ the
maximum likelihood approach to learn the prior p(µi, σi|θ),
where θ are hyper-parameters of the prior distribution. This
problem can be formulated as an optimization problem

maximize
θ

p(X1, · · · ,XP |θ), (6)

where p(X1, · · · XP |θ) is the likelihood function. We may
either use a nonlinear optimizer to solve for the optimal θ,
or we may derive closed-form solutions by solving

d

dθ
p(X1, · · · ,XP |θ) = 0. (7)

In our formulation, the likelihood function can be com-



puted by

p(X1, · · · ,XP |θ)

=

∫

µ,σ

p(X1, · · · ,XP |µ,σ)p(µ,σ|θ)dµdσ

=

∫

µ,σ

(

P
∏

i=1

p(Xi|µi, σi)

)(

P
∏

i=1

p(µi, σi|θ)
)

dµdσ

=

P
∏

i=1

∫

µi,σi

p(Xi|µi, σi)p(µi, σi|θ)dµidσi,

(8)

where the second equality is due to two conditional inde-
pendences, (X1 ⊥ · · · ⊥ XP |µ,σ)1 and ({µ1, σ1} ⊥ · · · ⊥
{µP , σP }|θ). The integral Eqn. (8) can be computed by
numerical integration, or we may derive its closed-form ex-
pression for special prior distributions.
In our formulation, we choose a uniform prior on µi’s, as

defined in Eqn. (5). To write it in the form of p(µi, σi|θ),
we define θ = [a, b, c, d]T . We further assume that µi and σi

are independent given θ.
Therefore, p(µi, σi|θ) = p(µi|a, b)p(σi|c, d), i.e.,

p(µi, σi|θ) =
{

1
b−a

1
d−c

, if a ≤ µi ≤ b, c ≤ σi ≤ d,
0, otherwise.

(9)

For each population, xi satisfies the Gaussian distribution
N(µi, σ

2
i ), and therefore

p(Xi|µi, σi) =

N
∏

j=1

1√
2πσi

exp

{

−1

2

(xi,j − µi)
2

σ2
i

}

. (10)

Inserting Eqn. (9) and Eqn. (10) into Eqn. (8), we need
to compute for each i,

∫ d

c

p(σi|c, d)dσi

∫ b

a

p(µi|a, b)dµip(Xi|µi, σi), (11)

where the integral with respect to µi is
∫ b

a

p(µi|a, b)dµip(Xi|µi, σi)

=
1

Z

{

Φ(
b− x̄i

σ/
√
Ni

)− Φ(
a− x̄i

σ/
√
Ni

)

}

,

(12)

where Z is a normalizing constant, and Φ(·) is the CDF
of the standard normal distribution. (Unfortunately, the
integral in terms of σi is more involved, and we compute it
by numerical methods.) Eqn. (11) can then be inserted into
Eqn. (8) to compute the likelihood function.

3.4 Maximum A Posteriori Estimation of µ and
σ

Once the prior p(µi, σi|θ) is learned, MAP estimation can
be applied to obtain a point estimate of µi’s and σi’s. MAP
formulation searches for the values of µi’s and σi’s that max-
imize the posterior distribution, i.e., it solves

maximize
µi,σi

p(µi, σi|Xi). (13)

According to Bayes’ rule,

p(µi, σi|Xi) ∝ p(Xi|µi, σi)p(µi, σi), (14)

1The notation (A ⊥ B|C) means that A and B are condi-
tionally independent given C.

where p(Xi|µi, σi) is derived in Eqn. (10), and p(µi, σi) is
learned as described in Sec. 3.3.

For uniform priors of µi and σi, the right-hand side of
Eqn. (14) is

1

b− a

1

d− c
p(Xi|µi, σi), if µi ∈ [a, b] and σi ∈ [c, d]. (15)

Therefore, MAP is equivalent to maximum likelihood es-
timation on the support µi ∈ [a, b] and σi ∈ [c, d]. The
solution is simply

µi,MAP =







a if µi,MLE < a
µi,MLE if a ≤ µi,MLE ≤ b
b if µi,MLE > b

, (16)

σi,MAP =







c if σi,MLE < c
σi,MLE if c ≤ σi,MLE ≤ d
d if σi,MLE > d

, (17)

where µi,MLE and σi,MLE
2 are equal to the sample mean

and standard deviation, respectively[1].

3.5 Algorithm and Relaxation
Summarizing Sec. 3.3 and Sec. 3.4, our proposed algo-

rithm consists of two steps, as shown in Algorithm 1.

Algorithm 1 Multi-Population Moment Estimation

Given: X1, · · · ,XP .
Outputs: (µi, σi), i = 1, · · · , P .

1: Solve maximize
θ

p(X1, · · · ,XP |θ) (Eqn. (6)) for θ
2: for i = 1→ P do

3: Solve maximize
µi,σi

p(µi, σi|Xi) (Eqn. (13)) for (µi, σi)

4: end for

As mentioned, the computation of the integral for σi in
Eqn. (11) is quite involved. To migrate this problem, we
may relax the optimization to an easier one

maximize
a,b

p(X1, · · · ,XP |a, b,σ), (18)

where σ is known, and only hyper-parameters (a, b) of the
mean prior are searched for. However, in this formulation
σi obtained in Eqn. (13) is dependent on µi (and hence
(a, b)). The algorithm has to be modified to ensure that all
the estimated quantities converge.

The modified algorithm with the above relaxation is shown
in Algorithm 2. In step 1, we use sample mean/variance
computed at each population as an initial guess for µ and σ,
and the guess for (a, b) is computed by a = min(µ1, · · · , µP )
and b = max(µ1, · · · , µP ). Then we iteratively solve for
(a, b), µi’s and σi’s until the convergence criteria in Algo-
rithm 2 is satisfied.

3.6 Connections to Empirical Bayes Estima-
tors

The ideas presented in this paper follow the philosophy
of a class of Bayesian estimators, called Empirical Bayes es-
timators (EB)[13]. EB applies Bayes’ rule to obtain either
a point estimation or a posterior distribution of the param-
eters to be estimated. Unlike standard Bayesian methods
that specify an arbitrary prior, EB learns the prior distribu-
tion from data. In particular, if a Gaussian prior is used for

2σi,MLE is a biased estimator. To eliminate the bias, we
may replace σi,MLE in Eqn. (17) by its unbiased estimator.



Algorithm 2 Multi-Population Moment Estimation with
Relaxation
Given: X1, · · · ,XP ; ǫ (tolerance for convergence).
Outputs: (µi, σi), i = 1, · · · , P .

1: Compute the initial guess for a, b,µ,σ.
2: repeat

3: aold = a, bold = b,µold = µ,σold = σ.
4: Solve maximize

a,b
p(X1, · · · ,XP |a, b,σ) (Eqn. (18)) for

(a, b)
5: for i = 1→ P do

6: Solve maximize
µi,σi

p(µi, σi|Xi, a, b) (Eqn. (13)) for

(µi, σi)
7: end for

8: until |a−aold|2+|b−bold|2+||µ−µold||22+||σ−σold||22 < ǫ

the mean, EB gives the so-called James-Stein estimator [14]
for the mean.

Particularly, a nice feature of the James-Stein estimator
is that it is “superior” to the sample mean estimate, in the
sense that the expected sum of mean square error of µi’s
at all populations is smaller than that of the sample mean
estimator, i.e.

E{
P
∑

i=1

(µi − µJS
i )2} < E{

P
∑

i=1

(µi − x̄i)
2}, (19)

where µi is the actual mean, µJS
i is the James-Stein esti-

mator and x̄i is the sample mean. One can show that if
the Gaussian prior on µi’s is used in our method, we obtain
an estimator very similar to the James-Stein estimator, and
Eqn. (19) still holds.

Unlike the James-Stein estimator, our method allows for
more general prior distributions. Specifically, we have de-
rived the case for uniform priors. We will show in Sec. 4 that
our method can significantly out-perform sample mean/variance
estimators.

3.7 Possible Limitations
Although our method may obtain a theoretically better

overall estimate according to conclusions such as Eqn. (19),
it can be the case, theoretically, that for a specific popula-
tion, our method introduces a large bias.

As an extreme example, consider 100 populations, each
with 1 observation, and µ1 = · · · = µ99 = 0, µ100 = 1,
σ1 = · · · = σ100 = 1.Effectively, our method will shrink
the estimated mean towards 0. Therefore, for the 100-th
population, the bias can be large.

However, due to the reasons mentioned in Sec. 3.2, such
extremely pathological cases are unlikely to happen. Even
if it happens, the outliers can be easily identified in a pre-
processing step, and therefore accuracy will not be compro-
mised by outliers.

3.8 Practical Implementation
It should be noted that the optimization problems in Al-

gorithm 1 and Algorithm 2 may not be convex, and may
have multiple local optimal points. There is no guarantee
that our method will find the global optima. However, since
initial guesses are estimated from the same data, the opti-
mizer has a good guess start with, and is less affected by
local optimal points.

To alleviate the computational cost associated with solv-
ing the optimization problems, we may impose an empirical
prior distribution, instead of learning one from data. For
example, experienced designers may have a good idea of the
range of σi at each population – in this case, a uniform prior
for σi’s can be applied. However, empirical priors should be
used with great caution, since it may incur unexpected bias.
To be less biased, one may apply cross-validation [15] to
check the validity of the empirical prior.

4. EXPERIMENTAL RESULTS
In this section, we apply the proposed method to two ex-

amples to show its accuracy and efficiency compared to sam-
ple mean/variance estimators. The first example is a set
of artificial datasets to illustrate the advantage of our pro-
posed method. The second example is a data set composed
of time margin (eye width) measurements of a commercial
high-speed I/O link. For notational convenience, we denote
µ̂i and σ̂i to be the estimation computed by our method,
and µi,sample and σi,sample to be the sample mean and sam-
ple standard deviation.

4.1 Illustrative Examples
In this example, we generate two sets of artificial data to

illustrate the advantages of the proposed method in compar-
ison with sample mean and variance estimators.

The data is generated as follows:

1. Choose a, b, c, d, P,N ,

2. Randomly sample µi ∼ U(a, b) and σi ∼ U(c, d) for
i = 1, · · · , P ,

3. For each population, sample xi,j ∼ N(µi, σi) for j =
1, · · · , N .

To compare (µ̂i, σ̂i) and (µi,sample, σi,sample), we indepen-
dently sample Xi (with µi’s and σi’s fixed) 500 times, and
compute both estimators. We compare histograms of both
mean/standard deviation estimators, as well as histograms
of overall error for mean ǫµ and for standard deviation ǫσ,
defined by

ǫµ =

√

√

√

√

1

P

P
∑

i=1

|µi − µi,est|2, ǫσ =

√

√

√

√

1

P

P
∑

i=1

|σi − σi,est|2.

(20)

4.1.1 Dataset 1

In the first dataset, we set a = 0.9, b = 1.1, c = 0.9,
d = 1.1, N = 5, P = 20 which corresponds to the scenario
where µi’s are similar, σi’s are similar, and the standard de-
viation of µi’s is comparable to the value of σi’s. Fig. 2 show
the histograms of the mean and standard deviation estima-
tions for 500 repeats at one population where µi = 0.9067,
σi = 0.9786. It is seen that the variance of µ̂ is much smaller
than that of µsample. By using a prior learned from multi-
ple populations, we successfully reduce the variance of the
estimator. On the other hand, σ̂ is only slightly better than
σsample. This is partly due to the fact that in Algorithm 2,
the prior for σi’s is removed, and therefore σi’s are estimated
separately. However, due to the accuracy improvement of µi,
the accuracy of σi is also improved.

It should also be mentioned that we choose to show the
histogram at this configuration because its µi is the smallest
among 20 populations, and therefore is likely to be biased by



the prior distribution. However, the bias is almost negligible
as can be seen from Fig. 2a.
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Figure 2: Histograms of both estimators for population
(µi = 0.9067, σi = 0.9786).

Fig. 3 shows histograms of ǫµ and ǫσ of both methods.
From the histograms, we can compute E(ǫµ̂) = 0.2375,
E(ǫµsample

) = 0.4499, E(ǫσ̂) = 0.3191 and E(ǫσsample
) =

0.3431. Hence, on average, our method achieves 2× accu-
racy improvement on µ. Moreover, the peak of ǫµ appears
around 0.05, which implies that most likely, our method may
achieve much more than 2× accuracy improvement.
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Figure 3: Histograms of ǫµ and ǫσ, P = 20.

We also study the effect of the number of population on
the estimation error. Fig. 4 shows histograms for P = 100
(a, b, c, d,N are the same as in dataset 1). Similar to the pre-
vious case, we can compute E(ǫµ̂) = 0.2130, E(ǫµsample

) =
0.4478, E(ǫσ̂) = 0.3206 and E(ǫσsample

) = 0.3467. The av-
erage accuracy for P = 100 is slightly better than that of
P = 20. However, if we compare Fig. 4 with Fig. 3, we ob-
serve that with P larger, the peak at ǫµ ≃ 0.05 is higher, and
there is a much clearer separation between the histograms
of two estimators. In particular, for mean estimation, our
method almost dominates the sample mean estimator, i.e.,
with high probability, our method obtains less error than
the sample mean estimator.
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Figure 4: Histograms of ǫµ and ǫσ, P = 100.

4.1.2 Dataset 2

In the second dataset, we set a = 0, b = 2, c = 0.9,
d = 1.1, N = 5, P = 20. The major difference from the first

dataset is that the standard deviation of the mean at all pop-
ulations is much larger, and is comparable to the standard
deviation for the Gaussian distributions. Intuitively, if (b−a)
is large, the data at different population is less correlated.
However, for this dataset, our method still out-performs
sample mean/standard deviation estimators. Fig. 5 shows
the histogram of ǫµ and ǫσ of both methods, from which
we can compute E(ǫµ̂) = 0.3936, E(ǫµsample

) = 0.4499,
E(ǫσ̂) = 0.3329 and E(ǫσsample

) = 0.3431. Although the
improvement is not as evident as dataset1, we still achieve
a relative error improvement of 5% and 1% for mean and
standard deviation, respectively. For P = 100, we observe
similar trends as in dataset1.
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Figure 5: Histograms of ǫµ and ǫσ, P = 20.

4.2 Validation of High-Speed I/O Links
In I/O link validation, one critical performance metric is

Bit-Error-Ratio (BER). For the state-of-the-art high-speed
links, the BER is extremely small. For example, in the lat-
est PCIE specification [10], BERspec = 10−12 with 8Gb/sec
data rate. This makes BER measurement a very time-
consuming process. An alternative is to measure the eye
width and eye height (a.k.a., time margin (TM) and volt-
age margin (VM), respectively) of the eye diagram at the
receiver, which can be converted to BER under reasonable
assumptions. Margin measurement, although much faster
than direct BER measurement, is still expensive in terms
of time and cost. For a limited time period, only a small
number of data can be measured for each configuration.

In this example, we have measured the time margin of
50 dies (randomly sampled) for 8 different configurations.
(Note that we measured 50 dies simply for the purpose of
validating our algorithm.) The mean and standard deviation
at different configurations are shown in Fig. 6. We have also
observed from the histogram that the distribution of time
margin can be well approximated by Gaussian distributions.
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Figure 6: Mean and standard deviation at 8 configurations.

To compare the results of our method and sample mean/standard
deviation estimators, we sample Ni data for each configura-
tion from a distribution fitted from the 50 measurements,



and apply both methods. We repeat this experiment for
500 times, and compare the statistics of ǫµ and ǫσ.

The histogram of ǫµ for Ni = 3 is shown in Fig. 7a. Sim-
ilar to dataset1, our method out-performs the sample mean
estimator. We also study how ǫµ is affected by the sample
size at each configuration. Fig. 7b shows the histogram of ǫµ
for both methods for Ni = 11. With Ni larger, the accuracy
of both µ̂ and µsample is improved, and ǫµ of µ̂ is peaked
around 0.1.

The trend with respect to Ni can be better illustrated by
Fig. 8 which shows ǫµ and ǫσ as a function of Ni. Partic-
ularly for ǫµ, we observe a consistently 1.5× accuracy im-
provement over sample mean estimator. It is worth men-
tioning that as Ni becomes very large, ǫµ of both µ̂ and
µsample converge towards 0, and there is little advantage of
applying our method. However, if Ni is small, our method
is much more accurate.
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Figure 7: Histogram of ǫµ.
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Figure 8: ǫµ and ǫσ decreases as Ni increases.

5. CONCLUSION
In this paper, we have proposed an efficient method for

mean/standard deviation estimation under extremely small
sample size. This problem is commonly seen in practice,
and directly affects the time and cost associated with both
pre-silicon and post-silicon validation, especially for complex
analog/mixed-signal circuits. The validation of our method
on several datasets, including measurement of commercial
I/O links, shows that our method is consistently better than
the sample mean/standard deviation estimators, and can
achieve up to 2× average accuracy improvement. Further-
more, the accuracy improvement can also be equivalently
translated to a potentially large test/validation time reduc-
tion.

6. REFERENCES
[1] A. Papoulis and S. Pillai, Probability, Random

Variables and Stochastic Processes. McGraw-Hill
Science/Engineering/Math, 2001.

[2] G. Balamurugan, B. Casper, J. Jaussi, M. Mansuri,
F. O’Mahony, and J. Kennedy, “Modeling and

Analysis of High-Speed I/O Links,”Advanced
Packaging, IEEE Transactions on, vol. 32, no. 2, pp.
237 –247, May 2009.

[3] J. Keshava, N. Hakim, and C. Prudvi, “Post-Silicon
Validation Challenges: How EDA and Academia can
Help,” in Design Automation Conference (DAC), 2010
47th ACM/IEEE, June 2010, pp. 3 –7.

[4] C. Gu, “Challenges in Post-Silicon Validation of
High-Speed I/O Links,” in Computer-Aided Design
(ICCAD), 2012 IEEE/ACM International Conference
on. IEEE, 2012.

[5] Intel Corp., “Intel Platform and Component
Validation.” [Online]. Available:
http://download.intel.com/design/chipsets/labtour/
PVPT WhitePaper.pdf

[6] E. E. Lior Shkolnitsky, “Electrical System-Validation
Methodology for Embedded DisplayPort,” June 2010.
[Online]. Available: http://download.intel.com/
design/intarch/PAPERS/323931.pdf

[7] K. Gambill, “System Margin Validation,” December
2008. [Online]. Available: http://download.intel.com/
design/intarch/papers/321078.pdf

[8] W. Zhang, T. Chen, M. Ting, and X. Li, “Toward
Efficient Large-Scale Performance Modeling of
Integrated Circuits via Multi-Mode/Multi-Corner
Sparse Regression,” in Design Automation Conference
(DAC), 2010 47th ACM/IEEE. IEEE, 2010, pp.
897–902.

[9] X. Li, W. Zhang, F. Wang, S. Sun, and C. Gu,
“Efficient Parametric Yield Estimation of
Analog/Mixed-Signal Circuits via Bayesian Model
Fusion,” in Computer-Aided Design (ICCAD), 2012
IEEE/ACM International Conference on. IEEE,
2012.

[10] [Online]. Available: http://www.pcisig.com

[11] [Online]. Available: http://www.jedec.org

[12] C. Bishop, Pattern Recognition and Machine Learning.
Springer, New York, 2006, vol. 4.

[13] G. Casella, “An Introduction to Empirical Bayes Data
Analysis,”The American Statistician, vol. 39, no. 2,
pp. 83–87, 1985.

[14] B. Efron and C. Morris, “Data Analysis using Stein’s
Estimator and Its Generalizations,” Journal of the
American Statistical Association, vol. 70, no. 350, pp.
311–319, 1975.

[15] S. Arlot and A. Celisse, “A Survey of Cross-Validation
Procedures for Model Selection,” Statistics Surveys,
vol. 4, pp. 40–79, 2010.


